秸秆心土混合犁改良白浆土效果
2017-09-15朱宝国张春峰贾会彬王囡囡孟庆英匡恩俊王秋菊高中超张立波高雪冬
朱宝国,张春峰※,贾会彬,王囡囡,孟庆英,匡恩俊,王秋菊,高中超,刘 峰,张立波,高雪冬
秸秆心土混合犁改良白浆土效果
朱宝国1,2,张春峰1,2※,贾会彬1,2,王囡囡1,2,孟庆英1,2,匡恩俊3,王秋菊3,高中超3,刘 峰3,张立波1,2,高雪冬1
(1. 黑龙江省农业科学院 佳木斯分院,佳木斯 154007; 2. 黑龙江省白浆土改良工程中心,佳木斯 154007;3. 黑龙江省农业科学院 土壤肥料与环境资源研究所,哈尔滨 150086)
为将表层秸秆施入心土,改善贫瘠的心土层创造有利条件,该文设计了将白浆土“上翻20 cm,下混30~40 cm,同时将有机物料施入心土层”的秸秆心土混合犁。该研究通过设置秸秆心土混合区和浅翻深松区田间对比试验,调查机械作业后土壤理化性质,指示作物农艺性状以及产量指标等,明确秸秆心土混合的改土增产机理,进一步拓宽白浆土改良途径,为机械改土技术的广泛应用提供技术支撑。研究结果表明:与浅翻深松相比,秸秆心土混合改善心土层土壤物理性质,20~40 cm土层土壤含水率提高2.69~4.90个百分点;硬度降低44.45%左右,且没有出现峰值;改善土壤通透性,固相降低幅度为4.51~2.14个百分点,液相增加幅度为1.17~4.13个百分点,气相增加幅度为0.38~0.98个百分点,容重下降幅度为0.16~0.11 g/cm3;提高心土层养分含量,碱解氮提高17.33%,有效磷提高116.39%,速效钾提高37.86%,有机质提高36.66%,同时提高心土层全量养分含量,缓解土壤酸性。连续2 a调查大豆产量,秸秆心土混合区比对照区增产15.77%~16.33%,一次改土后效时间长,增产效果显著。该研究结果可为白浆土及其同类低产土壤改良及作物高产提供技术支撑。
土壤;秸秆;物理特性;化学特性;秸秆心土混合犁;土壤改良;白浆土
朱宝国,张春峰,贾会彬,王囡囡,孟庆英,匡恩俊,王秋菊,高中超,刘峰,张立波,高雪冬. 秸秆心土混合犁改良白浆土效果[J]. 农业工程学报,2017,33(15):57-63. doi:10.11975/j.issn.1002-6819.2017.15.007 http://www.tcsae.org
Zhu Baoguo, Zhang Chunfeng, Jia Huibin, Wang Nannan, Meng Qingying, Kuang Enjun, Wang Qiuju, Gao Zhongchao, Liu Feng, Zhang Libo, Gao Xuedong. Effect of planosol improvement by using straw subsoil mixed layer plough[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 57-63. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.15.007 http://www.tcsae.org
0 引 言
白浆土是中国东北地区主要农田土壤之一,黑龙江和吉林两省分布相对集中。在黑龙江省其总面积约为331.2万hm2。该省东部三江平原地区是白浆土集中分布区,耕地面积达到88.4万hm2,约占该区总耕地面积的25.4%[1]。白浆土的心土在作物生育期间经常呈现“硬、板、瘦”的理化特性[2-3],不但引发耕层严重的表旱表涝,而且致使作物根系有效土层浅至20 cm左右。白浆土是区域性低产土壤,低产原因主要有3个方面:一是黒土层薄,总养分蓄量低;二是白浆层土质坚硬,作物根系难以下扎;三是土壤垦殖后偏酸加剧[4-5]。因此,改良和利用好这类土壤资源,对于改变白浆土区低产面貌,提高中国粮食总产具有重要意义。
多年来,白浆土改土实践受到持续关注,虽然取得一定成效,但也面临很大的局限性。在生产中应用相当广泛的深松改土措施,因土壤粉砂含量高,深松遇雨后白浆层很快沉实[6-7],改土效果一般只在当年,因此需要年年深松,作业成本逐年累加,而白浆土的低产障碍并没有从根本上得到有效克服。
根据白浆土在机械组成上呈现两层性的特点,赵德林[8-10]先生提出了以淀积层的“黏”来治白浆层的“砂”的改土路线,经过多年试验研究,明确了“上翻20 cm,下混30~40 cm”的改土原理。Araya等[11]、Liu[12-14]等根据其改土理论成功地研制了三段式心土混层犁,这一改土机械可以在保持黑土层位置不变的条件下,即将白浆层和淀积层按约1∶1厚度混拌以后,土壤通透性能和贮水能力显著改善,同时由于耕作深度可达50 cm以上。在三江平原国营农场和地方市县进行的大面积改土示范表明,其对白浆土物理性质的改良效果十分明显,一次改土后效可持续5 a以上[15-16]。但该种改土机械只是改变了白浆土不良物理性状,白浆土心土养分贫瘠的不良化学性状并没有改变。随着改土实践的不断深入,在已有三段式心土混层犁的基础上,具有将根茬和秸秆混入心土的秸秆心土混合犁被研制开发出来,这一兼具综合改土目标的改土机械为进一步解决白浆土心土养分贫瘠的不良化学性提供了可行性,也为解决作物结构调整以后出现的秸秆过剩问题开辟了新的途径。本项研究通过设置秸秆心土混合区和浅翻深松区田间对比试验,调查机械作业后土壤理化性质,指示作物农艺性状以及产量指标等,明确秸秆心土混合的改土增产机理,进一步拓宽白浆土改良途径,为机械改土技术的广泛应用提供技术支撑。
1 材料与方法
1.1 秸秆心土混合犁结构及作业原理
1.1.1 工作原理
秸秆心土混合犁及工作原理如图1所示。作业时,第1犁翻耕20 cm表土层(Ap);第2犁随即将下一垡表层根茬约3~5 cm刮入第1犁耕起的犁沟中;第3犁沿着第1犁的犁沟表面向下耕起约20 cm心土(Aw),同时,第4犁沿着第3犁犁沟表面再向下耕起约10~15 cm心土(B层)。第2犁耕起的根茬与第3犁、第4犁耕起的两层心土,经第4犁的栅条末端落下,横垡变立垡,产生土层混拌和秸秆与心土随机混拌。重复作业时,下一垡已经被刮掉根茬的厚约15~17 cm的表土层被翻扣在已经混拌和培肥的心土之上。
图1 秸秆心土混合犁及其工作原理Fig.1 Straw subsoil mixed layer plough and its working principle
1.1.2 机械性能参数
1)外形尺寸:主梁长3 820 mm,犁架宽2 480 mm,犁架高2 065 mm。2)全机质量0.85 t。3)作业指标:耕作幅宽:46~60 cm,耕作深度:40~60 cm,入土行程3.1 m,牵引阻力:2.0~3.5 t,作业效率:0.2~0.4 hm2/h。
1.2 秸秆心土混合犁改土试验
1.2.1 试验地点
试验于2014-2015年在黑龙江省八五四农场旱田试验站进行。试验采取持续定位测定,供试土壤类型为白浆土,土壤基础肥力:有机质32.1 g/kg、全氮1.74 g/kg、全磷0.98 g/kg、全钾26.3 g/kg。土壤速效养分:碱解氮98.7 g/kg、有效磷26.8 g/kg、速效钾132.4 g/kg。土壤pH值5.84。
1.2.2 气象条件
2014年8月和2015年7月与其他年份相比降雨偏少,对作物生长产生影响。
表1 2014-2015年八五四农场降雨量Table 1 Rainfall of 854 State Farm during years of 2014-2015
1.2.3 试验处理
试验采用大田对比试验,设2个处理,每个处理面积0.2 hm2。具体处理如下:
1)浅翻深松区(CK),采用普通翻地犁进行作业,作业深度为0~20 cm;
2)秸秆心土混合区(SSML):采用自主研发的秸秆心土混合犁作业,该犁为上翻下混的作业模式,上翻20 cm,下混30~40 cm,作业深度50~60 cm。作业时,将前茬机械收获后的粉碎秸秆全部翻入心土层,实现前茬作物秸秆全量还田,不设重复。
供试品种:2014年为‘垦丰16号大豆’,密度为30万株/hm2。2015年为‘合丰55号大豆’,密度为25万株/hm2。
施肥量:尿素60 kg/hm2,二铵150 kg/hm2,氯化钾45 kg/hm2。不同处理施肥量和田间除草与当地一般生产田一致。
1.3 调查项目与方法
1.3.1 土壤含水率测定
土壤含水率采用土钻取土烘干法测定,选择大豆需水关键时期开花期、结荚期采样,采样深度60 cm,按0~20、>20~40、>40~60 cm分层取样,每个处理取3点,每点取3层,每层取3次重复,结果取平均值。取样时间是2014年8月结荚期1次,2015年的7月开花期1次。
1.3.2 土壤硬度测定
土壤硬度用日本DIK-5521贯入式土壤硬度计测定,圆锥底面2 cm2,测定深度60 cm,按0、5、10、15、20、25、30、35、40、45、50、55、60 cm深度点测定,每个处理取10点,每点间隔10 cm,结果取平均值,测定时间与土壤含水率取样时间一致。
1.3.3 土壤容重测定
土壤容重用环刀法取样烘干测定,采取人工方式挖土壤剖面,每个处理去掉四周边际按三角形选点,挖3个100 cm×100 cm×120 cm 土壤剖面,用环刀取原状土样,环刀规格为高5 cm,容积100 cm3,环刀按0~20、>20~40、>40~60 cm分层取样,每点取3层,每层取3次重复,结果取平均值,环刀样扣盖,密封后备用。
1.3.4 土壤化学指标测定
土壤pH值采用美国产原位土壤pH计测定,土壤碱解氮采用扩散吸收法测定;土壤速效磷采用碳酸氢钠提取法测定;速效钾采用盐酸浸提-AAS法测定;土壤有机质采用重铬酸钾外加热法测定;土壤全氮采用半微量开氏法;土壤全磷采用NaOH熔融-钼锑钪比色法;土壤全钾采用NaOH熔融-火焰光度法测定[17]。土壤采样深度60 cm,按0~20、>20~40、>40~60 cm分层取样,每个处理取3点,每点取3层,每层取3次重复,结果取平均值。
1.3.5 产量指标测定
全区收获测产。每区选有代表性的30株进行产量构成因素测定。
1.4 数据分析
采用DPS 7.05和Excel 2003软件进行数据处理和分析。
2 结果与分析
2.1 对土壤含水率的影响
图2是秸秆心土混合犁改土后2a的土壤含水率调查结果。
图2 不同耕作方式下土壤含水率变化Fig.2 Changes of soil water content under different tillage methods
从图2中可以看出,改土2 a内,0~20和>40~60 cm土层土壤含水率与对照相比虽有提高,但变化不明显。>20~40 cm土层土壤含水率明显高于对照区,与对照相比第1年土壤含水率提高4.90个百分点,第2年土壤含水率提高2.69个百分点。说明秸秆心土混拌犁改土处理后,土壤致密的白浆层被破碎和心土层进行随机混拌,提高土壤通透性,增大了>20~40 cm土层土壤储水库容,提高土壤含水量。
2.2 对土壤硬度的影响
白浆土低产原因之一是土壤硬度过大,作物根系很难下扎,严重影响作物生长发育。图3是改土后2a内土壤硬度测定结果,从图3中可以看出,秸秆心土混合犁改土处理后,改变了白浆土不同层次土壤硬度值。0~60 cm土层土壤硬度值对照区先增大后减小,在>20~40 cm土层内出现峰值,硬度最大值在9 kg/cm2左右;秸秆心土混合区土壤随着土层加深硬度值逐渐变大,>20~40 cm土层没有出现峰值,硬度在5 kg/cm2左右,秸秆心土混合区较对照区硬度值降低44.45%左右,对照和改土区>0~20和>40~60 cm土层土壤硬度值变化不明显。说明秸秆心土混合犁改土后打破了白浆土坚硬的白浆层,硬度降低到了适合作物根系生长范围内,有利于作物根系生长,改土2 a内土壤硬度没有恢复原状,改土效果显著。
图3 不同耕作方式下土壤硬度(kg·cm-2)变化Fig.3 Changes of soil hardness (kg·cm-2) under different tillage methods
2.3 对土壤三相和容重的影响
白浆土存在障碍层白浆层,导致土壤物理性质差,水、气空间少,水分性状不良。秸秆心土混合犁能够使白浆层和淀积层进行随机混拌,彻底打破白浆层不良物理特性。2014年8月和2015年7月用环刀取样,测定土壤三相和容重,从表2可以看出,与对照区相比,秸秆心土混合犁改土2 a内0~60 cm土层土壤固相减小,液相和气相增大,导致容重降低。2 a内>20~40 cm土层与对照相比固相降低4.51个百分点和2.14个百分点,液相提高4.13个百分点和1.17个百分点,气相提高0.38个百分点和0.98个百分点,容重降低0.16和0.11 g/cm3。>40~ 60 cm土壤三相虽有变化,但不明显。说明经过秸秆心土混合犁处理过的土壤,土壤通透性得到提高,物理性质得到明显改善。
表2 不同耕作方式下土壤物理性质变化Table 2 Changes of soil physical properties under different tillage methods
2.4 对土壤化学性质的影响
白浆土白浆层粉砂含量高,养分含量低,特别是有效磷含量低。利用秸秆心土混合犁把大豆秸秆还入心土层,达到提高心土层养分的目的。表3是秸秆心土混合犁改土2 a后土壤养分测定结果,从表3中看出,秸秆心土混合犁将地表秸秆还入>20~40 cm心土层,使秸秆与心土随机混拌,>20~40 cm层速效养分得到明显提高,与对照相比碱解氮提高17.33%,有效磷提高116.39%,速效钾提高37.86%;提高全量养分、全氮和全磷含量,全钾变化不明显;有机质含量提高36.66%,pH值也有所提高。>40~60 cm土层土壤速效养分和全量养分虽有提高,但与>20~40 cm变化相比,变化不明显。说明秸秆还入心土层后,显著提高了>20~40 cm土层养分供给能力。
表3 不同耕作方式下土壤养分变化Table 3 Change of soil nutrient under different tillage methods
2.5 对作物产量的影响
从表4中看出,秸秆心土混层犁改土处理可提高大豆的单株株高、节数、荚数,增加大豆单株粒数和百粒质量,提高大豆产量。改土后第1年秸秆心土混层区比对照区大豆增产16.33%,第2年增产15.77%。说明秸秆心土混层犁改土后2个作物生育期内大豆增产15%以上,改土效果显著。
表4 大豆产量性状及产量Table 4 Yield and yield properties of soybeans
3 讨 论
白浆土是黑龙江省主要低产土壤之一[18],白浆土低产原因包括土壤物理性质与化学性质2个方面,而这2个方面的原因多出在白浆层上,所以白浆土改良技术应以消除白浆层的障碍作用为突破口,普通深松机械主要是对土壤进行深松,没有打破白浆层,经过一个作物生育期后,土壤很可能恢复原状,需要年年深松,增加作业成本。三段式心土混层犁与普通深松机械相比能够实现耕层土壤不变的情况下,白浆层和淀积层进行随机混拌,打破白浆层不良物理结构[19-21],但心土层有效养分没有改变。国内外研究结果表明,秸秆还田具有改善土壤结构[22-23]、强化土壤有机质积累[24-25]、提高营养元素含量[26-27],本文设计的秸秆心土混合犁在改良白浆土不良物理性状的基础上,把前茬作物秸秆全部还入心土层,既解决土壤心土层养分贫瘠的问题,又克服土壤水气失调带来的不良影响,一次改土后效时间长,不需要年年深松。
白浆土白浆层土壤粉砂含量高,养分含量低[28-29],容易沉实,造成土壤板结、紧实,水分上下沟通困难,作物根系很难下扎,严重影响作物生长发育,淀积层混拌白浆层后,土壤机械组成由原来的两层性变为三层性,即耕层、混拌层和淀积层各自拥有不同的沙黏比,显著降低了白浆土白浆层土壤的硬度,硬度可降低2倍左右,白浆层处没有出现峰值。增大贮水库容,提高土壤含水量,降低土壤容重,同时能把有机物料及秸秆施入心土层,活化心土层[30],两者结合既提高心土层养分,又解决了白浆土区土壤表旱表涝的严重问题。
秸秆心土混合犁能够彻底解决白浆土障碍因子,是改良低产白浆土最有效的方法之一。作物平均产量提高15%左右,该技术得到当地推广部门的认可,应用推广前景十分广阔。但随着现代化农业机械动力水平的提高,该技术也存在一定的弊端,主要是机械作业效率低,动力节余,浪费能源。下一步将对该机械进行改进,适应动力机械农艺要求,提高作业效率,为白浆土区机械土壤改良和粮食增产提供技术保障。
4 结 论
秸秆心土混合犁在保持表土层位置不变的情况下,实现了“上翻20 cm,下混30~40 cm,同时将有机物料还入心土层”的新农艺参数,改善心土层土壤理化性状,影响作物产量。
1)秸秆心土混合犁改善白浆土物理性状。提高土壤含水量、降低硬度和容重;提高液相和气相比例,降低固相比例,>20~40 cm土层各项指标变化幅度明显。
2)秸秆心土混合犁改善白浆土化学性状。提高心土层养分含量,>20~40 cm土层速效氮、磷、钾和全量氮、磷、有机质变化明显,减少土壤酸化。
3)在对大豆产量及产量性状影响上,秸秆心土混合犁可增加大豆株高、节数、荚数和粒数,增加百粒质量,进而提高大豆产量,2 a增产幅度为15.77%~16.33%。
[1] 赵德林. 三江平原低产土壤与改良[M]. 哈尔滨:黑龙江科学技术出版社,1992.
[2] 刘婷婷,高中超,匡恩俊,等. 白浆土某些物理性质的研究.Ⅰ与土壤紧实和通透性质相关的几个物理特性[J]. 黑龙江农业科学,2012(4):49-52.
Liu Tingting, Gao Zhongchao, Kuang Enjun, et al. Study on physical characteristics of planosol I. some physical characteristics about soil compaction and permeability[J]. Heilongjiang Agricultural Sciences, 2012(4): 49-52. (in Chinese with English abstract)
[3] 刘婷婷,高中超,匡恩俊,等. 白浆土某些物理性质的研究Ⅲ.白浆土微结构及孔隙特征[J]. 黑龙江农业科学,2012(6):45-48.
Liu Tingting, Gao Zhongchao, Kuang Enjun, et al. Study on physical characteristics of planosol III. Microstructure and porosity features[J]. Heilongjiang Agricultural Sciences, 2012(6): 45-48. (in Chinese with English abstract)
[4] 贾会彬,刘峰,赵德林,等. 白浆土某些理化特性与改良研究[J]. 土壤学报,1997,34(2):130-137.
Jia Huibin, Liu Feng, Zhao Delin, et al. Research on some physical-chemical properties and improvement of Plano sols[J]. Acta Pedologica Sinica, 1997, 34(2): 130-137. (in Chinese with English abstract)
[5] 田秀平,张之一. 不同耕作制下白浆土pH变化规律研究[J].东北农业大学学报,2015,46(3):37-40.
Tian Xiuping, Zhang Zhiyi. Study on pH varation under different tillage system in ablic soil[J]. Journal of Northeast Agricultural University, 2015, 46(3): 37-40. (in Chinese with English abstract)
[6] 罗丁. 白浆土改良耕作机[J]. 农牧与食品机械,1994(2):8-10,19.
Luo Ding. Plano sols improved farming machine[J]. Machinery for Cereals, oil and Food Processing, 1994(2): 8-10, 19. (in Chinese with English abstract)
[7] 霍云鹏,刘兴久,张宏. 白浆土的水分物理性质与白浆土的改良[J]. 东北农学院学报,1983(3):69-75.
Huo Yunpeng, Liu Xingjiu, Zhang Hong. Discussion on the problem of planosol improvement based on the study of its physical property of moisture[J]. Journal of Northeast Agricultural College, 1983(3): 69-75. (in Chinese with English abstract)
[8] 赵德林,洪福玉. 三江平原主要土壤土体构造特点与治理途径的探讨[J]. 中国农业科学,1983,16(1):54-61.
Zhao Delin, Hong Fuyu. Investigation on the characters of soil constitution of the major soils in the sanjiang plain, and the way for soil conservation[J]. Scinetia Argrcultura sinica, 1983, 16(1): 54-61. (in Chinese with English abstract)
[9] 赵德林,刘丰,洪福玉,等. 白浆土土体构型改造的研究[J].中国农业科学,1989,22(5):47-55.
Zhao Delin, Liu Feng, Hong Fuyu, et al. Studies on transforming constitution of plansol solum[J]. Scinetia Argrcultural Sinica, 1989,22(5): 47-55. (in Chinese with English abstract)
[10] 赵德林,刘丰,贾会彬,等. 心土混层耕改良白浆土效果研究[J]. 中国农业科学,1994,27(4):37-44.
Zhao Delin, Liu Feng, Jia Huibin, et al. The effect of transforming planosol by using subsoil mixed plough[J]. Scinetia Argrcultura Sinica, 1994, 27(4): 37-44. (in Chinese with English abstract)
[11] Araya K, Kudoh M, Zhao Delin, et al. Improvement of planosol solum: Part 6: Field experiments with a three-stage subsoil mixing plough[J]. Journal of Agricultural Engineering Research, 1996, 65: 151-158.
[12] Liu Feng, Jia Huibin, Zhang Chunfeng, et al. Improvement of planosol solum. Part9: Fertilizer distributor for subsoil[J]. Journal of Agricultural Engineering Research, 1998, 71: 213-219.
[13] Jia Huibin, Liu Feng, Zhang Chunfeng, et al. Improvement of planosol solum. Part10: Mixing of wheat straw and cron stalk into subsoil[J]. Journal of Agricultural Engineering Research, 1998, 71: 221-226.
[14] 刘峰,高盼,王秋菊,等. 心土改良的研究进展[J]. 中国土壤与肥料,2015(1):7-11.
Liu Feng, Gao Pan, Wang Qiuju, et al. Research progress in improvement of subsoil [J]. Soil and Fertilizer Sciences in China, 2015(1): 7-11. (in Chinese with English abstract)
[15] 贾会彬,于忠和,石凤善,等. 抚远县应用三段式心土混层犁改良白浆土的可行性分析[J]. 黑龙江农业科学,2005(1):4-8.
Jia Huibin, Yu Zhonghe, Shi Fengshan, et al. Reasonable analysis of a three-stage subsoil mixing plough for the improvement of albic soil in fuyuan county[J]. Heilongjiang Agricultural Sciences, 2005(1): 4-8. (in Chinese with English abstract)
[16] 刘峰,张玉龙,贾会彬,等. 三段式心土混层犁及其改良自浆土效果的研究[J]. 农业工程学报,2001,17(3):57-61.
Liu Feng, Zhang Yulong, Jia Huibin, et al. Three-Stage subsoil mixing plough and its improvement of planosol[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2001, 17(3): 56-61. (in Chinese with English abstract)
[17] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2000:22-101.
[18] 陈德祥,张春峰,王庆胜,等. 三江平原主要土壤资源利用现状及对策[J]. 农学学报,2012,2(3):21-24.
Chen Dexiang, Zhang Chunfeng, Wang Qingsheng, et al. The status and countermeasures of the major soil resources utilization in Sanjiang Plain[J]. Journal of Agriculture, 2012, 2(3): 21-24. (in Chinese with English abstract)
[19] Araya K, Zhao Delin, Liu Feng, et al. Improvement of planosol solum, part 5: Soil bin experiments with a three-stage subsoil mixing plough[J]. Journal of Agricultural Engineering Research, 1996, 65: 143-149.
[20] Araya K, Zhao Delin, Liu Feng, et al. Improvement of planosol solum, part 6: Field experiments with a three-stage subsoil mixing plough[J]. Journal of Agricultural Engineering Research, 1996, 65: 151-158.
[21] Araya K, Zhao Delin, Liu Feng, et al. Improvement of planosol solum, part 4: Field experiments with prototype roll-in and drop-down ploughs[J]. Journal of Agricultural Engineering Research, 1996, 63: 275-282.
[22] 张志国,徐琪,Blevins R L. 长期秸秆覆盖免耕对土壤某些理化性质及玉米产量的影响[J]. 土壤学报,1998,35(3):384-391.
Zhang Zhiguo, Xu Qi, Blevins R L. Influences of long-term mulched no-tillage treatment on some soil physical and chemical properties and corn yields[J]. Acta Pedologica Sinica, 1998, 35(3): 384-391. (in Chinese with English abstract)
[23] 苏衍涛,王凯荣,刘迎新,等. 稻草覆盖对红壤旱地土壤温度和水分的调控效应[J]. 农业环境科学学报,2008,27(2):670-676.
Su Yantao, Wang Kairong, Liu Yingxin, et al. Effects of rice straw mulching on soil temperature and moisture regulation in an upland red soil[J]. Journal of Agro Environment Science, 2008, 27(2): 670-676. (in Chinese with English abstract)
[24] 王小彬,蔡典雄,张镜清,等.旱地玉米秸秆还田对土壤肥力的影响[J]. 中国农业科学,2000,33(4):54-61.
Wang Xiaobin, Cai Dianya, Zhang Jingqing, et al. Effects of corn stover incorporated in dry farmland on soil fertility[J]. Scientia Agricultura Sinica, 2000, 33(4): 54-61. (in Chinese with English abstract)
[25] 董亮,田慎重,王学君,等. 秸秆还田对土壤养分及土壤微生物数量的影响[J]. 中国农学通报,2017,33(11):77-80.
Dong Liang, Tian Shenzhong, Wang Xuejun, et al. Effect of straw turnover on soil nutrients and soil microbial population[J]. Chinese Agricultural Science Bulletin, 2017, 33(11): 77-80. (in Chinese with English abstract)
[26] 王囡囡,朱凤莉,张春峰,等. 不同秸秆还田方式对白浆土土壤养分及大豆产量的影响[J]. 中国土壤与肥料,2016(1):94-97.
Wang Nannan, Zhu Fengli, Zhang Chunfeng, et al. Effect of different returning method of straw to soil on soil chemical property and soybean yield[J]. Soil and Fertilizer Sciences in China, 2016(1): 94-97. (in Chinese with English abstract)
[27] 孟庆英,韩旭东,张春峰,等. 白浆土施有机肥及石灰对土壤酶活性与大豆产量的影响[J]. 中国土壤与肥料,2017(3):56-60.
Meng Qingying, Han Xudong, Zhang Chunfeng, et al. Effects of organic fertilizer and lime application on soil enzyme and soybean yield in planosol[J]. Soil and Fertilizer Sciences in China, 2017(3): 56-60. (in Chinese with English abstract)
[28] 依艳丽,万晓晓,沈月,等. 不同利用方式及不同开垦年限白浆土的肥力变化[J]. 沈阳农业大学学报,2012,43(4):449-455.
Yi Yanli, Wang Xiaoxiao, Shen Yue, et al. Baijiang soil fertility changes under different land use type and reclamation years[J]. Journal of Shenyang Agricultural University, 2012, 43(4): 449-455. (in Chinese with English abstract)
[29] 李会彬,李东坡,武志杰,等. 不同开垦年限白浆土土壤磷库特征[J]. 土壤通报,2014,45(1):135-140.
Li Huibin, Li Dongpo, Wu Zhijie, et al. Albic soil phosphorus fractions after different years of cultivation[J]. Chinese Journal of Soil Science, 2014, 45(1): 135-140. (in Chinese with English abstract)
[30] 匡恩俊,刘 峰,贾会彬,等. 心土培肥改良白浆土的研究Ⅰ白浆土心土培肥的效果[J]. 土壤通报,2008,39(5):1106-1109.
Kuang Enjun, Liu Feng, Jia Huibin, et al. Research on Subsoil Fertilization of Albic Luvisol ImprovementI. Study on Subsoil Amendment of Baijiang Soil[J]. Chinese Journal of Soil Science, 2008, 39(5): 1106-1109. (in Chinese with English abstract)
Effect of planosol improvement by using straw subsoil mixed layer plough
Zhu Baoguo1,2, Zhang Chunfeng1,2※, Jia Huibin1,2, Wang Nannan1,2, Meng Qingying1,2, Kuang Enjun3, Wang Qiuju3, Gao Zhongchao3, Liu Feng3, Zhang Libo1,2, Gao Xuedong1
(1. Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences, Jiamusi 154007, China; 2. The Planosol Improvement Engineering Center of Heilongjiang Province, Jiamusi 154007, China; 3. Institute of Soil Fertilizer and Environment Resources, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China)
The subsoil of planosol is usually extremely hard, compacted and poorly nutrient during the growing stage of upland crops. These unreasonable physical-chemical properties of the subsoil trigger the problems on its topsoil, which makes upland crops frequently suffer dry and wet damage so called the surface dry and surface wet damage. Meanwhile it also functions as an obstacle layer limiting root extension, and hence the effective layer of root system of planosol is only about 20 cm. The research formerly carried out has proved that it could cease the problems of subsoil when the Aw (planosol layer) horizon and the B horizon (illuvia horizon) were mixed with the ratio of 1:1 while leaving the topsoil undisturbed. Through this method, the permeability and the water storage capability of the subsoil were increased. As a result, the machine named the three-stage subsoil mixing plough was developed. Since its working is deeper more than 50 cm, the plough provides the opportunity to return stalks into the mixed subsoil, and the poor nutrient condition of the subsoil can be therefore improved. Based on such kind of principle of planosol improvement, the machine so called the stalk-subsoil mixing plough was developed. This machine can make it come truth to leave the Ap (topsoil) horizon in depth of 20 cm undisturbed, while mixing the subsoil and stalk in depth of 30-40 cm. In this study, the large-size field tests were carried out with the stalk-subsoil mixing plough and the conventional plough at the 854 State Farm of the Sanjiang Plain, Heilongjiang Province of China. The physical-chemical properties after the machine operation were investigated. The agronomic characteristics and yield of the indicating crops were checked. The results showed that compared with the conventional plough, the stalk-subsoil mixing plough could significantly improve the soil physical properties. In the depth of >20-40 cm, soil moisture was increased by 2.69-4.90 percent points; soil hardness was reduced by 44.45%, and there was no hardness peak appearing. In 2014 and 2015, it also could improve soil permeability; solid phase was reduced by 4.51 to 2.14 percent points, water phase was increased by 1.17 to 4.31 percent points, air phase was increased by 0.38 to 0.98 percent points, and soil bulk density was decreased by 0.11-0.16 g/cm3. The soil chemical properties were also improved. In the depth where subsoil was mixed with stalks, available nitrogen (N) was increased by17.33%, available phosphorus (P) was increased by 116.39%, available potassium (K) was increased by 37.86%, and organic matter was increased by 36.66%. By the way, soil total N, P, and K and soil pH value were increased. During the 2 years the soybean yield in the field operated by the stalk-subsoil mixing plough was increased by 15.77%-16.33% compared with the field operated by the conventional plough. Thus long term effect for Planosol improvement can be achieved by using the technique of returning stalks.
soils; straw; physical properties; chemical properties; stalk subsoil mixed layer plough; soil improvement; planosol
10.11975/j.issn.1002-6819.2017.15.007
S223
A
1002-6819(2017)-15-0057-07
2017-04-11
2017-07-10
国家公益性行业(农业)科研专项(201503116-01)资助
朱宝国,男,黑龙江依兰人,助理研究员,主要从事土壤肥料与低产土壤改良研究。佳木斯 黑龙江省农业科学院佳木斯分院,154007。Email:zhubaoguo82@163.com
※通信作者:张春峰,男,黑龙江汤原人,研究员,博士,硕士生导师,主要从事土壤肥料与低产土壤改良研究。佳木斯 黑龙江省农业科学院佳木斯分院,154007。Email:chunfeng-1@163.com