干扰素调节因子在肿瘤发生中的研究进展
2017-09-22陈妍洁沈锡中
陈妍洁, 吴 昊, 沈锡中
复旦大学附属中山医院消化科,上海 200032
·综述·
干扰素调节因子在肿瘤发生中的研究进展
陈妍洁, 吴 昊, 沈锡中*
复旦大学附属中山医院消化科,上海 200032
干扰素调节因子(interferon regulatory factors, IRFs)是一类在干扰素表达调控中起重要作用的转录因子家族,目前共发现有10个成员,其在免疫调节、细胞分化、细胞凋亡和细胞周期调节中具有重要作用。本文就该家族成员的功能特点、免疫活性,特别是在细胞分化及肿瘤发生中的作用作一综述。
干扰素调节因子;细胞免疫;免疫调节
20世纪中叶,干扰素作为抗病毒蛋白被发现,此后发现了干扰素调节因子家族(interferon regulatory factors,IRFs)。IRFs是一类作用于干扰素(interferon,IFN)基因,调控其表达的转录因子[1],由于在机体感染尤其是病毒感染时能够结合到IFN启动子上诱导、调节IFN的表达而得名。所有IRF的氨基端都含有1个由115个氨基酸组成的结构域(DNA binding domain,DBD)。该结构域和Myb蛋白的DBD相似,可与DNA结合并含有5个色氨酸的重复序列;而IRF的羧基端则是1个可变区域,从而使得IRFs具备了多种生物功能[2]。目前,已发现的IRFs成员共有10个,IRF-1~IRF-9和病毒IRF(V-IRF),起初这些成员被认为是免疫细胞所特有的,然而近年来越来越多的该家族成员在其他组织细胞中被发现。迄今为止,多项研究表明,IRFs在细胞分化和凋亡、细胞周期调节、免疫调控中具有重要作用。近年来,人们开始关注IRFs的抗肿瘤作用及其相关细胞信号转导通路,希望能找到治疗肿瘤的新方法。
1 IRFs在固有免疫应答中的作用
人类的固有免疫应答是机体抵御病原生物入侵的第一道防线,由模式识别受体(innate pattern recognition receptors,PRRs)介导,包括Toll样受体(Toll-like receptor, TLR)、C型凝集素受体(C-type lectin receptor,CLRs)、RIG-Ⅰ样受体(RLRs)和NOD样受体(NLRs)[3]。当这些模式识别受体识别不同病原相关分子模式(PAMPs)或损伤相关分子模式(DAMPs)后,通过胞内分子级联反应诱导Ⅰ型IFN、促炎细胞因子和趋化因子的转录,从而杀灭病原微生物或感染的细胞。干扰素调节因子家族是传递模式识别受体信号,从而激活免疫细胞的重要分子[4]。例如,IRF3/7可诱导IFN的表达,从而激活IFN下游靶基因的表达,诱导T细胞分化,并可激活适应性免疫途径;PRRs激活后还可通过特定接头蛋白和MyD88信号,引起IRF1/5/7和NF-κB的激活,从而诱导IFN、IL、TNF等的转录和表达,并激活非特异性免疫途径和获得性免疫。我们对IRF家族传递PRR信号的分子通路进行了总结(表1)。
在固有免疫应答的发生过程中,IRFs可由多种PRRs所激活,而单一的IRF分子又可参与不同PRR的下游信号通路。不同的IRF可被相同的分子所激活,如MyD88;而活化的IRF又可作用于相同的靶基因,如IFN相关靶基因,提示不同的应答模式间具有相关性。由此可见,整个信号通路包括转录因子在免疫应答中受到精确调节。阐明IRFs在信号网络中所发挥的关键作用,有利于今后生物免疫治疗、肿瘤免疫治疗的研究。
表1 IRF家族传递PRR信号的分子通路
2 IRFs在免疫细胞发育中的作用
除了参与固有免疫应答以外,IRF-1/2/4/6/8对免疫细胞(如树突状细胞、NK细胞、B细胞和T细胞等)的生长也起到关键作用。通过基因敲除的小鼠实验[5]发现,CD4+DCs、CD8α+DCs和pDC的分化受到IRF-1/2/4/8的调控。IRF-1可诱导IL-15促进NK细胞分化,而IRF-2则可通过细胞内信号通路促进NK细胞分化[5]。IRF-8可通过与EBF启动子结合激活EBF表达,从而激活B细胞分化的相关基因;而IRF-4通过调节Fas凋亡抑制分子,从而调节B细胞的凋亡[6]。IRF-1和IRF-2能强烈启动Th1应答,而IRF-4则主要参与Th2的细胞分化过程[1]。IRF在免疫细胞发育中的作用如表2。
IRF可通过调节肿瘤免疫从而发挥抗癌效应,如IRF-8可通过促进APCs(如MФ、DCs和B细胞)的分化和成熟而起到抗癌作用[7]。因此,对于IRF的研究有利于深入阐明肿瘤免疫的特点,并为临床抗肿瘤治疗提供新思路。
表2 IRFs在免疫细胞发育中的作用
3 IRFs在促进细胞周期、分化中的作用
目前发现,IRFs家族在细胞周期、细胞分化以及肿瘤形成中起到重要作用(表3)。早期认为IRF-2与IRF-1竞争识别位点[8],从而发挥与IRF-1不同的作用,但近年来发现了IRF-2的其他作用。而IRF-4被认为与血液系统恶性肿瘤密切相关。
3.1 IRF-2 IRF-2的基因位于染色体4q34.1-q35.1,目前尚无研究表明其表达有组织特异性。最初研究[8]认为,IRF-2与抑癌基因IRF-1具有相似的识别位点。因此,推测IRF-2可能通过竞争结合相同的识别位点从而抑制IRF-1的转录。另外,IRF-2能与Blimp-1共同结合于IFN-8基因的PRDI结构域,故IRF-2能通过抑制Blimp-1而引起细胞癌变。乙酰化后的IRF-2可结合到组蛋白H4的启动子上,从而引起细胞持续增殖[9]。一些研究[10-11]发现,IRF-2可在食管癌和胰腺癌组织中呈高表达。
3.2 IRF-4 IRF-4是一个与血液系统的恶性肿瘤密切相关的转录因子。当感染了人类T细胞白血病病毒1型(HTLV-1)后,IRF-4的表达明显升高,从而降低了G2/M关卡基因Cyclin B1和多种DNA修复基因的正常表达[12]。部分多发性骨髓瘤(MM)患者可出现t(p25;q32),从而导致IRF-4高表达;而IRF-4 mRNA表达水平的升高则提示MM患者预后不良[13]。在MM中,IRF-4可激活MYC基因的转录,而Myc蛋白的高表达则进一步促进IRF-4的表达,形成了正向调节环[14]。这个正向调节环促进疾病的发生发展,打破该正向调节是否可以治疗MM有待进一步研究。
4 IRFs在抑制细胞周期、分化中的作用
目前,发现大部分的IRFs主要起到直接抑制细胞周期和分化,抑制肿瘤发生发展的作用,部分可通过肿瘤免疫抑制肿瘤的发生发展(表3)。
表3 IRF家族成员在调节细胞周期、分化中的作用
4.1 IRF-1 对于IRF家族在肿瘤中调节作用的研究最早集中于IRF-1。敲除了IRF-1的细胞丧失了DNA损伤引起的细胞周期停滞能力。另外,IRF-1可在转录水平激活CDK的抑制蛋白p21WAF1/CIP1的表达[15]。很多小分子(如IFN-γ)可促进IRF-1的促凋亡作用[16]。
IRF-1基因位于染色体5q31.1,这是一个在白血病或骨髓异常增生综合征中常出现突变的区域[17]。研究[18]发现,在血液系统相关疾病的患者中,IRF-1基因有单个或两个等位基因发生突变或剪接突变。另外,食管癌和胃癌中也发现有IRF-1等位基因的缺失[19-20]。之后在慢性髓细胞白血病、乳腺癌、子宫内膜癌和肝细胞肝癌患者中发现,IRF-1 mRNA表达降低[21]。
4.2 IRF-2 虽然早期研究[22]认为,IRF-2对于肿瘤具有促进作用,但近年来越来越多的研究表明,IRF-2对肿瘤的发生有抑制作用。研究[23]发现,IRF-2在乳腺癌组织中的表达与IRF-1正相关。而Sato等[24]发现,IRF-2可减弱Ⅰ型干扰素的应答,从而促进造血干细胞的分化并维持细胞的表型。研究等[25]则发现,肝细胞肝癌中的IRF-2发生基因突变。细胞功能学实验[25-26]提示,过表达IRF-2可抑制细胞增殖,并使细胞中p53含量明显升高,而对IRF-2进行沉默则得到相反的结果。进一步研究[27-28]发现,IRF-2突变常与胚胎基因高表达或p53通路异常相关。这些研究均提示IRF-2更可能为抑癌基因。
4.3 IRF-3 由病毒引起的细胞凋亡主要是由IRF-3激活TRAIL所介导[29]。另外,由细菌感染通过TLR介导的凋亡途径同样需要IRF-3的参与。特定的细菌产生毒素因子,抑制p38或NF-κB通路,从而导致MФ的凋亡。而对p38和NF-κB通路的抑制主要由TLR4以及IRF-3等分子所介导[30]。
当DNA受到损伤时,IRF-3会被DNA依赖的蛋白激酶(DNA-PK)磷酸化并从胞浆内迁移至核内,参与DNA损伤诱导的细胞凋亡[31]。因此,目前IRF-3也被认为是一个肿瘤抑制因子。
4.4 IRF-5 高表达IRF-5可以抑制缺乏野生型p53的B细胞淋巴瘤的生长[32],并可促进p53缺失的结肠癌细胞完成DNA损伤诱导的细胞凋亡[33]。也有研究[34]发现,IRF-5参与Fas/CD95诱导的凋亡。在白血病肿瘤细胞中,IRF-5的mRNA表达受到了明显的抑制,这也意味着IRF-5可能在肿瘤的发生发展中起到抑癌作用[33]。
4.5 IRF-6 IRF-6可能通过与Maspin(抑癌基因)相互作用,从而发挥其抑癌的作用[35]。研究[36]发现,IRF-6的表达与乳腺癌的侵袭力呈负相关。在静息期的乳腺上皮细胞中,IRF-6呈现未磷酸化的状态,而在细胞分裂期时则被磷酸化并经泛素蛋白酶体途径被降解;而提高IRF-6的表达可导致细胞周期停滞。
4.6 IRF-7 当机体受到病毒感染或特异性配体结合TLR而使TLR激活后,TBK1/IKK可诱发IRF-7磷酸化并使其转移至细胞核内,与IRF-3共同参与各种生物学功能。目前,IRF-7的具体抗肿瘤机制尚不明确,还有待进一步研究。
4.7 IRF-8 IRF-8主要在造血细胞中表达。研究[37]表明,IRF-8的缺失会引起髓性白血病的发生,特别是慢性髓性白血病(CML)。在CML患者中发现,IRF-8功能缺失,IRF-8的靶基因(如Bcl2和Pml)的表达明显降低。另外,IRF-8过表达可以通过间接抑制c-Myc通路而抑制细胞的有丝分裂[38-39]。体内实验[40]表明,IFN-α治疗CML可诱导IRF-8的表达,而IRF-8的表达水平也与IFN-α的治疗效果密切相关。IRF-8在非造血肿瘤的发生发展中也起到重要作用。在鼻咽癌、食管癌、结肠癌等许多肿瘤中均发现IRF-8表达缺失[41-42]。
4.8 IRF-9 IRF-9是Ⅰ型干扰素和p53通路之间的重要联系因子。Ⅰ型干扰素对p53通路的激活需通过ISGF3的复合物,而IRF-9为ISGF3复合物的一部分[42]。另外,还有文献[43]报道,IRF-9基因可直接被c-Myc激活,因此IRF-9可能也参与细胞周期的调节。但IRF-9对于肿瘤发生发展的调节机制还有待进一步的研究。
5 展 望
IRFs作为一类转录因子在机体的固有免疫应答、适应性免疫应答、细胞周期以及肿瘤发生中均发挥重要作用。对IRFs的研究有助于我们更深入了解肿瘤的发生发展,并为肿瘤的生物治疗、靶向治疗提供新思路。对于IRFs在肿瘤免疫中的具体作用,以及其是否可以作为肿瘤免疫治疗的关键调控分子,都需要进一步探究。
[ 1 ] ZHANG R, CHEN K, PENG L, et al. Regulation of T helper cell differentiation by interferon regulatory factor family members[J]. Immunol Res, 2012,54(1-3):169-176.
[ 2 ] VEALS S A, SCHINDLER C, LEONARD D, et al. Subunit of an alpha-interferon-responsive transcription factor is related to interferon regulatory factor and Myb families of DNA-binding proteins[J]. Mol Cell Biol, 1992,12(8):3315-3324.
[ 3 ] TAKEUCHI O, AKIRA S. Pattern recognition receptors and inflammation[J]. Cell, 2010,140(6):805-820.
[ 4 ] IKUSHIMA H, NEGISHI H, TANIGUCHI T. The IRF family transcription factors at the interface of innate and adaptive immune responses[J]. Cold Spring Harb Symp Quant Biol, 2013,78:105-116.
[ 5 ] SAVITSKY D, TAMURA T, YANAI H, et al. Regulation of immunity and oncogenesis by the IRF transcription factor family[J]. Cancer Immunol Immunother, 2010,59(4):489-510.
[ 6 ] KAKU H, ROTHSTEIN T L. Fas apoptosis inhibitory molecule expression in B cells is regulated through IRF4 in a feed-forward mechanism[J]. J Immunol, 2009,183(9):5575-5581.
[ 7 ] DENG M, DALEY G Q. Expression of interferon consensus sequence binding protein induces potent immunity against BCR/ABL-induced leukemia[J]. Blood, 2001,97(11):3491-3497.
[ 8 ] HARADA H, KITAGAWA M, TANAKA N, et al. Anti-oncogenic and oncogenic potentials of interferon regulatory factors-1 and -2[J]. Science, 1993,259(5097):971-974.
[ 9 ] TAKI S, NAKAJIMA S, ICHIKAWA E, et al. IFN regulatory factor-2 deficiency revealed a novel checkpoint critical for the generation of peripheral NK cells[J]. J Immunol, 2005,174(10):6005-6012.
[10] WANG Y, LIU D P, CHEN P P, et al. Involvement of IFN regulatory factor (IRF)-1 and IRF-2 in the formation and progression of human esophageal cancers[J]. Cancer Res, 2007,67(6):2535-2543.
[11] SAKAI T, MASHIMA H, YAMADA Y, et al. The roles of interferon regulatory factors 1 and 2 in the progression of human pancreatic cancer[J]. Pancreas, 2014,43(6):909-916.
[12] MAMANE Y, GRANDVAUX N, HERNANDEZ E, et al. Repression of IRF-4 target genes in human T cell leukemia virus-1 infection[J]. Oncogene, 2002,21(44):6751-6765.
[13] HEINTEL D, ZOJER N, SCHREDER M, et al. Expression of MUM1/IRF4 mRNA as a prognostic marker in patients with multiple myeloma[J]. Leukemia, 2008,22(2):441-445.
[14] SHAFFER A L, EMRE N C, LAMY L, et al. IRF4 addiction in multiple myeloma[J]. Nature, 2008,454(7201):226-231.
[15] ARMSTRONG M J, STANG M T, LIU Y, et al. Interferon regulatory factor 1 (IRF-1) induces p21(WAF1/CIP1) dependent cell cycle arrest and p21(WAF1/CIP1) independent modulation of survivin in cancer cells[J]. Cancer Lett, 2012,319(1):56-65.
[16] TOMITA Y, BILIM V, HARA N, et al. Role of IRF-1 and caspase-7 in IFN-gamma enhancement of Fas-mediated apoptosis in ACHN renal cell carcinoma cells[J]. Int J Cancer, 2003,104(4):400-408.
[17] LOAIZA-BONILLA A, GORE S D, CARRAWAY H E. Novel approaches for myelodysplastic syndromes: beyond hypomethylating agents[J]. Curr Opin Hematol, 2010,17(2):104-109.
[18] HARADA H, KONDO T, OGAWA S, et al. Accelerated exon skipping of IRF-1 mRNA in human myelodysplasia/leukemia; a possible mechanism of tumor suppressor inactivation[J]. Oncogene, 1994,9(11):3313-3320.
[19] OGASAWARA S, TAMURA G, MAESAWA C, et al. Common deleted region on the long arm of chromosome 5 in esophageal carcinoma[J]. Gastroenterology, 1996,110(1):52-57.
[20] TAMURA G, OGASAWARA S, NISHIZUKA S, et al. Two distinct regions of deletion on the long arm of chromosome 5 in differentiated adenocarcinomas of the stomach[J]. Cancer Res, 1996,56(3):612-615.
[21] TAMURA T, YANAI H, SAVITSKY D, et al. The IRF family transcription factors in immunity and oncogenesis[J]. Annu Rev Immunol, 2008,26:535-584.
[22] KELLER A D, MANIATIS T. Identification and characterization of a novel repressor of beta-interferon gene expression[J]. Genes Dev, 1991,5(5):868-879.
[23] CONNETT J M, BADRI L, GIORDANO T J, et al. Interferon regulatory factor 1 (IRF-1) and IRF-2 expression in breast cancer tissue microarrays[J]. J Interferon Cytokine Res, 2005,25(10):587-594.
[24] SATO T, ONAI N, YOSHIHARA H, et al. Interferon regulatory factor-2 protects quiescent hematopoietic stem cells from type I interferon-dependent exhaustion[J]. Nat Med, 2009,15(6):696-700.
[25] GUICHARD C, AMADDEO G, IMBEAUD S, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma[J]. Nat Genet, 2012,44(6):694-698.
[26] AMADDEO G, GUICHARD C, IMBEAUD S, et al. Next-generation sequencing identified new oncogenes and tumor suppressor genes in human hepatic tumors[J]. Oncoimmunology, 2012,1(9):1612-1613.
[27] AMADDEO G, CAO Q, LADEIRO Y, et al. Integration of tumour and viral genomic characterisations in HBV-related hepatocellular carcinomas[J]. Gut, 2014, 64(5):820-829.
[28] CHEN Y J, WU H, ZHU J M, et al. MicroRNA-18a modulates P53 expression by targeting IRF2 in gastric cancer patients[J]. J Gastroenterol Hepatol, 2015, 31(1):155-163.
[29] KIRSHNER J R, KARPOVA A Y, KOPS M, et al. Identification of TRAIL as an interferon regulatory factor 3 transcriptional target[J]. J Virol, 2005,79(14):9320-9324.
[30] HSU L C, PARK J M, ZHANG K, et al. The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4[J]. Nature, 2004,428(6980):341-345.
[31] KARPOVA A Y, TROST M, MURRAY J M, et al. Interferon regulatory factor-3 is aninvivotarget of DNA-PK[J]. Proc Natl Acad Sci U S A, 2002,99(5):2818-2823.
[32] BARNES B J, KELLUM M J, PINDER K E, et al. Interferon regulatory factor 5, a novel mediator of cell cycle arrest and cell death[J]. Cancer Res, 2003,63(19):6424-6431.
[33] HU G, MANCL M E, BARNES B J. Signaling through IFN regulatory factor-5 sensitizes p53-deficient tumors to DNA damage-induced apoptosis and cell death[J]. Cancer Res, 2005,65(16):7403-7412.
[34] COUZINET A, TAMURA K, CHEN H M, et al. A cell-type-specific requirement for IFN regulatory factor 5 (IRF5) in Fas-induced apoptosis[J]. Proc Natl Acad Sci U S A, 2008,105(7):2556-2561.
[35] BAILEY C M, HENDRIX M J. IRF6 in development and disease: a mediator of quiescence and differentiation[J]. Cell Cycle, 2008,7(13):1925-1930.
[36] BAILEY C M, ABBOTT D E, MARGARYAN N V, et al. Interferon regulatory factor 6 promotes cell cycle arrest and is regulated by the proteasome in a cell cycle-dependent manner[J]. Mol Cell Biol, 2008,28(7):2235-2243.
[37] DROR N, RAVE-HAREL N, BURCHERT A, et al. Interferon regulatory factor-8 is indispensable for the expression of promyelocytic leukemia and the formation of nuclear bodies in myeloid cells[J]. J Biol Chem, 2007,282(8):5633-5640.
[38] TAMURA T, KONG H J, TUNYAPLIN C, et al. ICSBP/IRF-8 inhibits mitogenic activity of p210 Bcr/Abl in differentiating myeloid progenitor cells[J]. Blood, 2003,102(13):4547-4554.
[39] MONTANO G, ULLMARK T, JERNMARK-NILSSON H, et al. The hematopoietic tumor suppressor interferon regulatory factor 8 (IRF8) is upregulated by the antimetabolite cytarabine in leukemic cells involving the zinc finger protein ZNF224, acting as a cofactor of the Wilms' tumor gene 1 (WT1) protein[J]. Leuk Res, 2015,40:60-67.
[40] SCHMIDT M, HOCHHAUS A, NITSCHE A, et al. Expression of nuclear transcription factor interferon consensus sequence binding protein in chronic myeloid leukemia correlates with pretreatment risk features and cytogenetic response to interferon-alpha[J]. Blood, 2001,97(11):3648-3650.
[41] YANG D, THANGARAJU M, GREENELTCH K, et al. Repression of IFN regulatory factor 8 by DNA methylation is a molecular determinant of apoptotic resistance and metastatic phenotype in metastatic tumor cells[J]. Cancer Res, 2007,67(7):3301-3309.
[42] LEE K Y, GENG H, NG K M, et al. Epigenetic disruption of interferon-gamma response through silencing the tumor suppressor interferon regulatory factor 8 in nasopharyngeal, esophageal and multiple other carcinomas[J]. Oncogene, 2008,27(39):5267-5276.
[43] WEIHUA X, LINDNER D J, KALVAKOLANU D V. The interferon-inducible murine p48 (ISGF3gamma) gene is regulated by protooncogene c-myc[J]. Proc Natl Acad Sci U S A, 1997,94(14):7227-7232.
[本文编辑] 叶 婷, 晓 路
Progress of the interferon regulatory factors in the development of tumor
CHEN Yan-jie, WU Hao, SHEN Xi-zhong*
Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
Interferon regulatory factors (IRFs), which have 10 members, belong to the transcription factor family, and are named because of the regulation of interferon expression. They play important roles in the immune regulation, cell differentiation, cell apoptosis, and cell cycle regulation. This article will review the functional characteristics and immune activity of the family members, especially in the role of cell differentiation and tumor development.
interferon regulatory factors; cellular immunity; immune regulation
R 730.231
A
2016-09-11 [接受日期] 2017-02-06
上海市青年科技英才扬帆计划(16YF1401500),复旦大学附属中山医院青年基金(2015ZSQN08). Supported by Project of Youth Science and Technology Excellence of Shanghai (16YF1401500) and Youth Found of Zhongshang Hospital, Fudan University (2015ZSQN08).
陈妍洁,博士,住院医师. E-mail:chen.yanjie@zs-hospital.sh.cn
*通信作者(Corresponding author). Tel: 021-64041990, E-mail: shen.xizhong@zs-hospital.sh.cn
10.12025/j.issn.1008-6358.2017.20160800