APP下载

撞击流反应器内流场特性研究进展

2017-10-20张建伟张志刚冯颖施博文

化工进展 2017年10期
关键词:驻点脉动射流

张建伟,张志刚,冯颖,施博文



撞击流反应器内流场特性研究进展

张建伟,张志刚,冯颖,施博文

(沈阳化工大学能源与动力工程学院,辽宁沈阳 110142)

综述了国内外撞击流反应器内流场速度和脉动振荡特性的研究进展。目前,对非限制撞击流反应器内撞击流体的径向速度发展及轴向速度与撞击驻点的脉动特性都有了系统研究,对撞击驻点的振荡模式进行了划分,并得出大量适用于不同喷嘴间距的速度关联式,但对驻点振荡模式的产生机理还没有明确解释。层流状态下随着雷诺数增大,众多学者对受限撞击流反应器内流型的流动模式进行了划分,提出了出现吞噬流模式的临界参数关联式,由于结构等参数的变化当前还没有普遍适用控制流型模式变化的关联式。在浸没撞击流反应器内用非线性分析法确定撞击区并划分了流场区域,但目前尚不能揭示湍流状态下流场能量分布与速度信号等的变化规律。最后作者对撞击流反应器内部流场结构的研究前景进行了展望。

撞击流反应器;流场特性;脉动振荡;速度场

撞击流技术在相间传递方面具有独特性质,现已成为工业应用上的一种重要流动形式,不乏国内外学者对其进行研究[1-4],已广泛应用于混合[5]、干燥[6]、吸收[7]、燃烧[8]、结晶[9]、超细粉体制备[10]等领域。但受撞击流场流动的复杂性影响,目前对撞击流的研究还是以关注工业应用中的湍流规律为主,而对于其基本流场流动结构研究很少。因此,很有必要把对撞击流的研究重点从工业应用转移到基本流动的实验和数值模拟研究上来[11]。本文作者对撞击流反应器流场流动规律的研究进展进行了 综述。

经过几十年的发展,撞击流的结构形式不断完善,尤其在进入21世纪以来,流体力学实验和CFD模拟手段日新月异,对撞击流的研究发展起到了巨大的推动作用,其分类和研究领域也趋于多元 化[12]。其中屠功毅[13]对撞击流的发展形式进行了分类,如表1。

表1 撞击流分类

1 速度特性研究进展

众所周知,推动力、相介面积和传递系数是决定热质传递的3要素,提高推动力和增加相介面积受材质、过程特性和适用场合的限制,而传递系数与相对速度的1/3~1/4次幂成正比。因此,提高相间相对速度是强化传递过程最有效的途径[14]。

1.1 径向速度特性及其扩展率

在撞击流反应器中,撞击后流体的径向流动形态及扩展对大尺度涡结构的产生和发展有显著影响,而这些大尺度涡结构直接影响化工过程中的混合单元。因此,通过研究反应器内径向流动特性来优化其几何结构和操作参数对提高混合效率具有重要意义。

由上可见,研究者获得了不同研究体系下的径向速度关联式,这表明径向射流发展受径向距离、入口初速度、喷嘴间距和直径的影响也不相同;并且四喷嘴结构流场的速度特性也不是两喷嘴结构流场的简单叠加。目前学者们对撞击流反应器的研究主要集中在两喷嘴和四喷嘴结构形式,而工业生产中存在因两不等量物料对撞造成“喷嘴堵塞”等问题,为此重视开发研究三喷嘴结构撞击流反应器或可解决这一问题。

有学者认为弯曲壁面内两流体的初始动量比决定了流体撞击位置和撞击后的流动方向,其径向射流扩展率为0.15;而平面壁面射流撞击流的径向射流扩展率在=20时为0.2、=240时为0.3,约为自由圆射流的3倍[21-23]。以上受实验条件影响得出不同结论,而径向射流扩展率的大小不仅反映流场特性还直接影响混合效果,为对扩展率有更全面系统的认识,李伟锋等[18]在同一体系内(= 0.5~100)发现扩展率在0.5<<8时缓慢增长到0.15左右,在8<<20时快速增至0.3左右,是自由圆射流的1.5~3倍。

综上,撞击流径向射流扩展率随喷嘴间距增大而增大,且比自由圆射流的径向射流扩展更快。另外在模拟预测实验时,受撞击流驻点不稳定性影 响[24-25],采用稳态数值模拟方法存在一定误差,而选取RNG模型较Standard和RNG模型可获得精度更高的预报扩展率。

1.2 轴向速度特性

另外,在数值计算时模型的选择和网格的划分都对计算精度有很大影响[30],因此寻找一个高精度的预测模型对研究复杂的撞击流场是很有必要的。但众多研究表明,DNS仅适用于低雷诺数下,而RANS对预测不够准确,相对而言LES精度更高并逐渐成为模拟撞击流场的主流模型[31-33]。ABDEL-FATTAH[34]尝试用v2-湍流模型模拟撞击驻点处速度、压力等分布情况,相比Standard-和RNG 模型与实验结果更接近。

2 脉动振荡特性研究进展

撞击流反应器内流场流动结构是极其复杂的,其中撞击面的不稳定性和驻点偏移是撞击流反应器中不可忽视的重要现象,认识并控制这种往复振荡不仅能确保整个流场的均匀发展,还可以增加装置的稳定性和使用寿命。

2.1 振荡理论的提出与发展

表2 撞击流反应器的径向速度经验关联式

2.2 操作参数对驻点振荡特性的影响

在以上振荡理论的基础上,研究者对驻点振荡区间及其影响参数进行了系统分析,发现在不同喷嘴间距范围内驻点偏移量受气速比、喷嘴直径等因素的影响有所不同,下文按喷嘴间距由小到大顺序进行综述。

小喷嘴间距时,低雷诺数下两对称喷嘴产生的流场和驻点位置关于喷嘴间距中心面对称,但改变气速比导致撞击面弯曲、驻点偏移并有回流产生,同时锋面变化随雷诺数的增大滞后现象明显[40];而且喷嘴间距(=2)微小偏差能使撞击面偏移中心0.15[26]。另外,李伟锋等[29]考察喷嘴间距、气速比和出口速度分布发现,驻点偏移量随喷嘴间距 (<2)增大或气速比减小而增大,边界层厚度大的“礼帽”分布对驻点偏移量更大。

中等喷嘴间距时,李伟锋等[24]总结OGAWA 等[21,23,41]研究,针对不同间距下驻点位置是否由动量比决定的问题研究了不同气速比下(2<<10)的驻点偏移规律,认为2<<8时,驻点对气速比的变化反应灵敏且近似呈线性变 化[42],<2或>8时驻点随气速比变化不明显且与气速比有非线性关系。其中,文献[41]实验条件=4.3,处于驻点受气速比影响敏感范围;而文献[21]实验条件=240处于不敏感范围。由以上可见不同间距下驻点受动量比影响不同。另外,有报道三角形喷嘴撞击流的驻点偏移量与气速比呈正比[43]。

综上,大喷嘴间距撞击流驻点偏移量受喷嘴直径、间距及气速比影响较大,而对中、小喷嘴间距情况研究却未考察喷嘴直径对其变化,仅得出间距及气速比对驻点偏移的影响规律,可在今后研究中综合考察参数变化对流场不稳定性的影响。

2.3 外界干扰对脉动及振荡频率的影响

学者在考察参数变化对流场脉动影响方面已做了大量工作,但影响流场脉动的不只是一些人为可控的参数因素,还有实验设备自身产生的不可消除的干扰因素等。

如单束射流撞击平板时产生的低频主频分量和高频分量分别是由射流管路的机械振动和涡流湍动造成的[45]。而且实验装置自身产生的扰动影响了流场振荡频率,特别是在脉动振幅达到临界值时对流场有调制作用[46]。另外,王亭杰等[45,47]认为低频区的射流脉动频率等同于往复泵的脉动频率,且脉动频率范围是由高压泵的几何结构决定,且在高气速时平面撞击流的偏转振荡频率可达226Hz。

可见射流脉动频率不仅受撞击面不稳定性的影响,而且与泵的工作频率、管路的振动及涡流湍动的强弱都有着密切联系。但由于泵及管路等装置自身因素难以消除,而为进一步探究这些因素对振荡频率的影响,LI等[48]将激励因素引入撞击流反应器,发现激励引起撞击面沿轴向周期性振荡且振荡频率等于激励频率,并在文献[49]中报道了声波激励对撞击流的振荡影响,发现水平振荡区(≤4)的振荡频率等于声波激励频率。以上实验验证了外界激励在一定条件下能对振荡振幅产生明显影响,这为研究流场的脉动规律拓宽分析方向但同时也为揭示脉动本质带来更大挑战。

2.4 受限空间撞击流反应器的流场振荡特性

随撞击流反应器的多元化发展,学者们设计了一类限制撞击流体在反应腔内自由扩散的反应器,这类反应器多用于快速微观混合的单元过程,在尺寸上基本都采用微型结构。其中,受限撞击流反应器(CIJR)和T型撞击流反应器是目前最常见的。

2.4.1 受限撞击流反应器(CIJR)流场振荡特性

对于CIJR,低雷诺数时锋面摆动频率受撞击面的冲击反馈作用而保持稳定,并与平均速度03/2成正比,较非受限撞击流反应器高;受空间限制撞击破碎产生的漩涡增强了流场混沌和湍流效应,尤其在脉动频率接近撞击流自身振荡频率时,脉动对流场影响作用最为显著[52-50]。而LIU等[53]则对流场速度进行分析并用直接测量结果验证CFD模型的微尺度湍流流动,发现-模型对湍流预测不准确。

另外为深入认识流场流动形态,研究者对不同雷诺数下撞击后流场进行了相应的流型划分,并模拟发现二维、三维撞击流场经历的流型有所差别。

学者发现<100时反应器内两股流体经撞击压缩变形后各自稳定地呈分离流模式;增大至120左右,驻点难以稳定在对置喷嘴间的几何中心,撞击面呈“S”形摆动,出现动态混沌模式;并认为撞击面边缘的摆动与撞击驻点的振荡存在关 联[54-57]。之后LI等[58]细分完善了撞击流振荡区,发现在>300时自持振荡模式变为了无规则振荡模式。在层流状态下的二维受限反应器内随雷诺数和喷嘴间距比的增大,流场依次经历了稳定区、周期性碰撞区、随机碰撞区;而三维圆撞击流场只有稳定区和随机碰撞区,且撞击面稳定性主要受雷诺数影响[59-60]。

2.4.2 T型撞击流反应器的流场振荡特性

随受限反应器结构的多样化发展,众多学者对用于快速微观混合的T型受限撞击流反应器内流动形态进行研究,并将流场依次划分为比较稳定的分离流模式(<50)、涡流模式、吞噬流模式和振荡模式等[61-65]。其中,涡流模式处于分离流模式和吞噬流模式之间,在实验中难以辨别而仅在模拟中发现。吞噬流模式由ENGLER等[61]在T型反应器中发现并经BOTHE等[65-66]验证。不稳定的振荡模式约出现在≥195时,后经学者细分为周期性振荡(240<<400)、拟周期振荡(400<<500)和混乱振荡(>500)[62-64];而屠功毅[13]则发现230<<400时出现周期性的非对称振荡模式,400<<480为对称与非对称振荡周期的转化区。另外研究表明,未充分发展的入口速度将导致出现吞噬流模式及振荡模式的雷诺数增大[13,67]。

目前学者对流场结构的研究不断深入细化,受实验体系、流场稳定性、数据采集等因素影响,在流型划分方面存在部分差异,但在影响流型发展转变的认识上基本是一致的。

为探究撞击区上部空间、射流间距和宽高比对流场振荡影响,SULTAN等[68-69]改进T型反应器(图1),发现在撞击点下游形成旋转的涡街并将其命名为“自持混沌流模式”,但这种自持振荡与之前T型反应器的振荡模式不同;同时GAO等[33,70]在圆形T型反应器内也发现的变化影响了流场驻点的偏移。

图1 T型撞击流反应器

通过对T型反应器流场结构的研究认识,学者们发现当流体处于吞噬流模式时具有良好的微观混合效果,为使流体处于该模式而获得较好混合效果,ENGLER等[61,71]提出了涡流模式转向吞噬流模式的临界参数的关联式(表3)。但在后续研究中,CHERLO等[72]发现反应器入口宽度或宽度小于深度时,需要增大雷诺数才有可能出现吞噬流模式,同时POOLE等[68,73]也发现文献[71]中的关联式在许多工况下也不适用。

由上述可见,反应器结构对流型模式变化有着显著影响,而且随反应器结构的多元化发展,要想得出一个普遍适用控制流型模式变化的关联式是十分困难的。

以上研究者对受限空间撞击流反应器内流场流型和脉动振荡模式进行研究划分,得出对应流型转变的临界条件及关联式,并对在工业中应用较好的流型进行着重研究,已初步形成该类反应器的流场理论体系,为今后研究及转化应用提供参考和理论指导。但以上研究多局限于层流状态,因湍流结构的复杂性,目前对湍流状态下流型结构的研究报道较少。

2.5 浸没撞击流反应器的流场振荡特性

我国伍沅教授等[74-75]为研究液体介质在撞击流反应器中的应用提出了液体连续相撞击流反应器,设计了浸没循环撞击流反应器(SCISR)(图2)和立式循环撞击流反应器(VCISR),并考察了其在微观混合及超细粉体制备方面的性能;之后杨侠等[76]对VCISR的混合性能进行了大量研究工作。

图2 浸没循环撞击流反应器

张建伟等[77-78]则用希尔伯特-黄变换、小波变换等非线性方法对SCISR撞击区流场的非线性和混沌特性进行研究,分析流场信号发现流体粒子产生的能量集中在低频区,找到能量分布与流型转变之间的对应关系,把流场划分为中心区、涡旋区和回流区;在分析撞击流压力波动信号时发现撞击区流体具有混沌特性、压力波动信号具有多重分形特性,得到了撞击区的径向范围约为0.33倍导流筒直径,并认为是撞击区粒子脉动产生的不同尺度漩涡造成了混沌[79-82]。SUN等[83]从功率谱上发现浸没循环撞击流反应器内压力波动主要集中在1000Hz以下,且波动强度随撞击速度增大而增大。

由于这种靠导流筒内螺旋桨旋转提供的推动力无法满足较大撞击强度要求,对此张建伟等[84-85]设计了对置撞击流反应器(图3),发现撞击后流体含能大尺度结构基本集中在非稳定径向射流附近的低阶模态,而驻点振荡幅值集中在0.1~0.范围内且没有固定周期,并建立了振幅与喷嘴间距的联系。

表3 涡流模式转向吞噬流模式的临界参数关联式

图3 浸没对置撞击流反应器

通过利用以上非线性等方法的研究分析,目前对液体介质在撞击流反应器中的流场能量分布、流型转变和压力波动、驻点振荡等特性有了整体了解,但对剧烈湍动的撞击区仍缺乏全面认识。另外,针对3种物料反应及两不等量物料撞击造成的“喷嘴堵塞”问题,作者对水平三向撞击流反应器进行研究,发现一种新的流型——漏斗径向射流[86],但受喷嘴结构水平布置的影响,目前的实验条件很难全面收集这种流型信息。

3 结语与研究展望

综上,随实验手段及模拟方法的不断发展,人们对撞击流反应器内流场流动规律有了深入认识。由于现有的湍流理论体系还不能解释撞击区复杂无序的流动机理,限制了撞击流技术的发展应用,对此可尝试建立非线性分析等方法完善湍流理论来揭示这种复杂湍流的规律。而且,对流场结构的研究不能只局限于改变实验条件,应全面分析影响流场的外界参数,尤其应重视实验装置自身振动等因素对流型变化的影响。其次,目前对撞击流反应器的研究多以单组对置撞击结构为主,而对多组同时撞击时流场扩展的运动规律鲜有报道。针对工业应用反馈提出的喷嘴堵塞问题以及多物料反应需求,迫切需要开发研究多喷嘴排列或协同其他元件的新型装置。另外,仅依靠当前实验手段检测、收集的流场信息并不完整,将计算流体力学与先进PIV、PLIF技术有机结合,使实验与模拟互相验证,不断促进流场规律的研究。

[1] CHAMPION M,LIBBY P A. Comparison between theory and experiment for turbulence on opposed streams[J]. Physics of Fluids,1993,5(9):2301-2303.

[2] CHAMPION M,LIBBY P A. Asymptotic analysis of stagnating turbulent flows[J]. AIAA Journal,1991,29(1):16-24.

[3] STAN G,JOHNSON D A. Experimental and numerical analysis of turbulent opposed impinging jets[J]. AIAA Journal,2001,39(10): 1901-1908.

[4] LINDSTEDT R P,LUFF D S,WHITELAW J H. Velocity and strain-rate characteristics of opposed isothermal flows[J]. Flow Turbulence and Combustion,2005,74(2):169-194.

[5] AMIR H H,AMIR R,MOHAMMAD R E. Comparison of different modeling strategies for simulation of carbon dioxide absorption in a coaxial impinging streams absorber[J]. Separation Science and Technology,2011,46(1):105-118.

[6] 张涛,杜敏,周宾,等. 气固同轴撞击流干燥试验研究[J]. 工程热物理学报,2011,32(11):1910-1912.

ZHANG Tao,DU Min,ZHOU Bin,et al. Experimental study on coaxial gas-solid two impinging stream drying[J]. Journal of Engineering Thermophysics,2011,32(11):1910-1912.

[7] BERMAN Y,TANKLEVSKY A,OREN Y,et al. Modeling and experimental studies of SO2absorption in coaxial cylinders with impinging streams(Ⅱ)[J]. Chemical Engineering Science,2000,55(5):1023-1038.

[8] PITT G J,MILLWARD G R. Coal and modern coal processing:an introduction[M]. New York:Academic Press,1979.

[9] 伍沅,周玉新,郭嘉,等. 液体连续相撞击流强化过程特性及相关技术装备的研发和应用[J]. 化工进展,2011,30(3):463-472.

WU Yuan,ZHOU Yuxin,GUO Jia,et al. Features of LIS intensifying processes and development and applications of related technical devices[J]. Chemical Industry and Engineering Progress,2011,30(3):463-472.

[10] 伍沅,陈煜. 撞击流反应制取“超细”白炭黑[J]. 化工学报,2003,54(10):1381-1386.

WU Yuan,CHEN Yu. Preparation of “ultra-fine”white carbon block in submerged circulative impinging stream reactor[J]. Journal of Chemical Industry and Engineering,2003,54(10):1381-1386.

[11] 蒋贵丰. 气相圆湍撞击流结构特性的实验研究[D]. 武汉:华中科技大学,2012.

JIANG Guifeng. Experimental Investigation of the characteristics of flow structures in round turbulent impinging streams[D]. Wuhan:Huazhong University of Science and Technology,2012.

[12] 梁腾波,白净,张璐,等. 撞击流技术在化学工程领域的研究与应用进展[J]. 石油化工,2016,45(3),360-367.

LIANG Tengbo,BAI Jing,ZHANG Lu,et al. Advances in application of impinging stream technology to chemical engineering[J]. Petrochemical Technology,2016,45(3),360-367.

[13] 屠功毅. 平面撞击流反应器流动模式、混合机理及过程强化研究[D]. 上海:华东理工大学,2015.

TU Gongyi. Study on flow regimes,mixing mechanism and enhancement in planar opposed jets reactors[D]. Shanghai:East China University of Science and Technology,2015.

[14] 伍沅. 撞击流定义刍议[J]. 化学工程,2008,36(9):79-82.

WU Yuan. A opinion on the definition of impinging stream[J]. Chemical Engineering(China),2008,36(9):79-82.

[15] TAMIR A. 撞击流反应器:原理和应用[M]. 伍沅译. 北京:化学工业出版社,1996.

TAMIR A. Impinging-stream reactors——fundamentals and applications[M]. WU Yuan translate. Beijing:Chemical Industry Press,1996

[16] 孙志刚,李伟锋,刘海峰.小喷嘴间距撞击流的径向射流速度分布[J]. 燃烧科学与技术,2010,16(2):165-169.

SUN Zhigang,LI Weifeng,LIU Haifeng. Radial jet velocity distribution of two closely opposed jets[J]. Journal of Combustion Science and Technology,2010,16(2):165-169.

[17] 刘海峰,刘辉,龚欣,等. 大喷嘴间距对置撞击流径向速度分布[J]. 华东理工大学学报,2000,26(2):168-171.

LIU Haifeng,LIU Hui,GONG Xin,et al. Radial velocity of wide spaced impinging streams[J]. Journal of East China University of Science and Technology,2000,26(2):168-171.

[18] 李伟锋,孙志刚,刘海峰,等. 两喷嘴对置撞击流径向射流流动特征[J]. 化工学报,2009,60(10):2453-2459.

LI Weifeng,SUN Zhigang,LIU Haifeng,et al. Flow characteristics of radial jet from two opposed jets[J]. Journal of Chemical Industry and Engineering,2009,60(10):2453-2459.

[19] 杨侠,余蓓,万攀,等. 小喷嘴中心距撞击流反应器流场径向速度分布特征[C]//高等学校工程热物理全国学术会议,2014.

YANG Xia,YU Bei,WAN Pan,et al. The radial velocity distribution characteristics of flow field in three unifrom jets reactor[C]//National Academic Conference of University on Engineering Thermal Physics,2014.

[20] 杨侠,余蓓,郭钊,等. 多喷嘴对置式撞击流反应器流场的数值模拟[J]. 化工进展,2013,32(7):1480-1483,1501.

YANG Xia,YU Bei,GUO Zhao,et al. Numerical simulation of the flow field in multi-nozzle opposed imping stream reactor[J]. Chemical Industry and Engineering Progress,2013,32(7):1480-1483,1501.

[21] REW H,PARK S. The interaction of two opposing asymmetric curved jets[J]. Experiments in Fluids,1988,6(4):243-252.

[22] GILBERT B L. Turbulence measurements in a two-dimensional upwash[J]. AIAA Journal,1988,26(1):10-14.

[23] KIND R,SUTHANTHIRAN K. The interaction of opposing plane turbulent wall jets[J]. Journal of Fluid Mechanics,1973,58(2):389-402.

[24] 李伟锋,孙志刚,刘海峰,等.两喷嘴对置撞击流驻点偏移规律[J]. 化工学报,2008,59(1):46-52.

LI Weifeng,SUN Zhigang,LIU Haifeng,et al. Stagnation point offset of two opposed jets[J]. Journal of Chemical Industry and Engineering,2008,59(1):46-52.

[25] 孙志刚,李伟锋,刘海峰,等. 平面撞击流振荡特性[J]. 化工学报,2009,60(2):338-344.

SUN Zhigang,LI Weifeng,LIU Haifeng,et al. Oscillation characteristics of two planar opposed jets[J]. Journal of Chemical Industry and Engineering,2009,60(2):338-344.

[26] KOSTIUK L W,BRAY K N C,CHENG R K. Experimental study of premixed turbulent combustion in opposed streams (Ⅰ)[J]. Nonreacting Flow Field Combustion and Flame,1993,92:377-395.

[27] 张建伟,董鑫,马红越,等. 双喷嘴水平对置撞击流混合器内湍流流动及混沌特性[J]. 化工进展,2015,34(7):1832-1840.

ZHANG Jianwei,DONG Xin,MA Hongyue,et al. Turbulence flow and chaotic characteristic in the dual nozzle opposed impinging stream mixer[J].Chemical Industry and Engineering Progress,2015,34(7):1832-1840.

[28] CHAMPION M,LIBBY P A. Reynolds stress description of opposed and impinging turbulent jets (Ⅰ):closely spaced opposed jets[J]. Physics of Fluids,1993(1):203-216.

[29] 李伟锋,孙志刚,刘海峰,等. 小间距两喷嘴对置撞击流流场的数值模拟与实验研究[J]. 化工学报,2007,58(6):1385-1390.

LI Weifeng,SUN Zhigang,LIU Haifeng,et al.Numerical simulation and experimental study on flow field of two closely spaced opposed jets[J].Journal of Chemical Industry and Engineering,2007,58(6): 1385-1390.

[30] RADHAKRISHNAN S,BELLAN J. Explicit filtering to obtain grid-spacing-independent and discretization-order-independent large-eddy simulation of two-phase volumetrically dilute flow with evaporation[J]. Journal of Fluid Mechanics,2013,719:230-267.

[31] LI Z P,BAO Y Y,GAO Z M. PIV experiments and large eddy simulations of single-loop flow fields in Rushton turbine stirred tanks[J]. Chem. Eng. Sci.,2011,66(6):1219-1231.

[32] SU W T,LI X B,LI F C,et al. Comparisons of LES and RANS computations with PIV experiments on a cylindrical cavity flow[J]. Adv. Mech. Eng.,2013,2(5):10-15.

[33] 于永久. 高速撞击流反应器内流动特性的实验研究和数值模拟[D]. 北京:北京化工大学,2014.

YU Yongjiu. Experimental investingation and numerical simulation of flow characteristics in confined impinging jets reactor[D]. Beijing:Beijing University of Chemical Technology,2014.

[34] ABDEL-FATTAH A. Numerical simulation of isothermal flow in axisymmetric turbulent opposed jets[J]. Aerospace Science and Technology,2011,15:283-293.

[35] POWELL A. Aerodynamic noise and the plane boundary[J]. The Journal of the Acoustical Society of America,1960,32:982-990.

[36] NOSSEIR N,PELED U,HILDEBRAND G. Pressure field generated by jet on jet impingement[J]. AIChE J.,1968,25(10):78-84.

[37] DENSHCHIKOV V A,KONDRAT'EV V N,ROMASHOV A N. Interaction between two opposed jets fluid dynamics interaction between two opposed jets[J]. Fluid Dynamics,1978,6:924-926.

[38] DENSHCHIKOV V A, KONDRAT' ev V N,ROMASHOV A N. Auto-oscillations of planar colliding jets fluid dynamics interaction between two opposed jets[J]. Fluid Dynamics,1983,3:460-463.

[39] OREN Y,ABDA M,TAMIR A. Mass transfer in an electrochemical reactor with two interacting jets[J]. Journal of Applied Electrochemistry,1992,22(10):950-958.

[40] CIANI A W,KREUTNER C E,FROUZAKIS K,et al. An experimental and numerical study of the structure and stability of laminar opposed-jet flows[J]. Computers & Fluids,2010,39(1):114-124.

[41] OGAWA N,MAKI H,HIJIKATA K. Studies on opposed turbulent jets(impact position and turbulent component in jet center)[J]. JSME International Journal,1992,35(2):205-217.

[42] LI Weifeng,YAO Tianliang,WANG Fuchen. Study on factors influencing stagnation point offset of turbulent opposed jets[J]. AIChE Journal,2010,56(10):2513-2522.

[43] KIYAN Parham,ESMAEIL Esmaeilzadeh,UGUR Atiko,et al. A numerical study of turbulent opposed impinging jets issuing from triangular nozzles with different geometries[J]. Heat and Mass Transfer,2011,47(4):427-437.

[44] 许建良,李伟锋,曹显奎,等. 不对称撞击流的实验研究与数值模拟[J]. 化工学报,2006,57(2):288-291.

XU Jianliang,LI Weifeng,CAO Xiankui,et al. Experimental research and numerical simulation of asymmetric impinging streams[J]. Journal of Chemical Industry and Engineering,2006,57(2):288-291.

[45] 王亭杰,肖帅刚,崔爱莉,等. 射流撞击过程中的高频压力脉动特性[J]. 化工学报,2001,52(2):153-157.

WANG Tingjie,XIAO Shuaigang,CUI Aili,et al. Characteristics of dynamic pressure in impinging jet[J]. Journal of Chemical Industry and Engineering,2001,52(2):153-157.

[46] ICARDI M,GAVI E,MARCHISIO D L,et al. Investigation of the flow field in a three-dimensional confined impinging jets reactor by means of micropiv and DNS[J]. Chemical Engineering Journal,2011,166(1):294-305.

[47] HASSABALLA M,Ziada S. Self-excited oscillations of two opposing planar air jets[J]. Physics of Fluids,2015,27(1):014109.

[48] LI W F, QIAN W W,YU G S,et al. Experimental study of oscillation behaviors in confined impinging jets reactor under excitation[J]. AIChE Journal,2015,61(1):333-341.

[49] LI W F,HUANG G F,TU G Y,et al. Experimental study of planar opposed jets with acoustic excitation[J]. Physics of Fluids,2013,25(1):441-452.

[50] JOHNSON D A. Experimental and numerical examination of confined laminar opposed jets:momentum balancing[J]. International Communications in Heat and Mass Transfer,2000,27(4):443-463.

[51] ICARDI M,GAVI E,MARCHISIO D L,et al. Validation of LES predictions for turbulent flow in a confined impinging jets reactor[J]. Applied Mathematical Modelling,2011,35:1591-1602.

[52] ERKOC E,SANTOS R J,DIAS M M,et al. Enhancing the RIM process with pulsation technology:CFD study[C]//Proceedings of European Congress of Chemical Engineering(ECCE-6),Copenhagen,2007:16-20.

[53] LIU Y,OLSEN M G,FOX R O. Turbulence in a microscale planar confined impinging-jets reactor[J]. Lab on a Chip,2009,9(8):1110-1118.

[54] FONTE C P,SULTAN M A,SANTOS R J,et al. Flow imbalance and Reynolds number impact on mixing in confined impinging jets[J]. Chemical Engineering Journal,2015,260:316-330.

[55] TUCKER C L,SUH N P. Mixing for reaction injection molding(Ⅰ):impingement mixing of liquids[J]. Polymer Eng. & Science,1980,20(13):875-886.

[56] WOOD P,HRYMAK A,YEO R,et al. Experimental and computational studies of the fluid mechanics in an opposed jet mixing head[J]. Physics of Fluids A:Fluid Dynamics,1991,3(5):1362-1368.

[57] SANTOS R J,ERKOC E,DIAS M M,et al. Hydrodynamics of the mixing chamber in RIM:PIV flow-field characterization[J]. AIChE Journal,2008,54(5):1153-1163.

[58] LI W F,DU K J,YU G S,et al. Experimental study of flow regimes in three-dimensional confined impinging jets reactor[J].AIChE Journal,2014,60(8):3033-3045.

[59] SAKAMON Devahastin,ARUN S Mujumdar. A numerical study of flow and mixing characteristics of laminar confined impinging streams[J]. Chemical Engineering Journal,2002,85(85):215-223.

[60] PAWLOWSKI R P,SALINGER A G,SHADID J N,et al. Bifurcation and stability analysis of laminar isothermal counter flowing jets[J]. Journal of Fluid Mechanics,2006,551(9):117-139.

[61] ENGLER M,KOCKMAIM N,KIEFER T,et al. Numerical and experimental investigations on liquid mixing in static micromixers[J]. Chemical Engineering Journal,2004,101(1):315-322.

[62] THOMAS S,AMEEL T A. An experimental investigation of moderate Reynolds number flow in a T-channel[J]. Experimental in Fluids,2010,49(6):1231-1245.

[63] THOMAS S,AMEEL T,GUILKEY J. Mixing kinematics of moderate Reynolds number flows in a T-channel[J]. Physics of Fluids,2010,22(1):96-102.

[64] DREHER S,KOCKMAIM N,WOIAS P. Characterization of laminar transient flow regimes and mixing in T-shaped micromixers[J]. Heat Transfer Engineering,2009,30(1):91-100.

[65] BOTHE D,STEMICH C,WAMECKE H. Fluid mixing in a T-shaped micro-mixer[J]. Chemical Engineering Science,2006,61:2950-2958.

[66] HOFFMANN M,SCHLTITER M,RABIGER N. Experimental investigation of liquid-liquid mixing In T-shaped micro-mixers using μ-LlF and μ-PIV[J]. Chemical Engineering Science,2006,61(9):2968-2976.

[67] FANI A,CAMARRI S,SALVETTI M V. Investigation of the steady engulfment regime in a three-dimensional T-mixer[J]. Physics of Fluids,2013,25(6):064102.

[68] SULTAN M A,FONTE C P,DIAS M M,et al. Experimental study of flow regime and mixing in T-jets mixers[J]. Chemical Engineering Science,2012,73(19):388-399.

[69] SULTAN M A,KRUPA K,FONTE C P,et al. High-throughput T-jets mixers:an innovative scale-up concept[J]. Chemical Engineering & Technology,2013,36(2):323-331.

[70] GAO Zhengming,HAN Jing,BAO Yuyun,et al. Micromixing efficiency in a T-shaped confined impinging jet reactor[J]. Chinese Journal of Chemical Engineering,2015,33:350-355.

[71] SOLEYMANI A,YOUSEFI H,TURUNEN I. Dimensionless number for identification of flow patterns inside a T-micromixer[J]. Chemical Engineering Science,2008,63:5291-5297.

[72] CHERLO S K R,PUSHPAVANAM S. Effect of depth on onset of engulfment in rectangular micro-channels[J]. Chemical Engineering Science,2010,65(24):6486-6490.

[73] POOLE R J,ALFATEH M,GAUNTLETT A R. Bifurcation in a T-channel junction:effects of aspect ratio and shear-thinning[J]. Chemical Engineering Science,2013,104:839-848.

[74] 伍沅. 浸没循环撞击流反应器:00230326.4[P]. 2002-01-30.

WU Yuan. Submerged circulative impinging stream reactor:ZL00230326.4[P]. 2002-01-30

[75] 伍沅,周玉新. 立式循环撞击流反应器:200520094814.2[P]. 2006-08-30.

WU Yuan,ZHOU Lixin.Vertical circulative impinging stream reactor:ZL200520094814.2[P]. 2006-08-30.

[76] 杨侠,刘丰良,毛志慧,等. 立式循环撞击流反应器不同撞击间距下混合性能分析[J]. 化工进展,2012,31(6):1210-1214.

YANG Xia,LIU Fengliang,MAO Zhihui,et al. Mixing performance of a vertical circulative impinging stream reactor with different spacing[J].Chemical Industry and Engineering Progress,2012,31(6):1210-1214.

[77] 张建伟,苗超. 撞击流混合器速度信号的Hilbert-Huang变换分析[J]. 实验流体力学,2010,24(4):66-70.

ZHANG Jianwei,MIAO Chao. Hilbert-Huang transform of velocity signal in impinging stream mixer[J]. Journal of Experiments in Fluid Mechanics,2010,24(4):66-70.

[78] 张建伟,殷婉君,孙熙同,等. 基于希尔伯特-黄变换的撞击流混合器浓度场特性分析[J]. 高校化学工程学报,2014,28(5):971-978.

ZHANG Jianwei,YIN Wanjun,SUN Xitong,et al.Research on concentration field in an impinging stream mixer using Hilbert-Huang transform[J]. Journal of Chemical Engineering of Chinese Universities,2014,28(5):971-978.

[79] 张建伟,焦丽. 撞击流反应器压力波动的多尺度多分形特征分析[J]. 化工学报,2006,57(7):1553-1559.

ZHANG Jianwei,JIAO Li. Multi-scale and multi-fractal characteristics of pressure signals in SCISR[J]. Journal of Chemical Industry and Engineering(China),2006,57(7):1553-1559.

[80] 张建伟,焦丽. 基于撞击流混合器压力波动信号的小波多重分形奇异谱[J]. 过程工程学报,2006,6(4):627-632.

ZHANG Jianwei,JIAO Li.Wavelet multi-fractal singularity spectrum:application to pressure fluctuation in an impinging stream mixer[J].The Chinese Journal of Process Engineering,2006,6(4):627-632.

[81] 张建伟,伍沅,舒安庆,等. 浸没循环撞击流反应器的压力脉动特性[J]. 化工学报,2005,56(2):266-269.

ZHANG Jianwei,WU Yuan,SHU Anqing,et al. Characteristics of pressure fluctuation in submerged circulative impinging stream reactor[J]. Journal of Chemical Industry and Engineering(China),2005,56(2):266-269.

[82] 张建伟,汪洋,汤慧华,等. 浸没循环撞击流反应器撞击区压力波动的混沌分析[J]. 化工学报,2005,56(12):2309-2314.

ZHANG Jianwei,WANG Yang,TANG Huihua,et al. Chaotic analysis of pressure fluctuations in impinging region of SCISR[J]. Journal of Chemical Industry and Engineering(China),2005,56(12):2309-2314.

[83] SUN Huaiyu,WU Yuan,XU Chenghai. Pressure fluctuation in the submerged circulative impinging stream reactor[J]. Chinese J. Chemical Engineering,2006,14(4):428-434

[84] 张建伟,马红越,董鑫,等. 水平对置双向液体撞击流的振荡特性[J]. 化工学报,2015,66(4):1310-1317.

ZHANG Jianwei,MA Hongyue,DONG Xin,et al. Oscillation characteristics of two horizontal opposed liquid-liquid impinging streams[J]. CIESC Journal,2015,66(4):1310-1317.

[85] 张建伟,张学良,冯颖,等. 水平对置撞击流的POD分析及混合特性[J]. 过程工程学报,2016,16(1):26-33.

ZHANG Jianwei,ZHANG Xueliang,FENG Ying,et al. POD analysis and mixing characteristics of impinging streams from two opposite nozzles[J]. The Chinese Journal of Process Engineering,2016,16(1):26-33.

[86] 张建伟,王诺成,冯颖,等. 基于PLIF的水平三向撞击流径向流型的研究[J]. 高校化学工程学报,2016,30(3):723-729.

ZHANG Jianwei,WANG Nuocheng,FENG Ying,et al.Study on radial stream patterns in three-jet impinging stream mixers using planar laser induced fluorescence[J]. Journal of Chemical Engineering of Chinese Universities,2016,30(3):723-729.

Research progress of flow field characteristics in impinging stream reactor

ZHANG Jianwei,ZHANG Zhigang,FENG Ying,SHI Bowen

(College of Energy and Power Engineering,Shenyang University of Chemical Technology,Shenyang 110142,Liaoning,China)

The features of velocity field and pressure fluctuation in impinging stream reactor were summarized in the paper. The radial velocity, axial velocity and oscillation behavior in the unconfined impinging stream reactor were studied systematically. The oscillatory modes of the stagnation points were divided. And a large number of velocity correlation formulas suitable for different nozzle distance were obtained, but the mechanism of oscillation was not clearly explained. With the increase of the Reynolds number in the laminar flow state, many scholars had divided the flow type in the confined impinging stream reactor, and proposed the critical parameter correlation of engulfment flow. Due to the change of the structure parameters, there was no universally applicable correlation. The impinging zone and the flow field pattern were determined by non-linear analysis in the submerged impinging stream reactor. However, the mechanism of energy distribution and velocity signal in the turbulent flow field cannot be revealed. The trends of research on flow field in impinging stream reactor were also pointed out.

impinging stream reactor;flow characteristics; fluctuation and oscillation;velocity field

TQ052

A

1000–6613(2017)10–3540–09

10.16085/j.issn.1000-6613.2016-2101

2016-11-15;

2017-03-14。

国家自然科学基金项目(21476141)。

张建伟(1964—),男,博士,教授。E-mail:zhangjianwei64@163.com。

猜你喜欢

驻点脉动射流
深海逃逸舱射流注水均压过程仿真分析
RBI在超期服役脉动真空灭菌器定检中的应用
低压天然气泄漏射流扩散特性研究
基于游人游赏行为的留园驻点分布规律研究
利用远教站点,落实驻点干部带学
2300名干部进村“串户”办实事
扎根山区 主动作为——中共湖北省纪委、省监察厅新农村建设工作队驻点帮扶纪实
有限水域水中爆炸气泡脉动的数值模拟
射流齿形喷嘴射流流场与气动声学分析
地铁站台活塞风附壁射流起始段的实测和实验验证