APP下载

高效氯氰菊酯不同汰选频度条件下桔小实蝇高抗品系抗药性发展动态

2017-09-16梁广文陆永跃

环境昆虫学报 2017年4期
关键词:氯氰实蝇抗药性

姚 其,曾 玲,梁广文,陆永跃

(华南农业大学昆虫学系,广州 510642)

高效氯氰菊酯不同汰选频度条件下桔小实蝇高抗品系抗药性发展动态

姚 其,曾 玲,梁广文*,陆永跃*

(华南农业大学昆虫学系,广州 510642)

为了研究高效氯氰菊酯不同施用强度对桔小实蝇Bactroceradorsalis(Hendel)高抗品系抗药性发展动态的影响,为指导田间科学合理使用高效氯氰菊酯防治该虫提供理论依据,本文以室内培育的桔小实蝇对高效氯氰菊酯高抗品系成虫为研究对象,以高效氯氰菊酯对敏感品系的毒力作为毒力基准线,按高效氯氰菊酯汰选间隔时间长短设置30 d、60 d、90 d、120 d 4个处理,以在不接触药剂常规条件下饲养的高抗品系作对照,采用药膜法进行抗药性汰选和毒力测定,每30天试验1次,共计试验10次,获得致死中浓度(LC50)和抗性倍数(Rm),分析抗性发展动态与汰选间隔时间的关系。研究结果表明270 d后,不同间隔时间长度汰选处理,桔小实蝇高抗品系对高效氯氰菊酯的抗药性发展动态存在明显差异,总体表现为汰选间隔时间越短,抗性增长越快。30 d汰选1次处理,高效氯氰菊酯对桔小实蝇成虫的致死中浓度从第1次的582.7 mg/L上升到1133.6 mg/L,抗性倍数从98.0倍上升到190.7倍;60 d汰选1次处理,致死中浓度上升为828.0 mg/L,抗性倍数上升为139.3倍;90 d汰选1次处理,致死中浓度为529.2 mg/L,抗性倍数为89.0倍;120 d汰选1次处理,致死中浓度、抗性倍数分别为511.3 mg/L、86.0倍;未进行汰选的抗性品系致死中浓度由582.7 mg/L下降到368.1 mg/L,抗性倍数也从98.0倍下降到61.9倍。建立了270 d后高效氯氰菊酯汰选间隔时间与桔小实蝇成虫抗药性增长比率之间的关系方程为Y=11.427X-0.529。由实验室模拟实验结果预测当果园中连续两次使用间隔时间在99 d以上时,应可降低桔小实蝇对高效氯氰菊酯的抗性继续上升的风险。

桔小实蝇;高效氯氰菊酯;高抗品系;汰选间隔时间;抗性发展

桔小实蝇Bactroceradorsalis(Hendel)是我国尤其是华南地区重要的果蔬害虫(刘玉章,1981;李文蓉,1988;林进添等,2004;黄素青和韩日畴,2005)。该虫原产于亚洲热带和亚热带地区,最早发现于1911年台北郊区柑橘园,目前主要分布于亚洲东南部及太平洋沿岸一些国家,如印度、巴基斯坦、孟加拉国、中国南部、柬埔寨、尼泊尔、越南、老挝、缅甸、泰国、斯里兰卡、夏威夷、法属波利尼西亚等(刘玉章,1981;Clarkeetal.,2005;Stephensetal.,2007;Wanetal.,2012)。上世纪80年代,我国华南地区桔小实蝇仅仅局部发生,危害较轻,90年代以来为害急剧加重,并逐渐扩散至长江以北,目前主要分布于华南和西南大部分地区、华中和华东部分地区(梁广勤,1985;侯柏华和张润杰,2005;Wanetal.,2011)。该虫以幼虫在果实内蛀食为害,造成落果、烂果,严重影响产量和品质,田间危害率一般在20%-30%,在部分地区、对部分水果种类危害率可达80%以上,经济损失巨大(林进添等,2004;黄素青和韩日畴,2005;黄月英和陈军,2006;梁帆等,2008)。

由于桔小实蝇具食性范围广、潜藏危害、成虫寿命长、繁殖力强、传播速度快等生物特性,防治十分困难。近三十年来,国内外在该虫治理方面开展了大量研究工作,开发并推广应用了多种防治技术措施(Purcelletal.,1994;Seewooruthunetal.,1997;Armstrong and Follett,2007;孟倩倩等,2012;潘志萍等,2015)。因成本相对较低、操作简单、见效快,化学防治一直是世界各国防治桔小实蝇的主要方法(刘玉章,1981;李文蓉,1988;林进添等,2004)。但是,长期大范围、不合理使用农药导致了桔小实蝇抗药性的产生和发展。例如,对广州郊区该虫抗药性监测显示,2003年-2007年该虫对高效氯氰菊酯抗性从敏感水平上升到了中抗水平,且有继续向上发展的趋势(潘志萍等,2005;章玉苹等,2007;章玉苹,2008;Jinetal.,2011)。因此,如何应对和解决桔小实蝇抗药性产生和快速增长问题是该虫治理中一项重要问题。

自2000年开始,国内外已在桔小实蝇种群抗药性监测、抗药性产生与发展规律、抗药性生化与分子机制等方面开展了系列研究,并获得了较为丰富的研究成果,已发表论文近40篇。台湾大学许如君及其团队重点研究了桔小实蝇对多杀菌素、马拉硫磷、杀螟松、安硫磷、二溴磷等农药抗性产生、生物学及其机制(许如君和冯海东,2000;许如君和冯海东,2002;Hsuetal.,2004;许如君等,2004;Hsu and Feng,2006;Hsuetal.,2006;Hsuetal.,2007;Fangetal.,2011;Hsuetal.,2011;Vontasetal.,2011;Hsuetal.,2012;Okuyama and Hsu,2013;Hsuetal.,2015;Kuoetal.,2015;Hsuetal.,2016)。笔者所在团队研究建立了杀虫剂对桔小实蝇毒力监测的标准化方法(Linetal.,2013)和多类型杀虫剂对桔小实蝇成虫触杀作用的毒力敏感基线(林玉英等,2010),监测明确了国大陆桔小实蝇抗药性水平、发展动态和实验种群对敌百虫、高效氯氰菊酯、阿维菌素等的抗性增长规律(潘志萍等,2005;章玉苹等,2007;潘志萍等,2008;章玉苹等,2008a;章玉苹等,2008b;Jinetal.,2011),比较分析了抗高效氯氰菊酯、敌百虫、多杀霉素品系种群生物学和相对适合度(章玉苹等,2009;Zhangetal.,2010;李培征等,2014;陈朗杰等,2015),评估了桔小实蝇对多杀霉素的抗药性风险以及抗性个体流动对群体中抗性个体频率、抗性发展的影响(金涛等,2011;李培征等,2012)。在抗性产生的机制方面,应用电子显微技术研究发现桔小实蝇抗高效氯氰菊酯品系在表皮角质层厚度、脂肪体、几丁质层片层结构以及细胞空隙等均与敏感品系存在差异(Linetal.,2012),与敏感品系相比不同抗性品系微卫星DNA多态性已产生了变异(潘志萍等,2006),比较了9个地理品系桔小实蝇几种解毒酶活性和对不同杀虫剂的抗性水平的关系(金涛等,2014),发现抗性品系表皮对高效氯氰菊酯具有抵抗穿透作用,并且代谢能力显著增强(Linetal.,2012)。应用双向电泳技术分析药剂响应蛋白发现桔小实蝇对敌百虫、高效氯氰菊酯、阿维菌素等响应速度不同,体内有多类蛋白质参与这三种杀虫剂的响应代谢(Jinetal.,2010;Jinetal.,2012)。Wangetal.(2016)研究揭示桔小实蝇对马拉硫磷抗性遗传符合常染色体不完全显性与多基因遗传模式,其抗性产生与3个主要解毒酶活性显著升高相关。但是,关于桔小实蝇抗药性发展变化与化学杀虫剂使用频度等关系研究尚未见报道,这正是在抗药性治理中避免产生抗药性或者维持或者降低抗药性程度时杀虫剂使用间隔时间确定的理论依据。本研究选择防治桔小实蝇常用杀虫剂高效氯氰菊酯,研究了在该药不同汰选频度条件下该实蝇的高抗品系抗药性发展动态规律,从而确定避免抗药性水平上升的高效氯氰菊酯使用间隔时间,为抗性治理工作中指导田间合理用药提供指导。

1 材料与方法

1.1 供试昆虫

桔小实蝇敏感品系:虫源采自广州市杨桃公园,在室内进行继代饲养,饲养环境:温度25℃-28℃,相对湿度60%±10%,光周期16 L ∶8 D。

桔小实蝇高抗品系:将野外采回的成虫进行产卵并继代培育,饲养环境同上,用高效氯氰菊酯进行逐代汰选至48代,获得桔小实蝇对高效氯氰菊酯高抗品系(Strain of High Level of Resistance to Beta-cypermethrin,BC-H)。

1.2 供试药剂

96%高效氯氰菊酯原药,天津市华宇农药有限公司生产;丙酮,分析纯A.R.,广州化学试剂厂生产。

1.3 实验方法

1.3.1敏感品系和毒力基准线

用与抗性品系相同的虫源在不接触任何杀虫剂下饲养58代培育成敏感品系,建立高效氯氰菊酯对该敏感品系的毒力基准线(F0),测定其致死中浓度为5.954(5.223~6.807)mg/L。

1.3.2汰选和毒力测定

汰选和毒力测定均采用药膜法,并参照潘志萍等(2008)方法进行。将高效氯氰菊酯汰选间隔时间分别设置为30 d、60 d、90 d、120 d4个处理。实验开始第1天测定高效氯氰菊酯对该高抗品系成虫毒力,获得各处理初始LC50和初始抗性倍数。其后,按照间隔时间采集成虫、测定高效氯氰菊酯毒力,结束后即使用高效氯氰菊酯(600 mg/L)对相应处理成虫群体进行汰选,以未接触杀虫剂的正常继代繁育的高抗品系为对照。本实验中桔小实蝇每代饲养、取样、测试周期为30 d,共进行10代,最多汰选8次。

1.4 数据分析方法

采用SPSS统计软件分析处理数据,以汰选药剂浓度对数值为自变量,以死亡率机率值为因变量,计算出各处理毒力回归方程(Log concentration-probit line,LC-P line)、致死中浓度(Median lethal concentration,LC50)、95%置信区间(95% Confidence interval,95% CI)以及相关系数(Correlation coefficient,R)等参数。以汰选间隔时间为自变量,以最终抗性增长率为因变量,计算、建立桔小实蝇抗性增长率与汰选时间频度间关系方程。以致死中浓度的95%置信限是否有重叠作为判断不同处理种群间药剂敏感度差异是否显著的标准,抗性水平划分标准以抗性倍数(Resistance multiple,Rm)为根据(唐振华,1993)。

抗性倍数(Rm)=抗性品系LC50/敏感品系LC50

抗性增长率(Growth rate of resistance,GR)=最终抗性倍数/初始抗性倍数

2 结果与分析

2.1 不汰选情况下桔小实蝇高效氯氰菊酯高抗品系的抗性变化

保持桔小实蝇高效氯氰菊酯高抗品系成虫不接触杀虫剂,按照每30 d 1代周期进行正常繁育,在271 d测定高效氯氰菊酯毒力,建立毒力回归方程为y=-5.456+2.126x(R=0.9963),其LC50从初始的582.738(450.886~754.091)mg/L下降到了368.095(258.822~488.949)mg/L,抗性从初始的98.022倍下降为61.917倍。说明经过270 d不接触任何杀虫剂的饲养,桔小实蝇对高效氯氰菊酯抗性已经明显衰退。

2.2 30 d汰选1次处理桔小实蝇对高效氯氰菊酯的抗性变化

从表1可看出,汰选前高效氯氰菊酯对桔小实蝇高抗品系成虫LC50为582.738 mg/L,初始抗性是98.022倍。按照30天处理1次,第1次到到第9次处理后高效氯氰菊酯对桔小实蝇的LC50逐渐增大,从587.804 mg/L上升到1133.639 mg/L,桔小实蝇对高效氯氰菊酯抗性也从98.874倍上升到190.688倍。第9次、第10次汰选时高效氯氰菊酯致死中浓度95%置信区间显著高于第1次、第2次,说明经过每30 d 1次连续9次汰选,桔小实蝇高效氯氰菊酯高抗品系成虫抗药性已经显著增大。建立30 d汰选1次频度下桔小实蝇对高效氯氰菊酯抗性倍数与汰选时间关系方程Rm=96.897e0.0025T(R2=0.9840),表明两者关系符合指数模型。

表1 30 d汰选1次时桔小实蝇成虫对高效氯氰菊酯的抗性动态

2.3 60 d汰选1次处理桔小实蝇对高效氯氰菊酯的抗性变化

表2显示,在使用高效氯氰菊酯60 d处理1次情况下桔小实蝇抗药性呈持续上升趋势,61 d、121 d、181 d、240 d、271 d的毒力测定结果显示LC50分别为677.627 mg/L、699.711 mg/L、733.848 mg/L、807.607 mg/L、827.957 mg/L,抗性倍数分别为113.983倍、117.697倍、123.440倍、135.846倍、139.270倍。相对于30 d汰选1次处理,该虫抗药性上升速度降低了约50%。建立该汰选频度下桔小实蝇对高效氯氰菊酯抗性倍数与汰选时间间隔关系方程为Rm=101.22e0.0012T(R2=0.9558)。

表2 60 d汰选1次时桔小实蝇成虫对高效氯氰菊酯的抗性动态

2.4 90 d汰选1次处理桔小实蝇对高效氯氰菊酯的抗性变化

每90 d使用处理一次时桔小实蝇成虫对高效氯氰菊酯抗药性呈缓慢下降趋势,但下降程度并不明显。91 d、181 d、271 d、301 d时高效氯氰菊酯对桔小实蝇成虫LC50分别为575.076 mg/L、566.249 mg/L、529.207 mg/L、536.684 mg/L,桔小实蝇对高效氯氰菊酯抗性则分别为96.733倍、95.248倍、89.017倍、90.275倍(表3)。

表3 90 d汰选1次时桔小实蝇成虫对高效氯氰菊酯的抗性动态

2.5 120 d汰选1次处理桔小实蝇对高效氯氰菊酯的抗性变化

120 d汰选1次情况下桔小实蝇对高效氯氰菊酯的抗性呈下降趋势,120 d、240 d、270 d毒力测定结果表明高效氯氰菊酯LC50分别为571.119 mg/L、448.647 mg/L、511.302 mg/L,桔小实蝇抗性倍数分别为96.067倍、75.466倍、86.005倍(表4)。

表4 120 d汰选1次时桔小实蝇成虫对高效氯氰菊酯的抗性动态

2.6 桔小实蝇对高效氯氰菊酯的抗性发展与汰选时间频度间关系

由上述2.1-2.5研究结果可知,各汰选时间间隔处理条件下桔小实蝇高抗品系成虫对高效氯氰菊酯抗性发展趋势是不同的。汰选间隔时间为30 d、60 d、90 d、120 d、270 d时,在初始抗性为98.022倍条件下桔小实蝇对高效氯氰菊酯抗性增长分别为92.666倍、41.248倍、-9.005倍、-12.017倍、-36.105倍,抗性增长率分别1.945倍、1.421倍、0.908倍、0.877倍、0.632倍(表5)。汰选间隔时间与抗性增长率之间关系符合幂函数模型GR=11.427T-0.529(R2=0.9537)。由该方程可知,如要求GR≤1时,则T≥99 d,表明当连续两次使用高效氯氰菊酯的间隔时间超过99 d时桔小实蝇高抗品系对高效氯氰菊酯的抗性水平不会升高(图1)。

表5 不同汰选间隔时间处理后桔小实蝇成虫对高效氯氰菊酯的抗性增长率

图1 不同间隔时间汰选后桔小实蝇成虫对高效氯氰菊酯的抗性增长率变化动态Fig.1 Dynamic for growth rate of resistance of B.dorsalis adults to beta-cypermethrin after selection with different time interval

3 结论与讨论

自从有机合成广谱性化学杀虫剂产生并大范围应用以来,害虫抗药性不断产生,抗药性治理逐渐上升并成为了害虫防治实践中的一个重要问题。作为水果、蔬菜等重要害虫,多种实蝇在许多国家尤其是热带、亚热带地区发生较为普遍,且不断扩散蔓延,危害较为严重。在较高的杀虫剂选择压力下,自1990年代以来该类害虫对多种药剂的抗性逐渐显现,使得其抗药性发生发展、机制和治理等研究成为了近年来实蝇研究重点之一(Jinetal.,2011;Vontasetal.,2011;Hsuetal.,2016)。目前,关于实蝇抗药性的研究主要集中于一些重大实蝇害虫包括地中海实蝇Ceratitiscapitata、桔小实蝇B.dorsalis、瓜实蝇B.cucurbitae、橄榄实蝇B.oleae等,尤其以桔小实蝇抗药性研究最多,其内容主要涵盖了抗药性监测、增长规律、交互抗性、分子机制等几个方面(Kakani and Mathiopoulos,2008;Vontasetal.,2011)。但是关于实蝇类害虫抗药性治理研究还是较少涉及。

停用、轮用或者混用农药是害虫抗药性治理中常用的措施。为了明确避免抗药性上升的药剂使用间隔时间长短,应对和解决桔小实蝇抗药性问题,本文以实验室选育获得的桔小实蝇对高效氯氰菊酯的高抗品系为对象,研究了药剂不同处理频度下该实蝇抗药性的发展动态。结果显示在每30 d或60 d汰选一次的情况下桔小实蝇对高效氯氰菊酯抗性呈持续上升趋势,随着药剂汰选次数增加其抗药性增强的趋势也更加明显。在每90 d或更长周期汰选一次情况下桔小实蝇抗药性水平未呈上升态势,而且随着汰选间隔时间增大,抗药性水平有进一步降低趋势。依据成虫抗药性增长率与高效氯氰菊酯汰选时间间隔关系模型估算出当连续使用高效氯氰菊酯的间隔时间不少于99 d时可避免桔小实蝇抗药性水平不升高。但是,值得注意的是间隔60 d、90 d、120 d汰选1次后如短时间内(如30 d内)使用高效氯氰菊酯再汰选时桔小实蝇下一代抗药性往往还会回升,因此建议使用高效氯氰菊酯防治桔小实蝇时前后两次施药间隔时间必须保证足够长,宜长不宜短,一般应在90-100 d以上,间隔时间越长桔小实蝇抗药性降低越明显,抗性治理效果就越好。

本研究还存在一些不足之处。首先,开展实验的时间不够长,无法准确掌握不同汰选频度下桔小实蝇对高效氯氰菊酯的抗性在更长时间范围内发展规律。其次,不同类型杀虫剂不同汰选频度下桔小实蝇抗药性应表现出不同的发展规律,需要深入探讨。第三,试虫为实验室培育的抗药性品系,汰选也在实验室进行,这与田间施药条件差异较大,因此本文所得结果是否与田间施药作用的实际情况相一致还有待于在生产实践中进一步试验、验证。

References)

Armstrong JW, Follett PA. Hot-water immersion quarantine treatment against mediterranean fruit fly and oriental fruit fly (Diptera: Tephritidae) eggs and larvae in litchi and longan fruit exported from Hawaii [J].JournalofEconomicEntomology, 2007, 100 (4): 1091-1097.

Chen LJ, Liu X, Wu SJ,etal. A comparative study of the population biology of trichlorfon-resistant strains of the oriental fruit fly,Bactroceradorsalis(Diptera: Tephritdae) [J].ActaEntomologicaSinica, 2015, 58 (8): 864-871. [陈朗杰, 刘昕, 吴善俊, 等. 桔小实蝇抗敌百虫品系的实验种群生物学比较研究[J]. 昆虫学报, 2015, 58 (8): 864-871]

Clarke AR, Armstrong KF, Carmichael AE,etal. Invasive phytophagous pests arising through a recent tropical evolutionary raditation: TheBactroceradorsaliscomplex of fruit flies [J].AnnualReviewofEntomology, 2005, 50 (1): 293-319.

Fang CC, Okuyama T, Wu WJ,etal. Fitness costs of an insecticide resistance and their population dynamical consequences in the oriental fruit fly [J].JournalofEconomicEntomology, 2011, 104 (6): 2039-2045.

Hou BH, Zhang RJ. Potential distributions of the fruit flyBactroceradorsalis(Diptera: Tephritidae) in China as predicted by CLIMEX [J].ActaEcologicaSinica, 2005, 25 (7): 1570-1574. [侯柏华, 张润杰. 基于CLIMEX的桔小实蝇在中国适生区的预测[J]. 生态学报, 2005, 25 (7): 1570-1574]

Hsu JC, Chien TY, Hu CC,etal. Discovery of genes related to insecticide resistance inBactroceradorsalisby functional genomic analysis of a de novo assembled transcriptome [J].PLoSONE, 2012, 7 (8): e40950.

Hsu JC, Feng HT. Insecticide susceptibility of the oriental fruit fly (Bactroceradorsalis(Hendel)) (Diptera: Tephritidae) in Taiwan [J].ChineseJournalofEntomology, 2000, 20: 109-118. [许如君, 冯海东. 台湾东方果实蝇(Bactroceradorsalis(Hendel)) (双翅目: 果实蝇科)对杀虫剂的感受性[J]. 中华昆虫, 2000, 20: 109-118]

Hsu JC, Feng HT. Susceptibility of melon fly (Bactroceracucurbitae) and oriental fruit fly (B.dorsalis) to insecticides in Taiwan [J].PlantProtectionBulletin, 2002, 44 (4): 303-314. [许如君, 冯海东. 瓜实蝇及东方果实蝇对杀虫剂感受性现况[J]. 植物保护学会会刊, 2002, 44 (4): 303-315]

Hsu JC, Feng HT. Development of resistance to spinosad in oriental fruit fly (Diptera: Tephritidae) in laboratory selection and cross-resistance [J].JournalofEconomicEntomology, 2006, 99 (3): 931-936.

Hsu JC, Feng HT, Haymer DS,etal. Molecular and biochemical mechanisms of organophosphate resistance in laboratory-selected lines of the oriental fruit fly (Bactroceradorsalis) [J].PesticideBiochemistryandPhysiology, 2011, 100 (1): 57-63.

Hsu JC, Feng HT, Wu WJ. Resistance and synergistic effects of insecticides inBactroceradorsalis(Diptera: Tephritidae) in Taiwan [J].JournalofEconomicEntomology, 2004, 97 (5): 1682-1688.

Hsu JC, Feng HT, Wu WJ,etal. Truncated transcripts of nicotinic acetylcholine subunit gene Bdα6 are associated with spinosad resistance inBactroceradorsalis[J].InsectBiochemistryandMolecularBiology, 2012, 42 (10): 806-815.

Hsu JC, Haymer DS, Wu WJ,etal. Mutations in the acetylcholinesterase gene ofBactroceradorsalisassociated with resistance to organophosphorus insecticides [J].InsectBiochemistryandMolecularBiology, 2006, 36 (5): 396-402.

Hsu JC, Huang LH, Feng HT,etal. Do organophosphate-based traps reduce control efficiency of resistant tephritid flies? [J].JournalofPestScience, 2015, 88 (1): 181-190.

Hsu JC, Wu WJ, Feng HT. Biochemical mechanisms of malathion resistance in oriental fruit fly (Bactroceradorsalis) [J].PlantProtectionBulletin, 2004, 46 (3): 255-266. [许如君, 吴文哲, 冯海东. 东方果实蝇对马拉松的生化抗性机制探讨[J]. 植物保护学会会刊, 2004, 46 (3): 255-266]

Hsu JC, Wu WJ, Haymer DS,etal. Alterations of the acetylcholinesterase enzyme in the oriental fruit flyBactroceradorsalisare correlated with resistance to the organophosphate insecticide fenitrothion [J].InsectBiochemistryandMolecularBiology, 2007, 38 (2): 146-154.

Hsu PK, Huang LH, Geib SM,etal. Identification of a carboxylesterase associated with resistance to naled inBactroceradorsalis(Hendel) [J].PesticideBiochemistryandPhysiology, 2016, 131: 24-31.

Huang SQ, Han RC. Advance in the research on the quarantine pestBactroceradorsalis[J].EntomologicalKnowledge, 2005, 42 (5): 479-484. [黄素青, 韩日畴. 桔小实蝇的研究进展[J]. 昆虫知识, 2005, 42 (5): 479-484]

Huang YY, Chen J. The propagation characteristic of oriental fruit fly,Bactroceradorsalisand control technique [J].EntomologicalJournalofEastChina, 2006, 15 (1): 63-66. [黄月英, 陈军. 橘小实蝇发生特点与综合防治技术[J]. 华东昆虫学报, 2006, 15 (1): 63-66]

Jin T, Liang GW, Zeng L,etal. Detoxification enzymes activities in differentBactroceradorsalis(Hendel) populations and their relationship with the resistant levels [J].JournalofEnvironmentalEntomology, 2014, 36 (1): 58-67. [金涛, 梁广文, 曾玲, 等. 不同地理区域桔小实蝇解毒酶系活性及其与抗药性水平关系[J]. 环境昆虫学报, 2014, 36 (1): 58-67]

Jin T, Zeng L, Lin YY,etal. Characteristics of protein variants in trichlorphon-resistantBactroceradorsalis(Diptera: Tephritidae) larvae [J].GeneticsandMolecularResearch, 2012, 11 (3): 2608-2619.

Jin T, Zeng L, Lin YY,etal. Insecticide resistance of the oriental fruit fly (Bactroceradorsalis(Hendel)) (Diptera: Tephritidae) in mainland China [J].PestManagementScience, 2011, 67 (3): 370-376.

Jin T, Zeng L, Lu YY,etal. Identification of resistance-responsive proteins in larvae ofBactroceradorsalis(Hendel), for pyrethroid toxicity by a proteomic approach [J].PesticideBiochemistryandPhysiology, 2010, 96 (1): 1-7.

Jin T, Zeng L, Lu YY,etal. Changes of the frequency of resistant individuals in populations of the oriental fruit fly,Bactroceradorsalis(Diptera: Tephritidae), with resistant individual flow [J].ActaEntomologicaSinica, 2011, 54 (3): 306-311. [金涛, 曾玲, 陆永跃, 等. 桔小实蝇抗性个体流动对抗性个体频率的影响[J]. 昆虫学报, 2011, 54 (3): 306-311]

Kakani EG, Mathiopoulos KD. Organophosphosphate resistance-related mutations in the acetylcholinesterase gene of Tephritidae [J].JournalofAppliedEntomology, 2008, 132 (9-10): 762-771.

Kuo TY, Hu CC, Chien TY,etal. Discovery of genes related to formothion resistance in oriental fruit fly (Bactroceradorsalis) by a constrained functional genomics analysis [J].InsectMolecularBiology, 2015, 24 (3): 338-347.

Li PZ, Lu YY, Liang GW,etal. Resistance risk assessment of oriental fruit fly to Spinosad [J].JournalofEnvironmentalEntomology, 2012, 34 (4): 447-451. [李培征, 陆永跃, 梁广文, 等. 桔小实蝇对多杀霉素的抗药性风险评估[J]. 环境昆虫学报, 2012, 34 (4): 447-451]

Li PZ, Lu YY, Liang GW,etal. Fitness cost ofBactroceradorsalis(Hendel) strain resisitant to Spinosad [J].JournalofEnvironmentalEntomology, 2014, 36 (1): 68-71. [李培征, 陆永跃, 梁广文, 等. 桔小实蝇抗多杀霉素的生物适合度代价[J]. 环境昆虫学报, 2014, 36 (1): 68-71]

Li WR. The control ofBactroceradorsalis(Hendel) [J].ChineseJournalofEntomology(SpecialPubl.), 1988, 2: 51-60. [李文蓉. 东方果实蝇之防治[J]. 中华昆虫(特刊), 1988, 2: 51-60]

Liang Fan, Liang GQ, Zhao JP,etal. Key methods of occur and comprehensive control to oriental fruit fly in Guangzhou area [J].GuangdongAgriculturalSciences, 2008, 26 (3): 58-61. [梁帆, 梁广勤, 赵菊鹏, 等. 广州地区桔小实蝇的发生与综合防治关键措施[J]. 广东农业科学, 2008, 26 (3): 58-61]

Liang GQ. Features of theoriental fruit fly and its habits [J].ActaAgriculturaeUniversitatisJiangxiensis, 1985, 1: 7-15. [梁广勤. 桔小实蝇形态特征及其生活习性[J]. 江西农业大学学报, 1985, 1: 7-15]

Lin JT, Zeng L, Lu YY,etal. Research advances in biology and control ofBactrocera(Bactrocera)dorsalis(Hendel) [J].JournalofZhongkaiAgrotechnicalCollege, 2004, 17 (1): 60-67. [林进添, 曾玲, 陆永跃, 等. 桔小实蝇的生物学特性及防治进展[J]. 仲恺农业技术学院学报, 2004, 17 (1): 60-67]

Lin YY, Jin T, Zeng L,etal. Cuticular penetration of β-cypermethrin in insecticide-susceptible and resistant strains ofBactroceradorsalis[J].PesticideBiochemistryandPhysiology, 2012, 103 (3): 189-193.

Lin YY, Jin T, Zeng L,etal. Insecticide toxicity to oriental fruit flyBactroceradorsalis(Diptera: Tephritidae) is influenced by environmental factors [J].JournalofEconomicEntomology, 2013, 106 (1): 353-359.

Lin YY, Zeng L, Jin T,etal. Susceptible toxicity baseline data of the different types of insecticides for susceptible strains of oriental fruit fly [J].JournalofEnvironmentalEntomology, 2010, 32 (2): 215-219. [林玉英, 曾玲, 金涛, 等. 不同类型杀虫剂对桔小实蝇成虫触杀作用的毒力敏感基线[J]. 环境昆虫学报, 2010, 32 (2): 215-219]

Liu YZ. A review on studies of the oriental fruit fly,Dacusdorsalis(Hendel) in Taiwan [J].EntomologicalBulletinofChungHsingUniversity, 1981, 16 (1): 9-26. [刘玉章. 台湾东方果实蝇之研究[J]. 兴大昆虫学会报, 1981, 16 (1): 9-26]

Meng QQ, Lu YY, Zheng MJ,etal. Sterile effects of hexamethyl phosphoryl triamide mixed with protein hydrolysate onBactroceradorsalis[J].JournalofSouthChinaAgriculturalUniversity, 2012, 33 (4): 470-474. [孟倩倩, 陆永跃, 郑熳筠, 等. 六磷胺与水解蛋白结合使用对橘小实蝇的不育效果研究[J]. 华南农业大学学报, 2012, 33 (4): 470-474]

Okuyama T, Hsu JC. Larval competition within and between insecticide resistant and susceptible individuals in the oriental fruit fly,Bactroceradorsalis[J].JournalofAppliedEntomology, 2013, 137 (4): 289-295.

Pan ZP, Lu YY, Zeng L,etal. Development of resistance to trichlorophon, alphamethrin and abamectin in laboratory populations of the oriental fruit fly,Bactroceradorsalis(Hendel) (Diptera: Tephritidae) [J].ActaEntomologicaSinica, 2008, 51 (6): 609-617. [潘志萍, 陆永跃, 曾玲, 等. 桔小实蝇实验种群对敌百虫、高效氯氰菊酯和阿维菌素的抗性增长规律[J]. 昆虫学报, 2008, 51 (6): 609-617]

Pan ZP, Zeng L, Lu YY. Monitoring of resistance of oriental fruit fly adults to insecticides in south China [J].JournalofSouthChinaAgriculturalUniversity, 2005, 26 (4): 23-26. [潘志萍, 曾玲, 陆永跃. 华南地区桔小实蝇对几种农药的抗药性研究[J]. 华南农业大学学报, 2005, 26 (4): 23-26]

Pan ZP, Zeng L, Wen SY. Microsatellite DNA polymorphism in different pesticide-resistant strains of the oriental fruit flyBactroceradorsalis(Hendel) (Diptera: Tephritidae) [J].ActaEntomologicaSinica, 2006, 49 (5): 874-877. [潘志萍, 曾玲, 温硕洋. 桔小实蝇抗性品系的微卫星DNA分析[J]. 昆虫学报, 2006, 49 (5): 874-877]

Pan ZP, Zhai X. Effects ofBeauveriabassianaon experimental populations ofBactroceradorsalis[J].PlantProtection, 2015, 41 (3): 60-63. [潘志萍, 翟欣. 球孢白僵菌对橘小实蝇实验种群的影响[J]. 植物保护, 2015, 41 (3): 60-63]

Purcell MF, Jackson CG, Long JP,etal. Influence of guava ripening on parasitism of the oriental fruit fly,Bactroceradorsalis(Hendel) (Diptera: Tephritidae), byDiachasmimorphalongicaudata(Ashmead) (Hymenoptera: Braconidae) and other parasitoids [J].BiologicalControl, 1994, 4 (4): 396-403.

Seewooruthun SI, Sookar P, Permalloo S,etal. An Attempt at the Eradication of the Oriental Fruit Fly,Bactroceradorsalis(Hendel) from Mauritius [C]. Reduit, Mauritius: Proceedings of the Second Annual Meeting of Agricultural Scientists, 1997: 181-187.

Stephens AEA, Kriticos DJ, Leriche A. The current and future potential geographical distribution of the oriental fruit fly,Bactroceradorsalis(Diptera: Tephritidae) [J].BulletinofEntomologicalResearch, 2007, 97 (4): 369-378.

Sukhirun N, Pluempanupat W, Bullangpoti V,etal. Bioefficacy of Alpinia galanga (Zingiberaceae) rhizome extracts, (E)-p-Acetoxycinnamyl alcohol, and (E)-p-Coumaryl alcohol ethyl ether againstBactroceradorsalis(Diptera: Tephritidae) and the impact on detoxification enzyme activities [J].JournalofEconomicEntomology, 2011, 104 (5): 1534-1540.

Tang ZH. Insect Resistance to Pesticide and Its Management [M]. Beijing: China Agricultural Press, 1993: 11-18. [唐振华. 昆虫抗药性及其治理[M]. 北京: 农业出版社, 1993: 11-18]

Vontas J, Hernández-Crespo P, Margaritopoulos JT,etal. Insecticide resistance in Tephritid flies [J].PesticideBiochemistryandPhysiology, 2011, 100 (3): 199-205.

Wan XW, Liu YH, Zhang B. Invasionhistory of the oriental fruit fly,Bactroceradorsalis, in the Pacific-Asia Region: Two main invasion routes [J].PLoSONE, 2012, 7 (5): e36176.

Wan XW, Nardi F, Zhang B,etal. The oriental fruit fly,Bactroceradorsalis, in China: Origin and gradual inland range expansion associated with population growth [J].PLoSONE, 2011, 6 (10): e25238.

Wang LL, Feng ZJ, Li T,etal. Inheritance, realized heritability, and biochemical mechanisms of malathion resistance inBactroceradorsalis(Diptera: Tephritidae) [J].JournalofEconomicEntomology, 2016, 109 (1): 299-306.

Zhang YP, Lu YY, Zeng L,etal. Population life parameters and relative fitness of alpharmethrin-resistantBactroceradorsalisstrain [J].ChineseJournalofAppliedEcology, 2009, 20 (2): 381-386. [章玉苹, 曾玲, 陆永跃, 等. 桔小实蝇抗高效氯氰菊酯品系种群生命参数与相对适合度研究[J]. 应用生态学报, 2009, 20 (2): 381-386]

Zhang YP, Lu YY, Zeng L,etal. Life-history traits and population relative fitness of trichlorphon-resistant and susceptibleBactroceradorsalis(Diptera: Tephritidae) [J].Psyche, 2010, 2010 (2010): 895935.

Zhang YP, Zeng L, Lu YY,etal. Monitoring of insecticide resistance ofBactroceradorsalisadults in South China [J].JournalofSouthChinaAgriculturalUniversity, 2007, 28 (3): 20-23. [章玉苹, 曾玲, 陆永跃, 等. 华南地区桔小实蝇抗药性动态监测[J]. 华南农业大学学报, 2007, 28 (3): 20-23]

Zhang YP, Zeng L, Lu YY,etal. Monitoring of insecticides resistance of oriental fruit fly field populations in South China [J].JournalofHuazhongAgricultureUniversity(NaturalScienceEdition), 2008, 27 (4): 456-459. [章玉苹, 曾玲, 陆永跃, 等. 华南地区桔小实蝇田间种群抗药性的监测[J]. 华中农业大学学报(自然科学版), 2008, 27 (4): 456-459]

Zhang YP, Zeng L, Lu YY,etal. Resistance stability and re-growth in adults of the oriental fruit fly,Bactroceradorsalis(Diptera: Tephritidae) to trichlorphon [J].ActaEntomologicaSinica, 2008, 51 (10): 1044-1049. [章玉苹, 曾玲, 陆永跃, 等. 桔小实蝇对敌百虫抗性稳定性及再增长趋势[J]. 昆虫学报, 2008, 51 (10): 1044-1049]

DynamicofresistanceofBactroceradorsalis(Hendel)high-resistantstrainunderselectionbybeta-cypermethrinwithdifferentfrequency

YAO Qi, ZENG Ling, LIANG Guang-Wen*, LU Yong-Yue*

(Department of Entomology, South China Agricultural University, Guangzhou 510642, China)

To study on the resistance dynamic ofBactroceradorsalis(Hendel) high-resistant strain under using beta-cypermethrin with different frequency, for purpose of providing the basis for scientific and rational usage of beta-cypermethrin to control this pest in the fields,B.dorsalisadults with high resistance to beta-cypermethrin selected under the laboratory conditions were tested, and the toxicity of beta-cypermethrin to the susceptible strain was toxicity baseline. Depending on the time interval length of selection with beta-cypermethrin, four treatments including 30 d, 60 d, 90 d and 120 d were set. The high resistance strain without contacting pesticides kept continuously under normal conditions was as control. The resistance-selection and toxicity assay both with the pesticide film method were determined once every 30 days, and these tests reached ten times totally. The analysis of the relationship between the resistance dynamics and the selection time intervals was based on the median lethal concentration (LC50) and resistant multiple (Rm). The results showed that, 270 days after treatment, there were obvious differences among the resistance development forB.dorsalisstrains to beta-cypermethrin at different time interval selections, and as the selected time interval was shorter, the resistance increased faster. At the treatment of once selection every 30 days,LC50ofB.dorsalisadults to beta-cypermethrin rose to 1133.6 mg/L from the first time 582.7 mg/L, andRmalso rose to 190.7 folds from 98.0 folds. When the selection was taken once every 60 days,LC50andRmwere 828.0 mg/L and 139.3 folds, respectively.LC50was 529.2 mg/L andRmwas 89.0 folds at the treatment of once every 90 days.LC50andRmwere 511.3 mg/L and 86.0 folds, respectively, at the treatment of once every 120 days.LC50of the resistant strain without resistance-selection decreased to 368.1 mg/L from the first time 582.7 mg/L, andRmalso decreased to 61.9 folds from 98.0 folds. The equationY=11.427X-0.529can well describe the relationship between the selection time interval of beta-cypermethrin and the growth rate ofB.dorsalisadult resistance in 270 days. According to those results, it was predicted that the resistance ofB.dorsalisto beta-cypermethrin would not rise in 270 days, when the time interval between the two successive usages for that insecticide in the orchards was over 99 days.

Bactroceradorsalis(Hendel); beta-cypermethrin; high-resistant strain; selection time interval; resistance development

国家重点研发计划项目(2016YFC1201200);广州市科技计划项目(201601010179)

姚其,男,1986年生,广西灵山人,硕士研究生,研究方向为害虫控制,E-mail:269yao103@163.com

*通讯作者Author for correspondence, E-mail: luyongyue@scau.edu.cn; gwliang@scau.edu.cn

Received: 2017-04-06; 接受日期Accepted: 2017-05-23

Q965.9;S481+.4

:A

1674-0858(2017)04-0791-09

姚其,曾玲,梁广文,等.高效氯氰菊酯不同汰选频度条件下桔小实蝇高抗品系抗药性发展动态[J].环境昆虫学报,2017,39(4):791-799.

猜你喜欢

氯氰实蝇抗药性
潮汕地区实蝇发生现状及种群结构分析
中国重要检疫性实蝇的全球分布和入侵情况
澳大利亚谷物害虫抗药性不断增加的原因和管理
莘县地区灰霉病菌对腐霉利的抗药性研究
性诱剂诱集实蝇类害虫监测种群动态与发生规律的研究
农科问答
植物有害生物抗药性及治理对策
不同洗涤剂对高效氯氰菊酯的清除试验
杂草抗药性及其治理策略研究进展
氯氰菊酯降解菌DZS—3的分离鉴定及其特性