连接蛋白43及相关通道在脊髓损伤中的作用的研究进展
2017-09-20张双霜胡霁黄锦秀
张双霜+胡霁+黄锦秀
[摘要] 连接蛋白43是广泛分布于中枢神经系统胶质细胞表面的四次跨膜蛋白,可在相邻细胞间以及细胞与外环境间形成直接物质交换通道——半通道和缝隙连接。脊髓损伤后,连接蛋白43的表达显著上调,同时细胞表面的半通道和缝隙连接大量开放,造成胞内代谢分子丢失以及胞外物质过量进入胞内,从而介导了损伤后的炎性反应、血脊髓屏障损伤以及神经元死亡等重要病理过程的发生发展,并在“二次损伤”中扮演重要角色。通过阻断剂或其他处理方法调节脊髓组织连接蛋白43的表达水平并抑制其相关通道开放后,对脊髓损伤有明显的改善作用。因此,连接蛋白43很可能是治疗脊髓损伤的新靶点,本文将对连接蛋白43介导脊髓损伤的相关机制以及基于连接蛋白43的脊髓损伤治疗方法作一综述。
[关键词] 连接蛋白43;脊髓损伤;炎性反应;血脊髓屏障;神经元死亡
[中图分类号] R614.2 [文献标识码] A [文章编号] 1673-7210(2017)08(c)-0066-04
[Abstract] Connexin 43 are integral membrane proteins which span the plasma membrane four times, and widely distributed in the central nervous system. Connexin 43 can form hemi channels and gap junctions which provides a direct cytoplasmic pathway between contacting cells. In the spinal cord injury, the levels of connexin 43 mRNA and protein obviously up-regulated. Also, the permeability of the hemichannels and gap junctions increased, which form a well-known pathway for the release of intracellularmetabolites and the entry of extracellularsubstances, that can play major roles in the secondary injury by the way of aggravating the inflammatory response, disruption of blood-spinal cord barrier, and neuronal death. In addition, the blockers of connexin 43 channels and other methods which regulate the expression of connexin 43 and the permeability of connexin 43 channels can act obvious protective effects in the spinal cord injury. This review discusses the latent injury mechanisms induced by connexin 43 and connexin 43 channels in the spinal cord injury, and relevant treatments on the basis of it.
[Key words] Connexin 43; Spinal cord injury; Inflammatory response; Blood-spinal cord barrier; Neuronal death
脊髓损伤(spinal cord injury,SCI)是源于脊髓组织的机械性破坏,不仅导致损伤节段的运动和感觉功能障碍,还中断了大脑与脊髓之间的神经信号通路,严重影响患者的神经功能。在全球范围内,SCI的发病率高达236/1000000~1009/1000000,其后长期的功能障碍以及经济负担都严重影响患者的生理、心理及生活质量,激素治疗、脊髓减压及康复训练等现有的治疗手段对神经功能的改善都极为有限。因此,需要效果确切的治疗方法[1-2]。近年发现,连接蛋白(connexins,Cx)及其相关通道可能作为一个重要靶点,在SCI及神经保护等方面扮演重要角色[3]。
Cx是一种广泛分布于人体各处的四次跨膜蛋白,6个Cx在细胞膜表面形成一个连接子或半通道,而两个相邻细胞间的半通道相互对接,形成了允许相邻细胞胞质内离子和小分子物质直接交换的通道——缝隙连接(gap junction,GJ)[4]。Cx家族包括:Cx29、30、32、36、40、43、45等,在中枢神经系统(central nervous system,CNS)含量最多的是Cx43[5]。Cx43胞内CT结构域包含12種以上的丝氨酸和酪氨酸磷酸化位点,而这些位点磷酸化状态的改变是调节Cx43相关通道(半通道和GJ)通透性的关键[6-7]。已经证实,SCI后Cx43及其mRNA表达明显增加[8]。并且,众多研究发现,降低Cx43的表达及其相关通道的开放可明显改善SCI后的神经功能[9-11]。提示Cx43及其相关通道可能通过某些机制介导了SCI后的病理发展过程,而Cx43则很可能是治疗SCI的新靶点。因此,本文将对Cx43介导SCI的相关机制以及基于Cx43的SCI治疗方法作一综述。
1 Cx43在SCI中的作用
1.1 Cx43介导的炎性反应
炎症应答是造成脊髓“二次损伤”的重要原因之一,炎细胞向损伤区域的募集浸润以及活性物质的释放,导致脊髓组织微血管通透性增高、轴索退化和神经细胞进行性死亡。小胶质细胞广泛分布于中枢神经系统,可在组织损伤信号的刺激下发生增殖活化,释放IL-1β、TNF-α等前炎症因子趋化血源性炎症细胞向损伤区域的浸润,从而起始和调节SCI后的炎症应答[12-13]。正常情况下,小胶质细胞处于静息状态不表达或表达极少量的Cx43和GJ,活化后的小胶质细胞显著上调Cx43和GJ表达[14],而Cx43表达的变化在小胶质细胞的活化过程中发挥重要作用。O′Carroll等[10]将Cx43模拟肽(Cx43特异性阻断剂)用于大鼠脊髓压迫损伤模型后发现,通过下调Cx43的表达以及维持Cx43的磷酸化状态,能降低脊髓组织中小胶质细胞的活化以及前炎症因子IL-1β、TNF-α的释放,改善SCI后的炎性反应和神经元功能。在另一项大鼠脊髓压迫损伤研究中,同样也证实通过阻断Cx43的表达能降低小胶质细胞的活化,并且能改善由Cx43介导的血脊髓屏障渗透性变化,从而减少炎症细胞向损伤区域浸润[9]。这些研究结果说明,SCI后Cx43及其相关通道在由小胶质细胞活化介导的炎症应答过程中扮演极其关键的角色。endprint
1.2 Cx43介导的血脊髓屏障破坏
血脊髓屏障(blood-spinal cord barrier,BSCB)由脊髓毛细血管内皮细胞及其间的紧密连接蛋白、基膜、血管周细胞和星形胶质细胞终足组成,通过阻碍血液循环和脊髓组织之间的物质扩散来维持脊髓微环境的稳定,从而保证神经元的正常功能[15]。BSCB渗透性的改变会加剧脊髓水肿,增强白细胞浸润和炎性反应,在进一步导致神经细胞死亡过程中扮演重要角色[16]。Cronin等[9]研究发现,SCI后出现的Cx43表达上调不仅发生在胶质细胞,而是在损伤早期就同样显著上调表达在脊髓白质的小血管表面,并且通过注射荧光标记的牛血清蛋白评价损伤区域血管渗透性后证实,这些血管渗透性增加,促进白蛋白向损伤区域及其周围溢出,且这一现象能被Cx43特异性阻断剂所抑制。该研究说明Cx43介导了SCI后的血脊髓屏障破坏过程。此外,前炎症因子TNF-α、IL-1β不但可以介导SCI后炎细胞与内皮细胞之间的黏附,促进血液循环内的白细胞穿过BSCB破坏屏障结构[17];还被证实能诱导单核粒细胞等释放基质金属蛋白酶类(matrix-metalloproteases,MMPs),降解内皮细胞间紧密连接蛋白以及细胞外基质破环血脑屏障(blood-brain barrier,BBB)完整性,而这一效应能被GJ阻断剂明显抑制,说明细胞释放MMPs破坏BBB,与TNF-α、IL-1β介导细胞表面Cx43表达上调并形成GJ有密切关联[18-20]。
1.3 Cx43介导的神经元死亡
SCI后机体的神经运动功能会发生不同程度的丧失,而这取决于脊髓神经元的死亡程度。众所周知,谷氨酸盐是CNS内最主要的兴奋性递质,通过星型细胞表面高亲和力兴奋性氨基酸转运蛋白的摄取和释放,来维持其稳态[21]。然而,一旦CNS发生损伤,这种稳态便不复存在,谷氨酸盐将以一种不受控制的方式释放到胞外介导死亡信号的传播以及神经元的死亡[22]。SCI后活化的小胶质细胞及其释放的前炎症因子IL-1β、TNF-α能促进星形胶质细胞表面Cx43半通道的开放[23]。而对体外培养的脑组织进行低氧/复氧处理后发现,星型胶质细胞表面Cx43半通道的开放与神经元死亡成正相关,并且这种关联能被Cx43模拟肽所阻断[24]。这是由于星型胶质细胞表面Cx43半通道的开放为谷氨酸盐释放出胞外提供了通道,而谷氨酸盐作为死亡信号分子可通过NMDA/P2X受体途径激活神经元上的Panx1半通道,触发神经元内Ca2+超载[25-26],从而引起胞内Ca2+依赖蛋白酶活化,一氧化氮产物增加,同时抑制了细胞线粒体呼吸链复合体Ⅳ的功能,使胞内能量丢失,最终导致神经元死亡[26]。
2 基于Cx43及Cx43相关通道的SCI治疗方法
2.1 Cx43非特异性或特异性阻断剂
Cx43的表达上调及其相关通道的开放在SCI后的各种病理过程中都发挥着重要作用。因此,阻断Cx43的表达及其相关通道的开放可能是防治SCI的有效手段。Cx43半通道和缝隙连接阻断剂分为非特异性和特异性两种。非特异性Cx43通道阻断剂属于小分子阻断剂,包括甘草次酸及其衍生物、油酸酰胺和大麻素等脂肪酰胺类以及氟烷等[27]。这类阻断剂不但能通过一系列信号通路作用于半通道和缝隙连接,而且还能同时作用于其他膜表面通道,即其阻断作用是非专一性的[28]。另一类是以Cx43模拟肽为代表的Cx43通道特异性阻断剂。Cx43模拟肽是与Cx43胞外结构有着相同序列的小分子肽片段[29],其可作用于Cx43分子胞外区域,限制半通道的开放并阻碍其对接形成缝隙连接,从而发挥特异性阻断作用[30]。Cx43模拟肽的阻断作用呈剂量依赖,低浓度的模拟肽可阻断半通道但对缝隙连接不产生太大影响,而高浓度的模拟肽可同时显著阻断半通道和缝隙连接的开放[11,31]。众多研究已经证实,Cx43阻断剂能提高SCI后的神经运动功能,减轻神经细胞凋亡,减小损伤面积改善预后[10-11]。
2.2 远端缺血预处理
远端缺血预处理(remote ischemic preconditioning,RIPC)是通过几个预先的缺血/灌注循环对远隔脏器即将发生的致命性缺血损伤产生保护作用的一种治疗策略。许多缺血再灌注损伤的动物模型证实,对动物肢体实施RIPC后,可极大地保护心、脑、肾、脊髓等重要器官或组织,减轻缺血再灌注损伤[32-33],但RIPC的作用機制仍不十分清楚。最近,有学者研究发现,通过对大鼠双下肢实施4个循环的5 min缺血/5 min再灌注的RIPC后,可调节Cx43在心肌细胞的表达水平并维持其磷酸化状态,抑制了再灌注损伤后由Cx43去磷酸化导致的半通道和缝隙连接渗透性增高,从而很大程度上减少了心脏缺血再灌注损伤后的心肌梗死面积[34]。Cx43的胞内CT结构域存在许多磷酸化位点[6],包括:S325、S328、S330、S365和S262,这些位点可与蛋白激酶C、酪氨酸激酶、丝裂原活化蛋白激酶等蛋白激酶形成信号复合体,维持Cx43的磷酸化状态,降低Cx43通道的渗透性[7]。而RIPC降低缺血导致的心肌细胞Cx43去磷酸化水平的分子机制,可能是通过增强Cx43与蛋白激酶PKC、MAPKs等的相互联系和作用[35-36]。这说明RIPC是一种能有效调节Cx43及其相关通道的新方法,其对心、脑、脊髓等重要器官的保护作用与调节Cx43的表达及其通道渗透性有关。
3 展望
SCI发生后伴随着各种病理事件,包括:初始损伤事件和一系列“二次损伤”事件,这些都大大加重了脊髓损伤程度和损伤面积。而Cx43的表达水平及其通道开放与否在SCI后的炎性反应、BSCB破坏及神经细胞死亡等病理过程中都扮演了非常重要的角色,并且已被多次证实,阻断Cx43的表达能对SCI的预后产生积极影响。因此,Cx43及其通道很有可能是防治SCI的关键性突破口。如今,虽然多种Cx43的阻断方法已在动物实验中被发现,但其临床应用标准仍然有待商榷。在未来的研究工作中,能安全有效运用于临床SCI患者的Cx43阻断药物或方法,将应该是在防治SCI道路上不懈努力的方向。endprint
[參考文献]
[1] Singh A,Tetreault L,Kalsi-Ryan S,et al. Global prevalence and incidence of traumatic spinal cord injury [J]. Clin Epidemiol,2014,6:309-331.
[2] Khaing ZZ,Ehsanipour A,Hofstetter CP,et al.Injectable hydrogels for spinalcord repair: afocus on swellingand intraspinal pressure [J]. Cells Tissues Organs,2015,202(1-2):67-84.
[3] Schulz R,Gorge PM,Gorge A,et al. Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection [J]. Pharmacol Therapeut,2015,153:90-106.
[4] Saez JC,Berthoud VM,Branes MC,et al. Plasma membrane channels formed by connexins: their regulation and functions [J]. Physiol Rev,2003,83(4):1359 -1400.
[5] Orellana JA,Saez PJ,Shoji KF,et al. Modulation of brain hemichannels and gap junction channels by pro-inflammatory agents and their possible role in neurodegeneration [J]. Antioxid Redox Sign,2009,11(2):369-399.
[6] Dunn CA,Su V,Lau AF,et al. Activation of Akt,not connexin 43 protein ubiquitination,regulates gap junction stability [J]. J Biol Chem,2012,287(4):2600-2607.
[7] Schulz R,Heusch G. Connexin 43 and ischemic preconditioning [J]. Cardiovasc Res,2004,62(2):335-344.
[8] Lee IH,Lindqvist E,Kiehn O,et al. Glial and neuronal connexin expression patterns in the rat spinal cord during development and following injury [J]. J Comp Neurol,2005, 489(1):1–10.
[9] Cronin M,Anderson PN,Cook JE,et al. Blocking connexin43 expression reduces inflammation and improves functional recovery after spinal cord injury [J]. Mol Cell Neurosci,2008,39(2):152–160.
[10] O′Carroll SJ,Gorrie CA,Velamoor S,et al. Connexin43 mimetic peptide is neuroprotective and improves function following spinal cord injury [J]. J Neurosci Res,2013,75(3):256–267.
[11] O′Carroll SJ,Alkadhi M,Nicholson LF,et al. Connexin43 mimetic peptides reduce swelling,astrogliosis, and neuronal cell death after spinalcord injury [J]. Cell Commun Adhes,2008,15(1):27–42.
[12] Yang L,Jones NR,Blumbergs PC,et al. Severity-dependent expression of pro-inflammatory cytokines in traumatic spinal cord injury in the rat [J]. J Clin Neurosci,2005,12(3):276–284.
[13] Taoka Y,Okajima K. Role of leukocytes in spinal cord injury in rats [J]. J Neurotrauma,2000,17(3):219–229.
[14] Sumi Y,Woehrle T,Chen Y,et al. Plasma ATP is required forneutrophil activation in a mouse sepsis model [J]. Shock,2014,42(2): 142-147.
[15] Ballabh P,Braun A,Nedergaard M. The blood–brain barrier: an overview: structure, regulation, and clinical implications [J]. Neurobiol Dis,2004,16(1):1-13.endprint
[16] Fang B,Li XM,SunXJ,et al. Ischemic preconditioning protects against spinal cordischemia-reperfusion injury in rabbits by attenuatingblood spinal cord barrier disruption [J]. J Mol Sci,2013,14(5):10343-10354.
[17] Taoka YJ,Okajima K. Spinal cord injury in the rat [J]. Prog Neurobiol,1998,56(3):341-358.
[18] De Bock M,Wang N,Decrock E,et al.Intracellular cleavage of the Cx43 C-Terminal domain bymatrix-metalloproteases: anovel contributor to inflammation? [J]. Mediat Inflamm,2015,2015:257471.
[19] Eugenin EA,Branes MC,Berman JW,et al. TNF-αPlus IFN-γinduce connexin43 expression andformation of gap junctions between human monocytes/macrophages that enhance physiologicalresponses [J]. J Immunol,2003,170(3):1320-1328.
[20] Kolomytkin OV,Marino AA,Waddell DD,et al. IL-1-βinduced production of metalloproteinases by synovial cells depends on gap junction conductance [J]. Am J Physiol Cell Physiol,2002,282(6):1254-1260.
[21] Anderson CM,Swanson RA. Astrocyte glutamate transport: review ofproperties, regulation, and physiological functions [J]. Glia,2000,32(1):1-14.
[22] Zipfel GJ,Babcock DJ,Lee JM,et al. Neuronal apoptosis after CNS injury: the roles of glutamate and calcium [J]. J Neurotrauma,2000,17(10):857-869.
[23] Abudara V,Roux L,Dallerac G,et al. Activated microglia impairs neuroglial interaction by opening Cx43 hemichannels in hippocampal astrocytes [J]. Glia,2015,63(5):795-811.
[24] Orellana JA,Froger N,Ezan P,et al. ATP and glutamate released via astroglial connexin43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels [J]. J Neurochem,2011,118(5):826-840.
[25] Orellana JA,Shoji KF,Abudara V,et al. Amyloid β-induced death in neurons involves glial and neuronal hemichannels [J]. J Neurosci,2011,31(13):4962-4977.
[26] Mungrue IN,Bredt DS. nNOS at a glance: implications for brain and brawn [J]. J Cell Sci,2004,117(13):2627-2629.
[27] Bodendiek SB,Raman G. Connexin modulators and their potential targets under the magnifying glass [J]. Curr Med Chem,2010,17(34):4191-4230.
[28] Evans WH,Boitano S. Connexin mimetic peptides: specific inhibitors of gap- junctional intercellular communication [J]. Biochem Soc Trans,2001,29(4):606-612.
[29] Warner A,Clements DK,Parikh S,et al. Speci fic motifs in the external loops of connexin proteins can determine gap junction formation between chick heart myocytes [J]. J Physiol,1995,488(3):721-728.endprint
[30] Braet K,Vandamme W,Martin PE,et al. Photoliberatinginositol-1,4,5-trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap 26 [J]. Cell Calcium,2003,33(1):37-48.
[31] Yoon JJ,Green CR,O′Carroll SJ,et al. Dose-dependent protective effect of connexin43 mimetic peptide against neurodegeneration in an ex vivo model of epileptiform lesion [J]. Epilepsy Res,2010,92(2-3):153-162.
[32] Haapanen H,Heraj?覿rvi J,Arvola O,et al. Remote ischemic preconditioning protects the spinal cord against ischemic insult: an experimental study in a pocrin model [J]. J Thorac Cardiovasc Surg,2015,151(3):777-785.
[33] Candilio L,Malik A,Hausenloy DJ. Protection of organs other than the heart by remote ischemic conditioning [J]. J Cardiovasc Med,2013,14(3):193-205.
[34] Brandenburger T,Huhn R,Galas A,et al. Remote ischemic preconditioning preserves Connexin 43 phosphorylation in the rat heart in vivo [J]. J Transl Med,2014,12:228.
[35] Haapanen H,Heraj?覿rvi J,Arvola O,et al. Remote ischemic preconditioning protects the spinal cord against ischemic insult: an experimental study in a pocrin model [J]. J Thorac Cardiovasc Surg,2015,151(3):777-785.
[36] Candilio L,Malik A,Hausenloy DJ. Protection of organs other than the heart by remote ischemic conditioning [J]. J Cardiovasc Med,2013,14(3):193-205.
(收稿日期:2017-05-15 本文編辑:程 铭)endprint