南黄海沉积物中活性铁氧化物对有机碳的保存作用
2017-08-10陶婧马伟伟李文君李铁朱茂旭
陶婧,马伟伟,李文君,李铁,朱茂旭*
(1.中国海洋大学 化学化工学院,山东 青岛 266100)
南黄海沉积物中活性铁氧化物对有机碳的保存作用
陶婧1,马伟伟1,李文君1,李铁1,朱茂旭1*
(1.中国海洋大学 化学化工学院,山东 青岛 266100)
土壤和沉积物中活性铁对有机质的吸附对有机质具有长期稳定和保存作用,从而在地质时间尺度上缓冲大气CO2浓度。本文利用连二亚硫酸钠还原性溶解提取活性铁氧化物(FeR)及与之结合的有机碳(Fe-OC),定量研究了南黄海沉积物中FeR与OC之间的结合方式以及FeR对OC的保存作用,讨论了深度增加对二者相互作用的影响。结果表明,南黄海沉积物中Fe-OC占沉积物总有机碳的份数(fFe-OC)为(13.2±7.47)%,即活性铁对OC的年吸附量为0.72 Mt,占全球边缘海沉积物TOC年埋藏通量的0.44%。Fe-OC的平均OC∶Fe为4.50±2.61,表明共沉淀作用对有机质的保存起重要作用,且其比值随海源有机质含量增加而增加。Fe-OC稳定碳同位素(δ13CFe-OC)结果表明,FeR优先保存活性有机质,但这种选择性随OC∶Fe增大而减弱。随深度增加,fFe-OC和δ13CFe-OC均未表现出显著变化,这与该海域沉积物中有机质活性较低、铁还原作用较弱有关。
活性铁氧化物;有机碳保护;海洋沉积物;吸附;南黄海
图2 TOC、FeR以及Fe-OC含量随深度的变化(FeR的误差棒为1倍方差)
Fig.2 Depth profile of TOC, FeR and Fe-OC contents(the error bar for FeR is one standard deviation)
A01站点fFe-OC范围为3.3%~38.9%,平均值(16.1±10.8)%(图3a),表层fFe-OC值明显高于深部的值(P<0.05);A03站点fFe-OC范围为2.4%~16.7%,平均值(11.6±5.2)%,上部5 cm范围内其值波动明显,但深部较稳定;A07站点fFe-OC范围为4.0%~19.4%,平均值(11.9±4.9)%,其波动较其他两站位小。尽管A03和A07两站点的Fe-OC含量差异明显,但其对应的fFe-OC却无明显差异(P< 0.05)。
A01、A03、A07三站点的OC∶Fe摩尔比(图3b)分别为0.44~4.0,平均值2.4±1.3、1.0~9.5,平均值6.0±2.9以及2.0~6.8,平均值5.1±1.8,A01站点的OC∶Fe明显小于其他两站点(P<0.05)。总体而言,A03和A07两站点深部OC∶Fe高于浅部,而A01站点无明显深度变化(P< 0.1)。与文献数据相比,三站点OC∶Fe变化幅度较小[10,13]。
A01、A03、A07三站点δ13CFe-OC范围(图4)分别为-30.9‰~-22.0‰,平均值(-24.1±3.1)‰、-25.5~-16.4‰,平均值(-21.8±2.8)‰及-22.5‰~-15.4‰,平均值(-20.1±2.7)‰。A03和A07站点δ13CFe-OC平均值高于对应的非铁结合态OC的δ13C平均值(P< 0.1),表明前者13C 相对“富集”,而A01站点则相反,表明13CFe-OC相对亏损。三站点多数样品(65%)的δ13CFe-OC高于对应的非铁结合态OC的δ13C,总体上表明13CFe-OC相对“富集”。
图3 OC∶Fe摩尔比和fFe-OC随深度的变化Fig.3 Depth profile of OC∶Fe molar ratios and fFe-OC for iron-bound organic matter
4 讨论
4.1 FeR对OC的保存作用
南黄海沉积物中fFe-OC平均值(13.2±7.47)%低于全球海洋沉积物平均值[9](图5),也低于青藏高原(QTP)永冻土平均值[12],更低于森林土壤平均值[13],但与Wax Lake三角洲沉积物[11]以及北极陆架海沉积物[10]平均值接近。总体而言,本研究区FeR对OC的稳定作用处于较低水平。根据本研究得到的fFe-OC平均值(13.2±7.47)%以及近100年来南黄海TOC埋藏通量(5.48 Mt/a)[27],可估算出该海域沉积物FeR对OC的年吸附量为0.72 Mt。南黄海占全球边缘海总面积的1.55%,其占全球边缘海沉积物TOC年埋藏通量(164 Mt)的0.44%,再次表明该海域沉积物中FeR对OC的保存作用较低。
图4 铁结合态和非铁结合态有机质的碳同位素组成(δ13C)随深度的变化Fig.4 Depth profile of carbon isotopic compositions (δ13CFe-OC) for iron-bound and non-iron-bound organic matter
该海域fFe-OC较低的原因可能与在沿岸流、海洋环流以及气旋涡流共同作用下,沉积物经历长距离输送以及长时间氧气暴露有关[28,30]。在沿岸流作用下,从渤海进入黄海的沉积物一部分在山东半岛北岸近海和北黄海中部气旋型涡流区沉积,另一部分绕过成山角并入南黄海循环[31]。古黄河口侵蚀沉积物通过黄海海岸流向西南方向传输、经黄海暖流向北传输,通过再悬浮并入南黄海沉积系统[32]。以上复杂的水动力学条件导致表层沉积物经历长距离的反复悬浮-再沉积传输,可导致活性铁氧化物的逐渐老化和结晶,降低铁氧化物表面吸附容量;该过程也导致铁氧化物表面的有机质逐步氧化[9],以上因素可能是fFe-OC较小的原因。此外,南黄海沉积物中较低的活性铁含量可能也是fFe-OC较小的原因之一。有研究表明,作为南黄海沉积物的重要物源,黄河悬浮颗粒物的高活性铁与总铁比值(FeHR/FeT= 0.27)明显小于长江悬浮物比值(0.38)以及全球河流悬浮物平均值(0.43±0.03)[33]。
图5 不同区域沉积物和土壤中fFe-OC的比较(误差棒为1倍方差)Fig.5 Comparison of fFe-OC for sediments and soils of vari-ous regions(the error bar is one standard deviation)FS:森林土壤;MS:全球海洋沉积物;WLD:Wax Lake三角洲沉积物;QTP: 青藏高原永冻土;SYS:南黄海沉积物;EAS:欧亚北极陆架沉积物FS: forest soils; MS: global marine sediments; WLD: Wax Lake Delta sediments; QTP: Qinghai-Tibetan Plateau permafrost; SYS: South Yellow Sea sediments; EAS: Eurasian Arctic Shelf sediments
4.2 Fe-OC的表面吸附与共沉淀机制
OC与Fe的相互作用有表面吸附和共沉淀两种机制,OC∶Fe摩尔比小于或等于1表明OC主要吸附于铁氧化物表面,而OC∶Fe在6~10之间则表明OC与Fe主要以共沉淀形式存在[9,34]。本研究中OC∶Fe平均值为4.50±2.61,与全球水体富氧陆架海沉积物平均值4.0±2.8相近[9]。该比值远超过FeR对OC的最大表面吸附容量[33],这表明,除了表面吸附,OC与FeR共沉淀也是重要结合方式。在氧化还原界面上Fe(Ⅱ)被氧化沉淀为Fe(Ⅲ)氧化物后可吸附溶解有机质,在氧化还原震荡条件下易形成“洋葱”结构的Fe-OC共沉淀复合体[35—36]。南黄海OC与FeR的共沉淀与该海域强烈的再悬浮作用密切相关[30]。该海域水深较浅,强烈的潮汐流、低能量沉积区和高能量沉积区之间的物质交换以及冬季季风诱发的强烈底部剪应力等使沉积物易发生反复的再悬浮[30,32],有利于Fe(Ⅱ)的氧化以及Fe(Ⅲ)-OC共沉淀[35—36]。另外,南黄海较高丰度大型底栖生物活动引起的生物扰动和生物灌溉可使沉积物-水接触面增加50%~400%[37—38],也有利于OC与FeR共沉淀。
4.3 δ13CFe-OC及C/N对Fe-OC组成的限定
多数样品(65%)的Fe-OC比对应的非铁结合态OC相对富集13C(即δ13C更大)(图6a),前者δ13C平均值比后者“重”(0.62±3.5)‰。该沉积物中铁结合态有机质(Fe-OM)的C/N摩尔比总体上小于非铁结合态有机质的C/N(平均小2.90±1.61)(P< 0.05)(图6b),这表明前者相对富集N。富δ13C及富N的天然有机质包括氨基酸、蛋白质、碳水化合物等活性组分[39]。本研究区δ13CFe-OC和C/N均表明FeR倾向于吸附活性有机质,从而有利于这些活性组分的长期保存。这与其他海洋沉积物以及土壤中FeR对OC的吸附倾向性一致[9,13]。南黄海沉积物中较高的陆源惰性有机质含量[27—28]以及FeR对活性有机质的吸附性保存可能是该沉积物中有机质总体降解活性较低(即随深度变化小)的重要原因。
图6 铁结合态与非铁结合态有机质之间的碳同位素组成(δ13C)及C/N摩尔比的对比Fig.6 Comparison of carbon isotopic compositions (δ13C) and molar ratios of C/N between iron-bound and non-iron-bound organic matter
图7 铁结合态有机质的C/N与OC:Fe摩尔比关系Fig.7 Molar ratio relationship of C/N versus OC∶Fe for Fe-bound organic matter
A01、A03和A07三站点铁结合态有机质的C/N与OC∶Fe之间有良好正相关性(图7)。这表明随共沉淀比例的增大(即OC∶Fe增大),N的相对含量减小,即对富N活性有机质吸附倾向性减弱。最近的实验也发现,共沉淀对OC的吸附选择性明显弱于表面吸附过程[11,36]。因此,FeR与OC结合方式的改变是OC吸附倾向性的重要影响因素。
4.4fFe-OC、OC∶Fe及δ13CFe-OC的影响因素
理想条件下,随海洋沉积物深度增加,从氧化环境变为还原环境。在还原环境下FeR的还原溶解将导致Fe-OC释放,削弱FeR对OC的稳定作用[16]。南黄海三站点fFe-OC随深度的增加未出现显著减小(A01表层除外)(图3b),这可能与沉积物中有机质活性低、铁还原作用较弱有关。研究表明,陆源惰性有机质广泛分布于南黄海沉积物中,其中,陆源老化土壤OC及化石OC占TOC的37%~44%[27—28];尽管海源有机质占沉积物TOC的比例超过50%[26],但总体上较低的TOC含量(0.39%~1.06%)可能无法导致大规模的铁还原,因此深度的增加未导致fFe-OC明显减小。三站点TOC随深度增加变化不明显也反映了有机质的低活性(图2a)。此外,研究区三站点OC-Fe共沉淀是OC的重要结合方式,这也可能是fFe-OC随深度无明显减小的另一原因,因为与表面吸附相比,Fe-OC共沉淀复合体的稳定性受还原环境影响较小[17]。
尽管三站点的fFe-OC变化范围较大,就其平均值而言,fFe-OC最高的A01站点,其沉积速率和FeR含量也最高。与A01站点相比,A03和A07两站点的沉积速率和FeR含量都较低,但两者间的差异较小,其fFe-OC差异也不明显。这表明沉积速率和FeR含量的提高有利于FeR对OC的吸附性保存。
δ13CFe-OC主要受氧化还原环境和物源输入的影响。一方面,铁还原溶解及有机质选择性释放可导致13CFe-OC相对“富集”[15];另一方面,以陆源输入为主的沉积物中FeR优先结合δ13C相对亏损的木质素组分,而在海洋有机质较多的沉积物中δ13CFe-OC则更具有海洋特征(即13C相对富集)[10—11]。南黄海3个站点δ13CFe-OC随深度变化幅度很小(图4),表明较弱的氧化还原过程对δ13CFe-OC无明显影响。A01、A03、A07三站点δ13CFe-OC平均值依次增大,分别为(-24.1±3.1)‰、(-21.8±2.8)‰、(-20.1±2.7)‰,表明Fe-OC中海洋有机质逐渐增多。这与该研究区OC物源空间分布趋势一致,即南黄海西北和东北部陆源输入较多,而东南方向海洋有机质含量增加[40]。
上述有机质来源及活性的差异也可能是A01站点OC∶Fe平均值小于A03和A07两站点的原因之一(图3a)。A01 站点较高的陆源惰性有机质导致铁的氧化还原循环较弱,除了OC与FeR共沉淀,OC在FeR的表面吸附也起较重要作用;也正因为较弱的铁还原,使得该站点OC∶Fe随深度无明显变化。A03和A07两站点海洋活性有机质相对较高,有利于铁的氧化还原循环以及OC-Fe共沉淀,从而导致OC∶Fe较高。由于铁还原主要释放表面吸附的OC,对共沉淀OC的影响较小[17],这一因素可能导致了这两站点深部OC∶Fe较高。
5 结论
本研究表明,南黄海沉积物中的OC(13.2±7.47)%直接与FeR结合,即FeR对OC的年吸附量为0.72 Mt,占全球陆架海OC年埋藏通量的0.44%。与已有研究相比,该海域沉积物中FeR对OC的保存作用较低。南黄海沉积物中OC∶Fe平均值为4.50±2.61,表明共沉淀作用是OC与FeR结合的重要方式。相对于非铁结合态有机质,FeR结合的有机质相对富集13C和N,表明FeR选择性结合活性有机质,但这种选择性随OC∶Fe增大而减弱。
总体而言,南黄海海域沉积物惰性有机质含量较高、铁还原较弱,导致fFe-OC和δ13CFe-OC随深度的增加未呈现显著减小。在海源有机质含量较高的站点(A03,A07),因铁氧化还原循环较活跃,有利于OC∶Fe(6.0±2.9,5.1±1.8)较高的共沉淀复合体形成,也促进了更多海洋活性有机质的保存;在陆源惰性有机质较多的站点(A01),较弱的铁氧化还原作用不利于FeR与OC共沉淀,OC∶Fe(2.4±1.3)较小,且无明显深度变化。沉积速率和FeR含量的提高有利于FeR对OC的吸附性保存。
[1] Smith R W, Bianchi T S, Allison M, et al. High rates of organic carbon burial in fjord sediments globally[J]. Nature Geoscience, 2015, 8(6): 450-453.
[2] Hartnett H E, Keil R G, Hedges J I, et al. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments[J]. Nature, 1998, 391(6667): 572-575.
[3] Müller P J, Suess E. Productivity, sedimentation rate, and sedimentary organic matter in the oceans—I. Organic carbon preservation[J]. Deep-Sea Research Part A. Oceanographic Research Papers, 1979, 26(12): 1347-1362.
[4] Schubert C J, Stein R. Deposition of organic carbon in Arctic Ocean sediments: terrigenous supply vs marine productivity[J]. Organic Geochemistry, 1996, 24(4): 421-436.
[5] Hedges J I, Oades J M. Comparative organic geochemistries of soils and marine sediments[J]. Organic Geochemistry, 1997, 27(7/8): 319-361.
[6] Eusterhues K, Rumpel C, Kleber M, et al. Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation[J]. Organic Geochemistry, 2003, 34(12): 1591-1600.
[7] Kaiser K, Guggenberger G. Sorptive stabilization of organic matter by microporous goethite: sorption into small pores vs. surface complexation[J]. European Journal of Soil Science, 2007, 58(1): 45-59.
[8] Kaiser K, Guggenberger G. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils[J]. Organic Geochemistry, 2000, 31(7/8): 711-725.
[9] Lalonde K, Mucci A, Ouellet A, et al. Preservation of organic matter in sediments promoted by iron[J]. Nature, 2012, 483(7388): 198-200.
[10] Salvadó J A, Tesi T, Andersson A, et al. Organic carbon remobilized from thawing permafrost is resequestered by reactive iron on the Eurasian Arctic Shelf[J]. Geophysical Research Letters, 2015, 42(19): 8122-8130.
[11] Shields M R, Bianchi T S, Gélinas Y, et al. Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments[J]. Geophysical Research Letters, 2016, 43(3): 1149-1157.
[12] Mu C C, Zhang T J, Zhao Q, et al. Soil organic carbon stabilization by iron in permafrost regions of the Qinghai-Tibet Plateau[J]. Geophysical Research Letters, 2016, 43(19): 10286-10294.
[13] Zhao Qian, Poulson S R, Obrist D, et al. Iron-bound organic carbon in forest soils: quantification and characterization[J]. Biogeosciences, 2016, 13(16): 4777-4788.
[14] Grybos M, Davranche M, Gruau G, et al. Increasing pH drives organic matter solubilization from wetland soils under reducing conditions[J]. Geoderma, 2009, 154(1/2): 13-19.
[15] Adhikari D, Yang Yu. Selective stabilization of aliphatic organic carbon by iron oxide[J]. Scientific Reports, 2015, 5: 11214.
[16] Adhikari D, Poulson S R, Sumaila S, et al. Asynchronous reductive release of iron and organic carbon from hematite-humic acid complexes[J]. Chemical Geology, 2016, 430: 13-20.
[17] Henneberry Y K, Kraus T E C, Nico P S, et al. Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions[J]. Organic Geochemistry, 2012, 48: 81-89.
[18] Song Guodong, Liu Sumei, Zhu Zhuoyi, et al. Sediment oxygen consumption and benthic organic carbon mineralization on the continental shelves of the East China Sea and the Yellow Sea[J]. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 2016, 124: 53-63.
[19] Hu Limin, Shi Xuefa, Guo Zhigang, et al. Sources, dispersal and preservation of sedimentary organic matter in the Yellow Sea: the importance of depositional hydrodynamic forcing[J]. Marine Geology, 2013, 335: 52-63.
[20] Yang Shouye, Youn J S. Geochemical compositions and provenance discrimination of the central south Yellow Sea sediments[J]. Marine Geology, 2007, 243(1/4): 229-241.
[21] Alexander C R, DeMaster D J, Nittrouer C A. Sediment accumulation in a modern epicontinental-shelf setting: the Yellow Sea[J]. Marine Geology, 1991, 98(1): 51-72.
[22] 赵一阳, 李凤业, DeMaster D J, 等. 南黄海沉积速率和沉积通量的初步研究[J]. 海洋与湖沼, 1991, 22(1): 38-43.
Zhao Yiyang, Li Fengye, DeMaster D J, et al. Preliminary studies on sedimentation rate and sediment flux of the south Yellow Sea[J]. Oceanologia et Limnologia Sinica, 1991, 22(1): 38-43.
[23] Zhou Liangyong, Liu Jian, Saito Y, et al. Coastal erosion as a major sediment supplier to continental shelves: example from the abandoned Old Huanghe (Yellow River) delta[J]. Continental Shelf Research, 2014, 82: 43-59.
[24] Zhang Shengyin, Li Shuang, Dong Heping, et al. An analysis of organic matter sources for surface sediments in the central South Yellow Sea, China: Evidence based on macroelements andn-alkanes[J]. Marine Pollution Bulletin, 2014, 88(1/2): 389-397.
[25] 张生银, 李双林, 董贺平, 等. 南黄海中部表层沉积物有机质分布与分子组成研究[J]. 沉积学报, 2013, 31(3): 497-508.
Zhang Shengyin, Li Shuanglin, Dong Heping, et al. Distribution and molecular composition of organic matter in surface sediments from the central part of south Yellow Sea[J]. Acta Sedimentologica Sinica, 2013, 31(3): 497-508.
[26] Lin Tian, Wang Lifang, Chen Yingjun, et al. Sources and preservation of sedimentary organic matter in the Southern Bohai Sea and the Yellow Sea: evidence from lipid biomarkers[J]. Marine Pollution Bulletin, 2014, 86(1/2): 210-218.
[27] Tao Shuqin, Eglinton T I, Montluçon D B, et al. Diverse origins and pre-depositional histories of organic matter in contemporary Chinese marginal sea sediments[J]. Geochimica et Cosmochimica Acta, 2016, 191: 70-88.
[28] Bao Rui, McIntyre C, Zhao Meixun, et al. Widespread dispersal and aging of organic carbon in shallow marginal seas[J]. Geology, 2016, 44(10): 791-794.
[29] Stookey L L. Ferrozine—a new spectrophotometric reagent for iron[J]. Analytical Chemistry, 1970, 42(7): 779-781.
[30] Shi Xuefa, Shen Shunxi, Yi H I, et al. Modern sedimentary environments and dynamic depositional systems in the southern Yellow Sea[J]. Chinese Science Bulletin, 2003, 48: 1.
[31] Cai Deling, Shi Xuefa, Zhou Weijian, et al. Sources and transportation of suspended matter and sediment in the southern Yellow Sea: evidence from stable carbon isotopes[J]. Chinese Science Bulletin, 2003, 48(S1): 21-29.
[32] Pang Chongguang, Li Kun, Hu Dunxin. Net accumulation of suspended sediment and its seasonal variability dominated by shelf circulation in the Yellow and East China Seas[J]. Marine Geology, 2016, 371: 33-43.
[33] Poulton S W, Raiswell R. The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition[J]. American Journal of Science, 2002, 302(9): 774-805.
[34] Wagai R, Mayer L M. Sorptive stabilization of organic matter in soils by hydrous iron oxides[J]. Geochimica et Cosmochimica Acta, 2007, 71(1): 25-35.
[35] Riedel T, Zak D, Biester H, et al. Iron traps terrestrially derived dissolved organic matter at redox interfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(25): 10101-10105.
[36] Chen Chunmei, Dynes J J, Wang Jian, et al. Properties of Fe-organic matter associations via coprecipitation versus adsorption[J]. Environmental Science & Technology, 2014, 48(23): 13751-13759.
[37] Hyun J H, Mok J S, Cho H Y, et al. Rapid organic matter mineralization coupled to iron cycling in intertidal mud flats of the Han River estuary, Yellow Sea[J]. Biogeochemistry, 2009, 92(3): 231-245.
[38] Peng Songyao, Li Xinzheng, Wang Hongfa, et al. Macrobenthic community structure and species composition in the Yellow Sea and East China Sea in jellyfish bloom[J]. Chinese Journal of Oceanology and Limnology, 2014, 32(3): 576-594.
[39] Wang Xuchen, Druffel E R M, Griffin S, et al. Radiocarbon studies of organic compound classes in plankton and sediment of the northeastern Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1998, 62(8): 1365-1378.
[40] Yoon S H, Kim J H, Yi H I, et al. Source, composition and reactivity of sedimentary organic carbon in the river-dominated marginal seas: a study of the eastern Yellow Sea (the northwestern Pacific)[J]. Continental Shelf Research, 2016, 125: 114-126.
Organic carbon preservation by reactive iron oxides in South Yellow Sea sediments
Tao Jing1, Ma Weiwei1, Li Wenjun1, Li Tie1, Zhu Maoxu1
(1.CollegeofChemistryandChemicalEngineering,OceanUniversityofChina,Qingdao266100,China)
Sorption of organic carbon (OC) on reactive iron (FeR) plays an important role in OC stabilization and preserving in sediments and soils, and thus can buffer the concentration of atmospheric CO2on geological timescales. Based on the amount of OC associated with FeR (Fe-OC) in three cores from the South Yellow Sea determined by the dithionite reduction extraction, we quantitatively investigated the role of FeR in OC stabilization, mechanisms of OC and FeR association, and variation of Fe-OC with depth. Our results showed that Fe-OC accounted for (13.2±7.47)% of sedimentary total OC in the South Yellow Sea. This means that annually 0.72 Mt of OC buried in the sediments is sequestered by FeR, which is 0.44% of the global OC buried in the continental shelf sea annually. Molar ratios of OC to FeR (average 4.50±2.61) indicate that coprecipitation of OC with FeR plays an important role in OC stabilization, and the ratios increased with an increase in fractions of marine OC in the sediments. Stable isotopic compositions of Fe-OC (δ13CFe-OC) suggested that more labile OC is preferentially trapped by FeR, but this preferential trend decreases with an increase in OC/Fe ratio. No obvious changes infFe-OCand δ13CFe-OCwith depth were observed, which can be ascribed to low degradability of organic matter and consequently weak iron reduction.
reactive iron oxides; organic carbon protection; marine sediments; sorption; South Yellow Sea
10.3969/j.issn.0253-4193.2017.08.002
2016-12-07;
2017-02-22。
国家自然科学基金(41576078);山东省自然科学基金(ZR2015DM006);国家重点研发计划项目(2016YFA0601301)。
陶婧(1992—),女,河南省驻马店市人,从事海洋化学和环境分析化学研究。E-mail: m15954098032@163.com
*通信作者:朱茂旭(1967—),男,教授,博士生导师,从事海洋化学研究。E-mail: zhumaoxu@ouc.edu.cn
P736.21
A
0253-4193(2017)08-0016-09
陶婧,马伟伟,李文君,等. 南黄海沉积物中活性铁氧化物对有机碳的保存作用[J].海洋学报,2017,39(8):16—24,
Tao Jing, Ma Weiwei, Li Wenjun,et al. Organic carbon preservation by reactive iron oxides in South Yellow Sea sediments[J]. Haiyang Xuebao,2017,39(8):16—24, doi:10.3969/j.issn.0253-4193.2017.08.002