APP下载

非奇异M-矩阵Hadamard积的最小特征值的新下界

2017-10-10赵建兴桑彩丽

浙江大学学报(理学版) 2017年5期
关键词:下界对角特征值

赵建兴, 桑彩丽

(贵州民族大学 数据科学与信息工程学院, 贵州 贵阳 550025)

非奇异M-矩阵Hadamard积的最小特征值的新下界

赵建兴*, 桑彩丽

(贵州民族大学 数据科学与信息工程学院, 贵州 贵阳 550025)

针对非奇异M-矩阵B与非奇异M-矩阵A的逆矩阵A-1的Hadamard 积的最小特征值τ(B∘A-1)的估计问题,首先利用矩阵A的元素给出A-1各元素的上下界序列,然后利用这些序列和Brauer定理给出τ(B∘A-1)单调递增收敛的下界序列.最后,通过数值算例验证理论结果,显示所得下界序列比现有结果精确,且能收敛到真值.

M-矩阵;Hadamard积;最小特征值;下界;序列

非奇异M-矩阵及其最小特征值理论常被应用于研究经济学中的投入-产出分析和增长模型、物理学中数字电路的偏微分方程动力系统以及概率统计中的Markov链等问题[1-2].矩阵的Hadamard积则被广泛应用于正定矩阵特征值、奇异值的估计等研究[3].最近,非奇异M-矩阵B与非奇异M-矩阵A的逆矩阵A-1的Hadamard积的最小特征值τ(B∘A-1)的下界估计成为许多学者关注和研究的热点问题,并得到了一系列估计式[4-10].本文继续这一问题的研究,给出τ(B∘A-1)单调递增收敛的下界序列.

1 预备知识

用Rn×n(Cn×n)表示n(n≥2)阶实(复)矩阵集,I表示单位矩阵,令N={1,2,…,n}.

定义1[1]若A=[aij]∈Rn×n的任意元素aij≥0,则称A为非负矩阵,记为A≥0.

定义3[1]设A=[aij],B=[bij]∈Cm×n, 用A∘B表示A和B的对应元素相乘而得的m×n矩阵,即A∘B=[aijbij],称其为A和B的Hadamard积.

定义4[2]若A=[aij]∈Rn×n的非主对角线元非正,即aij≤0,i≠j,i,j∈N,且A-1≥0,则称A为非奇异M-矩阵.用Mn表示非奇异M-矩阵的集合,称τ(A)=min{|λ|:λ∈σ(A)}为A的最小特征值,其中σ(A)为A的谱.

注1由文献[2]知,若A为非奇异M-矩阵,则0<τ(A)≤aii,i∈N;若A,B均为非奇异M-矩阵,则B∘A-1也是一个非奇异M-矩阵.

为叙述方便先给出一些记号. 设A=[aij]∈Rn×n,aii≠0.∀i,j,k∈N,j≠i,记

2009年李耀堂等[4]给出了如下结果:

设A=[aij]∈Mn,且A-1是双随机矩阵,则

(1)

2013年周端美等[5]给出如下结果:

设A=[aij],B=[bij]∈Mn,且A-1是双随机矩阵,则

(2)

同年,程光辉等[6]给出如下结果:

设A=[aij]∈Mn,且A-1是双随机矩阵,则

(3)

不久,李耀堂等[7]改进了式(1)~(3),并给出以下结果:

设A=[aij],B=[bij]∈Mn,且A-1是双随机矩阵,则

(4)

设A=[aij],B=[bij]∈Mn,且A-1=[αij],则

(5)

下面分别给出τ(B∘A-1)和τ(A∘A-1)单调递增收敛的下界序列,新估计式改进了式(1)~(5),且数值算例显示,τ(A∘A-1)的下界序列可以达到真值.

2 主要结果

首先给出一些记号. 设A=[aij]∈Rn×n,aii≠0.i,j,k∈N,j≠i,t=1,2,…,记

引理1设A=[aij]∈Rn×n是行严格对角占优矩阵,则∀i,j∈N,j≠i,t=1,2,…,有

因为

由hi的定义知0≤hi≤1,且

因为

用上述类似的方法, 可证

证毕.

应用引理1及类似于文献[4]中引理2.2和定理3.1的证明,可得

引理2设A=[aij]∈Rn×n是行严格对角占优M-矩阵,则A-1=[αij]存在, 且对任意j,i∈N,j≠i,t=0,1,2,…,

定理1设A=[aij],B=[bij]∈Mn,且A-1=[αij],则对任意t=1,2,…,

τ(B∘A-1)≥Ωt,

(6)

证明由A∈Mn知,存在一个正对角矩阵D,使得D-1AD是一个行严格对角占优M-矩阵[2]. 由文献[2]引理5.1.2可得τ(B∘A-1)=τ(D-1(B∘A-1)D)=τ(B∘(D-1A-1D))=τ(B∘(D-1AD)-1).

为方便起见,且不失一般性,可设A是行严格对角占优M-矩阵.

(7)

由此得

(ii)假设A和B中至少有1个是可约矩阵.由文献[2]知,Zn={A=[aij]∈Rn×n|aij≤0,i≠j,i,j∈N}中的矩阵是非奇异M-矩阵的充分必要条件是其所有顺序主子式为正.定义V=[vij]是n阶置换阵,其中v12=v23=…=vn-1,n=vn1=1,其余vij为0.对任意正数ε>0,当ε充分小时,可知A-εV和B-εV的所有顺序主子式都为正,所以A-εV和B-εV都是不可约非奇异M-矩阵.然后用A-εV和B-εV分别代替A和B,并令ε→0,利用连续性可得式(6)成立.证毕.

定理2由定理1得到的下界序列{Ωt},t=1,2,…是单调递增的且以τ(B∘A-1)为上界, 因而该序列是收敛的.

在定理1中取B=A,可得

推论1设A=[aij]∈Mn,且A-1=[αij],则对任意t=1,2,…,

(8)

定理3设A=[aij],B=[bij]∈Mn,且A-1=[αij],则对任意t=1,2,…,有

证明由A=[aij]∈Mn知A-1=[αij]≥0.因为AA-1=I, 所以

对任意i,j∈N,i≠j,不失一般性,假设

从而

进一步

从而

证毕.

由定理3易得

推论2设A=[aij],B=[bij]∈Mn,则对任意t=1,2,…,有

(9)

在定理3和推论2中分别取B=A,可得

推论3设A=[aij]∈Mn,且A-1=[αij],则对任意t=1,2,…,有

由引理3及类似于定理3、推论2和推论3的证明,可得

定理4设A=[aij],B=[bij]∈Mn,且A-1=[αij]是双随机矩阵,则对任意t=1,2,…,有

推论4设A=[aij],B=[bij]∈Mn,且A-1是双随机矩阵,则对任意t=1,2,…,有

(10)

推论5设A=[aij]∈Mn,且A-1=[αij]是双随机矩阵,则对任意t=1,2,…,有

注2首先对式(2)~(6)(9)(10)做一简单比较:

(i)设A=[aij],B=[bij]∈Mn.由于式(9)仅用A,B的元素即可对τ(B∘A-1)进行估计, 而式(2)(4)和(10)要求A-1=[αij]是双随机矩阵;式(5)和(6)要求A-1=[αij]的所有主对角线元素已知, 此时仅有式(9)可给出τ(B∘A-1)的估计.由于式(9)的前提条件弱于式(2)(4)~(6)和(10),因此其适用范围更广.

由此知,此时式(10)的估计优于式(2)和(4).

由定理3知,式(6)的估计优于式(9).

由于式(6)无须A-1是双随机矩阵,故由式(6)可以给出τ(B∘A-1)的估计,而此时式(2)(4)和(10)均不适用.

(iv)设A=[aij],B=[bij]∈Mn,A-1=[αij]是双随机矩阵,且其主对角线元素αii,i∈N已知.由定理4知式(6)的估计优于式(10);由(ii)知,式(10)的估计优于式(2)和(4);由(iii)知,式(6)的估计优于式(5)和(9);从而式(6)的估计优于式(2)(4)(5)(9)和(10).

(v)从算法的时间复杂性来看,式(2)(4)~(6)(9)和(10)的时间复杂性是一样的,均为O(n3).

与定理1、定理2和推论1的证明类似,可得

定理7设A=[aij]∈Mn,且A-1=[αij],则对任意t=1,2,…,τ(A∘A-1)≥Lt.

3 数值算例

例1设

由Matlab(R2009a)计算得A-1≥0, 再由定义2和定义4知A∈M10且A-1是双随机矩阵. 取迭代总次数为10, 由式(1)(3)、定理7和文献[7-10]中相关结论得到的数值结果及所需时间如表1所示,其中t表示迭代次数. 事实上,τ(A∘A-1)=0.968 7.

从表1可看出,由定理7得到的τ(A∘A-1)的下界序列是单调递增的,且大于由式(1)(3)和文献[7-10]中相关结果得到的下界. 从达到下界所需时间看, 定理7所需时间比式(1)(3)和文献[7,9-10]中相关结果略长,比文献[8]定理11短.

表1 τ(A∘A-1)的下界Lt及所需时间Table 1 The lower bounds Lt of τ(A∘A-1)and the time required

例2设矩阵A=[aij]∈Rn×n是由Matlab(R2009a)随机产生的逆为双随机矩阵的非奇异M-矩阵(满足0-1分布).取迭代总次数为500,由定理7得到的数值结果的部分数据列于表2,其中t为迭代次数.

表2 τ(A∘A-1)的下界LtTable 2 The lower bounds Lt of τ(A∘A-1)

表2的数值结果显示,当矩阵的阶很大时,由定理7估计τ(A∘A-1)是非常有效的.

[1] 黄廷祝,杨传胜.特殊矩阵分析及应用[M].北京:科学出版社,2003. HUANG T Z, YANG C S.SpecialMatrixAnalysisandApplications[M]. Beijing: Science Press,2003.

[2] HORN R A, JOHNSON C R.TopicsinMatrixAnalysis[M]. Cambridge :Cambridge University Press,1991.

[3] HIAI F, LIN M. On an eigenvalue inequality involving the Hadamard product [J].LinearAlgebraandItsApplications,2017,515: 313-320.

[4] LI Y T, CHEN F B, WANG D F. New lower bounds on eigenvalue of the Hadamard product of anM-matrix and its inverse [J].LinearAlgebraandItsApplications,2009,430: 1423-1431.

[5] ZHOU D M, CHEN G L, WU G X, et al. On some new bounds for eigenvalues of the Hadamard product and the Fan product of matrices [J].LinearAlgebraandItsApplications,2013,438: 1415-1426.

[6] CHENG G H, TAN Q, WANG Z D. Some inequalities for the minimum eigenvalue of the Hadamard product of anM-matrix and its inverse [J].JournalofInequalitiesandApplications,2013,65: 1-9.

[7] LI Y T, WANG F, LI C Q, et al. Some new bounds for the minimum eigenvalue of the Hadamard product of anM-matrix and an inverseM-matrix [J].JournalofInequalitiesandApplications,2013,480: 1-8.

[8] 赵建兴,桑彩丽.非奇异矩阵的Hadamard积的最小特征值的估计[J].数学的实践与认识,2015,45(9):242-249. ZHAO J X, SANG C L. An sequences of the upper and lower bounds of the minimum eigenvalue of the Hadamard product for anM-matrix [J].MathematicsinPracticeandTheory,2015,45(9): 242-249.

[9] CHENG G, TAN Q L, WANG Z X. Some inequalities

for the Hadamard product of anM-matrix and an inverseM-matrix [J].JournalofInequalitiesandApplications,2013,2013(1):16.

[10] ZHDANOVA I V, ROGERS J, GONZALEZMARTINEZ J, et al. New inequalities for the Hadamard product of anM-matrix and its inverse [J].JournalofInequalitiesandApplications,2015,2015(1):1-12.

ZHAO Jianxing, SANG Caili

(CollegeofDataScienceandInformationEngineering,GuizhouMinzuUniversity,Guiyang550025,China)

LetAandBbe both nonsingularM-matrices, andA-1be the inverse matrix ofA. In order to get the new lower bounds of the minimum eigenvalueτ(B∘A-1) of the Hadamard product ofBandA-1, firstly, we give some sequences of the upper and lower bounds of the elements ofA-1are given using the elements ofA.Then, using these sequences and Brauer theorem, some monotone increasing and convergent sequences of lower bounds ofτ(B∘A-1) are obtained. Numerical examples are provided to verify the theoretical results, which show that these sequences of the lower bounds are more accurate than some existing results and can reach the true value of the minimum eigenvalue.

M-matrix; Hadamard product; minimum eigenvalue; lower bound; sequences

O 151.21

:A

:1008-9497(2017)05-505-06

2015-12-13.

国家自然科学基金资助项目(11501141); 贵州省科学技术基金资助项目(黔科合J字[2015]2073号);贵州省教育厅科技拔尖人才支持项目(黔教合KY字[2016]066号).

赵建兴(1981-),ORCID:http://orcid.org/0000-0001-5938-3518,男,博士,副教授,主要从事数值代数研究,E-mail:zhaojianxing@gzmu.edu.cn.

10.3785/j.issn.1008-9497.2017.05.001

NewlowerboundsfortheminimumeigenvalueoftheHadamardproductofnonsingularM-matrices. Journal of Zhejiang University (Science Edition),2017,44(5):505-510,515

猜你喜欢

下界对角特征值
一个不等式的下界探究
利用LMedS算法与特征值法的点云平面拟合方法
方程的两个根的和差积商的上下界
单圈图关联矩阵的特征值
迭代方法计算矩阵特征值
Lower bound estimation of the maximum allowable initial error and its numerical calculation
会变形的忍者飞镖
求矩阵特征值的一个简单方法
对一个代数式上下界的改进研究
对角占优矩阵的判定条件