油页岩固体热载体综合利用系统的能量分析与分析
2017-08-31柏静儒张庆燕王林涛
柏静儒, 张庆燕, 王林涛, 白 章, 王 擎
(1.东北电力大学 油页岩综合利用教育部工程研究中心, 吉林 吉林 132012; 2.中国科学院 工程热物理研究所, 北京 100190)
柏静儒1, 张庆燕1, 王林涛1, 白 章2, 王 擎1
(1.东北电力大学 油页岩综合利用教育部工程研究中心, 吉林 吉林 132012; 2.中国科学院 工程热物理研究所, 北京 100190)
利用Aspen Plus软件对基于油页岩固体热载体干馏法构建的综合利用系统进行模拟,结合模拟结果对系统做了详细的能量分析和分析,并绘制了系统能流图与流图来描述每个热力过程的能量分布与损分布情况。结果表明,油页岩输入量为100 kg/s时,干馏炉内部不可逆损失(即热解反应损失)其损率为47.43%,是系统损失最大环节,油页岩中11.03%的燃料化学能贬值为干馏产物热能;综合利用系统各损失中,净化冷凝单元的热损失能量品位最高。
油页岩; 固体热载体; 综合利用; 能量分析;分析
油页岩作为典型的非常规油气能源,其储量约为2×1013t,相当于8×1011t页岩油[1],加大对油页岩的开发利用,对改变我国能源结构,改善我国能源不足现状,具有非常重要的战略意义。
油页岩能源既可以干馏制取页岩油,也可以燃烧发电[2]。现有油页岩干馏技术包括固体热载体干馏法和气体热载体干馏法,其中固体热载体干馏技术规避了气体热载体干馏法中存在的炉内气流分布不均、页岩流动阻力大等问题,同时还具有干馏时间短、油收率高、干馏强度大、资源利用率高等诸多优点[3],受到研究开发者的重视[4],将成为油页岩资源开发利用的主要发展方向[5-7]。随着技术进步和环保意识的增强,油页岩已从单一的能源利用发展到资源的综合利用[8-9],如“油页岩干馏炼油-半焦燃烧发电/供热-页岩灰联产建材”综合开发利用集成技术[10-13]及“油页岩干馏-半焦燃烧-油气提质-灰渣综合利用”的系统集成路线[14]等。为了有效评价综合利用系统,需要对其能量分布、能量转化率及能量损失情况等进行深入计算与分析。
1 油页岩干馏及发电过程
1.1 工艺流程
基于油页岩固体热载体干馏法构建的综合利用系统工艺流程包括4个单元,分别为油页岩干馏单元(RR)、净化冷凝单元(P/C)、循环流化床锅炉加热发电单元(CFB-ST)、燃气-蒸汽联合循环发电单元(CC),工艺流程见图1。
图1 油页岩固体热载体综合利用系统工艺流程示意图Fig.1 Process diagram of the oil shale comprehensive utilization system with solid heat carrier technology
油页岩从页岩储罐送至破碎机,破碎至15 mm以下粒径的油页岩颗粒进入RR单元,与高温循环灰(850℃)在混合器内混合后送至干馏炉内进行干馏,干馏温度为520℃,离开RR单元的物料为页岩油气、页岩热解气、固体半焦及低温循环灰的混合物(500℃)。随后这些混合物进入P/C单元的旋风分离器进行分离,分离出固体半焦和低温循环灰的混合物(500℃)送至CFB-ST单元进行燃烧发电,自旋风分离器顶部分离出的油气经过净化和冷凝处理,最终得到页岩油并送至油罐进行储存。
干馏产物页岩热解气属于高热值气体燃料,经P/C单元的旋风分离器分离后送至CC单元,用于电能生产。CFB-ST单元的锅炉排烟经过静电除尘后和CC单元的余热锅炉排烟一起通过烟囱排放。
1.2 油页岩及干馏产物基础特性
在本研究中所用的油页岩样品取自吉林桦甸的公朗头矿区。根据《油页岩含油率的测定方法》(SH/T 0508-92)对油页岩(OS)进行铝甄分析,结果列于表1。按照国家标准GB/T 212-2001、GB/T 476-2001 和GB/T 213-2001对油页岩(OS)及经干馏所得半焦(SC)和页岩油(OIL)进行工业分析、元素分析和发热量的测定,结果如表2所示。
表1 油页岩铝甄实验测定结果(空干基)Table 1 Fischer assay of the oil shale sample w/%
表2 样品的工业分析、元素分析和发热量Table 2 Proximate analysis, ultimate analysis and calorific value of the samples
OS—Oil shale; SC—Semi-coke; OIL—Shale oil
2 工艺流程模拟及模拟结果
在本研究中所构建的流程按照100 kg/s的油页岩输入量进行模拟,油页岩在常温状态下送入干馏炉,吸收850℃高温热载体循环灰的热量,使得油页岩温度升至520℃的最佳干馏温度并开始热解,干馏产物送入旋风分离器进行分离,模拟方法见文献[26-28],利用Aspen Plus模拟得到的物流参数如表3所示。
表3 系统的主要物流参数Table 3 Process parameters of some material streams of the system
3 综合利用系统的能量分析和分析
结合Aspen Plus模拟得到的物流参数及油页岩试样的基础特性数据,采用黑箱模型分别对油页岩干馏单元(RR)、净化冷凝单元(P/C)、循环流化床锅炉加热发电单元(CFB-ST)、燃气-蒸汽联合循环发电单元(CC)进行能量分析和分析。
图2 油页岩干馏单元(RR)分析计算结果Fig.2 The analysis results of oil shale retorting unit (RR) (a) Results of energy analysis; (b) Results of exergy analysis
P/C单元的主要目的是将500℃的油气混合物经冷凝、分离、净化脱硫处理,实现油汽分离,除去热解气中的含硫气体,以减少对环境的污染。在P/C单元,物流燃料化学能保持不变,只有物流显热大幅度降低。
图3 油页岩净化冷凝单元(P/C)分析计算结果Fig.3 The analysis results of the oil shale purifier condenser unit (P/C)(a) Results of energy analysis; (b) Results of exergy analysis
CFB-ST单元实现固体半焦的充分利用,干馏产物半焦具有一定热值并含有多种微量金属元素,将干馏产生的半焦送入循环流化床中燃烧,既减少了能量浪费和对环境的污染,又能实现能量的梯级利用,同时也解决了油页岩干馏系统需另设加热炉加热热载体的问题。
图4 油页岩循环流化床锅炉加热发电单元(CFB-ST)分析计算结果Fig.4 The analysis results of the oil shale circulating fluidized bed boiler power generation unit (CFB-ST)(a) Results of energy analysis; (b) Results of exergy analysis
图5 油页岩燃气-蒸汽联合循环发电单元(CC)分析计算结果Fig.5 The analysis results of the oil shale gas-steam combined cycle generating unit (CC)(a) Results of energy analysis; (b) Results of exergy analysis
4 油页岩固体热载体综合利用系统分析
4.1 综合利用系统能效分析
4.2 综合利用系统能量分析
根据油页岩固体热载体综合利用系统能量分析计算结果,笔者以油页岩热值为100%输入量,以热平衡为尺度绘制了油页岩固体热载体综合利用系统能流图如图7所示,计算了油页岩固体热载体综合利用系统各环节可利用能量与损失能量的百分比如表4所示。
由图7可以看出,当油页岩输入量为100 kg/s时,油页岩经过干馏过程后,其能量的46.84%转换到干馏产物页岩油中,页岩油的能量为综合利用系统有效输出能量,可以进一步加工利用;CC单元电能总产量为7.53%,其中3.13%的电能应用于空气压缩机做功,故CC单元有效输出电能为4.40%,CFB-ST单元有效输出能量为6.51%的电能;综合利用系统中不小于5.00%的损失为干馏炉散热损失12.88%、CFB-ST单元汽轮机冷源损失10.35%、P/C单元冷凝热损失9.76%,其中RR单元干馏炉散热损失为系统热损失最高位置,是综合利用系统能量利用的薄弱环节,由于热量属于低质能,要想回收利用这部分能量十分困难;CFB-ST单元各处热损失之和为14.42%,其主要能量损失为排烟热损失为3.45%和汽轮机冷源损失10.35%;CC单元各处热损失之和为5.12%,其主要能量损失包括排烟热损失为1.55%和汽轮机冷源损失2.97%,从整体角度分析,CC单元是系统热损失最小单元,但CC单元的热效率仅为45.87%(见表4),是综合利用系统热效率最低的单元。
图6 基于能量分析和分析的能效分布情况Fig.6 The distribution of energy efficiency based on energy analysis and exergy analysis(a) The distribution of energy efficiency based on energy analysis; (b) The distribution of energy efficiency based on energy analysis
图7 油页岩固体热载体综合利用系统能流图Fig.7 Energy flow diagram of the oil shale comprehensive utilization system with solid heat carrier technology
UnitEnergyefficiency/%Exergyefficiency/%RR88.9681.76P/C85.2482.60CFB-ST61.6256.50CC45.8753.58
图8 油页岩固体热载体综合利用系统流图Fig.8 Exergy flow diagram of the oil shale comprehensive utilization system with solid heat carrier technology
5 结 论
(1) 油页岩固体热载体综合利用系统中,系统能效最低的单元是CC单元,其热效率仅为45.84%,效率为53.58%,但CC单元总热能损失为5.12%,总损失为3.64%,是综合系统能量损失最小的单元,故该单元节能潜力有限。
(3) 油页岩固体热载体综合利用系统中热损失最高位置发生在RR单元干馏炉部分,该部分的散热损失占油页岩热值的12.88%,其次是CFB-ST单元汽轮机冷源损失(10.35%)和P/C单元的冷凝热损失(9.76%),此三部分热损失相应的值百分数分别为3.63%、1.83%和4.27%,说明P/C单元损失的能量品味最高,故提高利用系统的综合效率应首先从减少该单元的能量损失着手。针对汽轮机冷源损失,可根据具体运行情况,采用热泵技术吸取循环水的低品位能源,使之提高品位向用户们供热。
[1] 王擎, 柏静儒, 孙佰仲, 等. 油页岩综合开发利用集成技术[J].长春工业大学学报(自然科学版), 2007, 28(s): 54-58. (WANG Qing, BAI Jingru, SUN Baizhong, et al. Integrated technology for oil shale exploitation[J].Journal of Changchun University of Technology(Natural Science Edition), 2007, 28(s): 54-58.)
[2] BAI Jingru, BAI Zhang, WANG Qing, et al. Process simulation of oil shale comprehensive utilization system based on Huadian-type retorting technique[J].Oil Shale, 2015, 32(1): 66-81.
[3] 侯吉礼, 马跃, 李术元, 等. 世界油页岩资源的开发利用现状[J].化工进展, 2015, 34(5): 1183-1190. (HOU Jili, MA Yue, LI Shuyuan, et al. Development and utilization of oil shale worldwide[J].Chemical Industry and Engineering Progress, 2015, 34(5): 1183-1190.)
[4] 张秋民, 关珺, 何德民. 几种典型的油页岩干馏技术[J].吉林大学学报(地球科学版), 2006, 36(6): 1019-1026. (ZHANG Qiumin, GUAN Jun, HE Demin. Typical technologies for oil shale retorting[J].Journal of Jilin University(Earth Science Edition), 2006, 36(6): 1019-1026.)
[5] 李术元, 何继来, 侯吉礼, 等. 世界油页岩勘探开发加工利用近况——并记2014年国外两次油页岩国际会议[J].中外能源, 2015, 20(1): 25-32. (LI Shuyuan, HE Jilai, HOU Jili, et al. World oil shale exploration and development utilization situation——Two world oil shale conferences sponsored in 2014[J].Sino-Global Energy, 2015, 20(1): 25-32.)
[6] 马跃, 李术元, 藤锦生, 等. 世界油页岩研究开发利用现状——并记2015年美国油页岩会议[J].中外能源, 2016, 21(1): 21-26. (MA Yue, LI Shuyuan, TENG Jinsheng, et al. Current situation of the research and development of oil shale in the world——American oil shale conference sponsored in 2015[J].Sino-Global Energy, 2016, 21(1): 21-26.)
[7] 秦宏, 岳耀奎, 刘洪鹏, 等. 中国油页岩干馏技术现状与发展趋势[J].化工进展, 2015, 34(5): 1191-1198. (QIN Hong, YUE Yaokui, LIU Hongpeng, et al. Current status and prospect of oil shale retorting technologies in China[J].Chemical Industry and Engineering Progress, 2015, 34(5): 1191-1198.)
[8] 张立栋, 刘洪鹏, 贾春霞, 等. 我国油页岩综合利用相关研究进展[J].化工进展, 2012, 31(11): 2359-2363. (ZHANG Lidong, LIU Hongpeng, JIA Chunxia, et al. Research progress of comprehensive utilization of oil shale in China[J].Chemical Industry and Engineering Progress, 2012, 31(11): 2359-2363.)
[9] 柏静儒, 韩冰, 李梦迪, 等. 黑龙江鸡西油页岩综合利用过程能效分析[J].东北电力大学学报, 2015, 35(12): 56-61. (BAI Jingru, HAN Bing, LI Mengdi, et al. Energy efficiency analysis of oil shale in the process of comprehensive utilization in Jixi area of Heilongjiang[J].Journal of Northeast Dianli University, 2015, 35(12): 56-61.)
[10] ZHANG L D, ZHANG X, LI S H, et al. Comprehensive utilization of oil shale and prospect analysis [J].Energy Procedia, 2012, 17(Part A): 39-43.
[11] WANG S, JIANG X, HAN X, et al. Investigation of Chinese oil shale resources comprehensive utilization performance[J].Energy, 2012, 42(1): 224-232.
[12] 孙键, 王擎, 孙东红, 等. 油页岩综合利用集成技术与循环经济[J].现代电力, 2007, 24(5): 57-67. (SUN Jian, WANG Qing, SUN Donghong, et al. Integrated technology for shale comprehensive utilization and cycling economy[J].Modern Electric Power, 2007, 24(5): 57-67.)
[13] 姜秀民, 韩向新, 崔志刚. 油页岩综合利用技术的研究[J].自然科学进展, 2005, 15(11): 1342-1345. (JIANG Xiumin, HAN Xiangxin, CUI Zhigang. Study on comprehensive utilization of oil shale[J].Progress in Natural Science, 2005, 15(11): 1342-1345.)
[14] 杨庆春, 周怀荣, 杨思宇, 等. 油页岩开发利用技术及系统集成的研究进展[J].化工学报, 2016, 67(1): 109-118. (YANG Qingchun, ZHOU Huairong, YANG Siyu, et al. Research progress on utilization and systemic integration technologies of oil shale[J].CIESC Journal, 2016, 67(1): 109-118.)
[15] 朱明善. 能量系统的分析[M].北京: 清华大学出版社, 1985: 8-22.
[16] MAGO P J, SRINIVASAN K K, CHAMRA L M, et al. An examination of exergy destruction in organic Rankine cycles[J].International Journal of Energy Research, 2010, 32(10): 926-938.
[17] HEPBASLI A, KEÇEBAA. A comparative study on conventional and advanced exergetic analyses of geothermal district heating systems based on actual operational data[J].Energy and Buildings, 2013, 61: 193-201.
[18] ACIKKALP E, ARAS H, HEPBASLI A. Advanced exergy analysis of an electricity-generating facility using natural gas[J].Energy Conversion and Management, 2014, 82: 146-153.
[19] MOROSUK T, TSATSARONIS G. Advanced exergy analysis for chemically reacting systems-application to a simple open gas-turbine system[J].International Journal of Thermodynamics, 2009, 12(3): 105-111.
[20] 刘强, 段远源. 超临界600 MW火电机组热力系统的分析[J].中国电机工程学报, 2010, 30(32): 8-12. (LIU Qiang, DUAN Yuanyuan. Exergy analysis for thermal power system of a 600 MW supercritical power unit[J].Proceedings of the CSEE, 2010, 30(32): 8-12.)
[21] 柏静儒, 张庆燕, 白章, 等. 油页岩固体热载体综合利用系统的分析模型[J].东北电力大学学报, 2017, 37(1): 18-23. (BAI Jingru, ZHANG Qingyan, BAI Zhang, et al.Exergy analysis model of oil shale comprehensive utilization system on solid heat carrier technology[J].Journal of Northeast Dianli University, 2017, 37(1): 18-23.)
[22] TSATSARONIS G, MOROSUK T. Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas[J].Energy, 2010, 35(2): 820-829.
[23] 王宇, 韩巍, 金红光, 等. 新型中低温混合工质联合循环[J].中国电机工程学报, 2003, 23(11): 204-208. (WANG Yu, HAN Wei, JIN Hongguang, et al. A novel binary cycle with mid and low temperature heat recovery[J].Proceedings of the CSEE, 2003, 23(11): 204-208.)
[24] MOROSUK T, TSATSARONIS G. Comparative evaluation of LNG-based cogeneration systems using advanced exergetic analysis[J].Energy, 2011, 36(6): 3771-3779.
[25] 杨博, 周全. 化工过程系统用能评价与优化方法研究进展[J].化工装备技术, 2009, 30(1): 70-73. (YANG Bo, ZHOU Quan. Research progress on evaluation and optimization method of chemical process system[J].Chemical Equipment Technology, 2009, 30(1): 70-73.)
[26] 柏静儒, 白章, 王擎, 等. 油页岩固体热载体综合利用系统工艺模拟[J].石油学报(石油加工), 2014, 67(5): 902-908. (BAI Jingru, BAI Zhang, WANG Qing, et al. Process simulation of oil shale comprehensive utilization system on solid heat carrier technology[J].Acta Petrolei Sinica(Petroleum Processing Section), 2014, 67(5): 902-908.)
[27] 柏静儒, 白章, 王擎, 等. 基于Aspen Plus的桦甸式油页岩干馏工艺系统模拟[J].化工学报, 2012, 63(12): 4075-4081. (BAI Jingru, BAI Zhang, WANG Qing, et al. Process simulation for Huandian-type oil shale retorting system by Aspen Plus[J].CIESC Journal, 2012, 63(12): 4075-4081.)
[28] 白章, 柏静儒, 王擎, 等. 抚顺式油页岩干馏工艺系统模拟及分析[J].中国电机工程学报, 2014, 34(14): 2228-2234. (BAI Zhang, BAI Jingru, WANG Qing, et al. Process simulation and analysis of the Fushun-type oil shale retorting system[J].Proceedings of the CSEE, 2014, 34(14): 2228-2234.)
[29] DUNBAR W R, LIOR N M. Sources of combustion irreversibility[J].Combustion Science and Technology, 1994, 103(1-6): 41-61.
Energy Analysis and Exergy Analysis of Oil Shale Comprehensive UtilizationSystem on Solid Heat Carrier Technology
BAI Jingru1, ZHANG Qingyan1, WANG Lintao1, BAI Zhang2, WANG Qing1
(1.EngineeringResearchCenterofOilShaleComprehensiveUtilization,MinistryofEducation,NortheastElectricPowerUniversity,Jilin132012,China; 2.InstituteofEngineeringThermophysics,ChineseAcademyofSciences,Beijing100190,China)
The Aspen Plus software was used to simulate the oil shale comprehensive utilization system built with solid heat carrier technology. Moreover, the income and expense distribution of energy and exergy were calculated and analyzed in detail with the simulation results using the energy and exergy analysis approach, and we mapped the flow charts of energy and exergy in the system to describe the energy distribution and energy loss distribution of each thermal process. The results show that when the oil shale input is 100 kg/s, the irreversible exergy loss in internal retort furnace (i.e., the exergy loss in the pyrolysis reaction) is 47.43%, which accounts toward the most of the lost exergies in the whole system. It was also observed that 11.03% of oil shale fuel chemistry energy is devalued as the pyrolysis product heat energy. In addition, among all the heat losses of the comprehensive utilization system, the heat loss energy grade of the condensing unit contributes the most.
oil shale; solid heat carrier; comprehensive utilization; energy analysis; exergy analysis
2016-06-21
吉林市科技计划项目(201434001)和吉林省重点科技攻关项目(20140204004SF)资助
柏静儒,女,教授,博士,研究方向为油页岩综合利用;Tel:0432-64807366;E-mail:bai630@mail.nedu.edu.cn
1001-8719(2017)04-0708-09
TE662
A
10.3969/j.issn.1001-8719.2017.04.015