灌溉淋滤对原状黄土物理力学性质的影响
2017-08-02郑亚萌戴福初
郑亚萌+戴福初
摘 要:甘肃黑方台地区因农业灌溉诱发了大量黄土滑坡,给当地群众生命财产安全构成了严重威胁。为探究灌溉诱发黄土滑坡的形成机理,以灌溉淋滤为出发点,对比分析了原状黄土在长期灌溉条件下物质组成、物理性质的变化规律,通过室内三轴试验研究了灌溉淋滤对原状黄土静态液化特性的影响。结果表明:长期灌溉造成原状黄土中可溶盐含量的大幅降低,胶结弱化,粗颗粒分散,黏粒增多,塑性指数增大,同时灌溉过程中发生的湿陷引起黄土干密度增大、孔隙比减小;淋滤前后饱和黄土均表现出强烈的应变软化特性,具有静态液化特征;与未淋滤黄土相比,淋滤后黄土脆性破坏特征有所减弱,表现为峰值应变增大、超孔隙水压力减小和稳态线上移。
关键词:岩土工程;原状黄土;三轴试验;灌溉淋滤;物理力学性质;静态液化;黄土滑坡;甘肃
中图分类号:P642.13+1;TU43 文献标志码:A
Abstract: Agricultural irrigation in Heifangtai area of Gansu has induced a large number of landslides, which threaten the safety of the local residents. In order to investigate the mechanism of the irrigation-induced loess landslide, the variations of material composition and physical properties of undisturbed loess caused by long-term irrigation were analyzed; laboratory triaxial tests were performed to further study the effects of irrigation leaching on static liquefaction characteristics inherent in undisturbed loess. The results show that long-term irrigation leaching results in the decrease of contents of soluble salt in undisturbed loess, weakening in the cementation, the dispersion of coarse particles and the increase of clay particle and plasticity index; meanwhile, the wetting collapse in the process of irrigation causes the increase of dry density and the decrease of void ratio; all saturated loess before and after leaching are characterized by static liquefaction in isotropically consolidated undrained compression testing; compared with loess without leaching, the loess leached is characterized by smaller brittleness with the increase of peak strain, the decrease of excess pore water pressure and the upward of steady state line.
Key words: geotechnical engineering; undisturbed loess; triaxial test; irrigation leaching; physical and mechanical properties; static liquefaction; loess landslide; Gansu
0 引 言
甘肅黑方台地区因农业灌溉诱发了大量黄土滑坡,给当地群众生命财产安全构成了严重威胁,黄土滑坡形成机理研究是滑坡防治的关键。众多学者从不同角度研究了灌溉诱发黄土滑坡形成机理,取得了显著成果。雷祥义等认为长期灌溉改变了地下水文条件,造成土体抗剪强度降低,从而诱发黄土滑坡[1-4];胡炜等研究了长期灌溉对黄土工程地质性质的影响,认为灌溉破坏了黄土原生结构,进而造成结构强度大幅丧失,导致黄土滑坡频发[5-6];张茂省等认为地下水位上升导致了黄土滑坡,并通过室内试验研究了地下水位上升过程中黄土的力学行为[7-8];王家鼎提出了饱和黄土蠕动液化机理,认为破坏主要是由于厚层黄土层底部的薄红黏土层因饱和而产生崩溃[9];赵春宏等认为土体的应力应变特性与滑坡发生机理密切相关,在此基础上通过室内试验探究了饱和原状黄土的力学特性,试验结果表明饱和原状黄土呈现出强烈的应变软化特性,具有静态液化特征[10-13]。近年来,一些学者从灌溉入渗过程中土中盐分被淋滤的角度出发,探究了灌溉诱发黄土滑坡形成机理。邴慧等通过洗盐法分别探究了洗盐前后黄土和红层风化泥岩物理力学性质的变化[14-16];卢雪清探究了易溶盐、难溶盐分别对重塑黄土强度的影响,认为盐分变化对重塑黄土的强度特性有一定程度的影响,但也受其他因素的影响[17];Zhang等采用人工配置不同浓度NaCl溶液饱和重塑黄土的方法,研究了含盐量对其不排水抗剪强度的影响,结果表明在一定浓度范围内土体抗剪强度随含盐量增多而增大[18]。
为探究灌溉淋滤对原状黄土物理力学性质的影响,本文以甘肃黑方台地区原状黄土为研究对象,首先分析了长期灌溉条件下原状黄土物理性质的变化规律,然后开展饱和原状黄土的室内三轴试验,研究了灌溉淋滤对饱和黄土力学特性的影响。
1 研究区概况
黑方台地区位于甘肃省永靖县盐锅峡镇,属黄河Ⅳ级基座阶地,上部覆盖有晚更新世马兰黄土,是典型黄土台塬地貌[19-24]。虎狼沟将黑方台切割为2块:西侧面积较小的为方台,约1.7 km2;东侧面积较大的为黑台,东西长约6 km,南北寬1~3 km,面积约为12 km2。黑台北部发育有近EW向磨石沟,切割至阶地基座以下,东侧前缘、南部直接与黄河Ⅱ级阶地相接,形成高差90~130 m的斜坡地形。
本次试验所用试样均取自黑台,采样位置见图1。未灌溉黄土(样品TJ-1)取自新塬村塬边空地,经纬度为(36°05′33.17″N,103°17′20.52″E),开挖深度为33 m;灌溉后黄土(样品TJ-2)取自焦家村一菜地,经纬度为(36°06′38.62″N,103°19′52.36″E),开挖深度为11 m。探井每隔1 m取原状黄土土样,用于开展物理力学性质试验研究。
2 物质组成
甘肃黑方台地区至今已有50余年的灌溉历史。为探究灌溉对黄土物质组成的影响,采用X射线衍射法(XRD)测量了黄土的矿物成分,采用X射线荧光光谱分析法(XRF)测量了黄土的化学成分,并测量了黄土中可溶盐(包括易溶盐、中溶盐和难溶盐[25])含量。
2.1 矿物成分
由X射线衍射试验结果可知,黑方台地区长期灌溉前后黄土中原岩矿物成分相同,主要有石英、长石、方解石、云母、白云石和闪石,其中石英含量(质量分数,下同)最高,其次是长石和方解石,以样品TJ-1深度3 m处黄土为例,三者之和高达85%[图2(a)]。与样品TJ-1相比,样品TJ-2黄土中石英、长石含量增大,以长石为例,其含量平均增大约5.8%[图2(b)];而方解石、云母等含量普遍减少,以云母为例,其含量平均减少约1.2%[图2(c)]。
2.2 化学成分
与矿物成分相对应,组成黄土的化学成分主要有SiO2、Al2O3、CaO、MgO、Fe2O3、K2O和Na2O,其中SiO2含量最高,其次是Al2O3和CaO。以样品TJ-1深度3 m 处黄土为例,SiO2、Al2O3、CaO含量之和高达77.5%[图3(a)]。与样品TJ-1相比,样品TJ-2黄土中SiO2、Al2O3、Fe2O3含量增大,其中SiO2含量平均增大约1.2%[图3(b)];而CaO、MgO等含量普遍减少,其中MgO含量平均减少约0.4%[图3(c)]。
2.3 可溶盐
黄土中可溶盐含量为10%~16%,易溶盐含量最少,仅为0.83%~7.16%,中溶盐含量为0.93%~14.97%,难溶盐含量比较高,为77.87%~97.81%(图4)。与样品TJ-1相比,样品TJ-2黄土中可溶盐含量明显减少,降幅约为20.96%;易溶盐含量平均减少11.20%,中溶盐含量平均减少30.71%,难溶盐含量平均减少58.09%(图4)。
3 物理性质
长期灌溉对黄土物质组成产生显著影响,势必引起黄土物理性质发生某些变化。本文以此为出发点,探究了长期灌溉对黄土物理性质的影响,试验结果见表1和图5~8。经过长期农业灌溉,甘肃黑方台地区黄土天然密度、含水率、干密度和孔隙比变化显著,而相对密度、粒组含量和界限含水率变化相对不明显。与样品TJ-1相比,样品TJ-2黄土天然密度平均增加0.26 g·cm-3;含水率平均增加9.51%;干密度平均增加0.12 g·cm-3;孔隙比平均减少0.18。样品TJ-2黄土干密度增大应是灌溉过程中黄土湿陷造成的:文献记载1968~2012年初,台塬地面沉陷2~4 m[26];在室内开展淋滤试验过程中,也观察到有明显湿陷现象(图9)。由此推断,灌溉过程中黄土发生湿陷,造成土体干密度增大,孔隙比减小。相对密度与土体矿物成分种类及含量密切相关,试验结果表明长期灌溉对黄土相对密度影响甚微。利用激光粒度仪测量了黄土的粒度分布,图10为深度4 m处黄土的粒度分布。与样品TJ-1相比,样品TJ-2黄土中黏粒含量平均增多0.6%,粉粒含量平均减少0.1%,砂粒含量平均减少0.5%,同时塑性指数有所增大。大量研究资料表明[14-18],盐分在土体中起胶结与填充作用。样品TJ-2黄土在长期灌溉条件下,土中可溶盐含量减少,胶结弱化,造成粗颗粒分散,黏粒含量增多,塑性指数增大。
4 力学性质
4.1 试验方案
甘肃黑方台地区黄土具有强烈湿陷性,为避免湿陷的影响,故在室内进行淋滤试验模拟现场灌溉过程,制备不同淋滤时间的土样。黑方台地区灌溉水中离子种类与含量[27]和自来水相似(表2),故用自来水替代。淋滤试验过程如下:将从样品TJ-1采样点取回的原状土样削成直径为100 mm,高为160 mm的土柱,用涂有薄层凡士林的保鲜膜包裹土柱侧面,缓慢将其放入内壁涂抹凡士林的淋滤装置,上、下分别放置滤纸和周围涂抹玻璃胶的透水石,以避免淋滤装置内壁出现优先流;静置12 h后,开始进行淋滤试验(图11),稳定10 mm水头,自淋滤装置底部有淋滤液渗出时开始计时,称重、烘干淋滤液并绘制淋滤曲线(图12),达到设定淋滤时间后,移除水头并静置,待底部不再渗水后,将淋滤土样风干至原重,进行三轴试验。
三轴试验所用试样按深度不同分为3组,第一组为7.5~9.5 m,第二组为19.0~19.7 m,第三组为29.4~32.0 m,每组试样分为3级固结压力(100、200、400 kPa)。对照组为样品TJ-1未淋滤黄土,试验组淋滤时间根据淋滤曲线结果分别设置为8 h、3 d和15 d。为验证淋滤效果,采用ICS-1100离子色谱仪测试了淋滤液中相关离子质量浓度,试验结果见图13。以样品TJ-1深度8.5 m处土样淋滤液中SO2-4质量浓度为例,淋滤8 h时,该离子质量浓度为7 570.84 mg·L-1;淋滤3 d时,该离子质量浓度降低为2 825.96 mg·L-1;淋滤15 d时,该离子质量浓度仅为586.22 mg·L-1。
本次试验采用英国GDS三轴试验系统,首先对其压力传感器、荷重传感器和位移传感器进行校核性标定。试样直径为50 mm,高为100 mm,依据BS 1377-8:1990[28]相关规定进行试样制备及安装。试样饱和分为两个步骤,即先缓慢通入CO2,然后进行反压饱和,当孔隙水压力系数(B值)大于0.95时,即认为试样已经饱和。饱和后保持反压不变,按设定的有效固结压力进行固结,固结完成后,以0.07 mm·min-1的速率进行剪切。试验数据处理过程中,对橡皮膜的刚性效应进行了校正,对试样帽和荷载传感器之间的接触效应进行了修正;考虑到试样在反压饱和过程中的体积变化,固结后孔隙比根据试样破坏后含水率及孔隙水压力系数反算求得。由于数据较多,限于文章篇幅,本文仅列出第一组深度中对照组和试验组淋滤15 d试验结果。
4.2 等压固结不排水剪试验
表3为淋滤前后黄土试样含盐量变化情况和物理性质指标对比。等压固结不排水剪(ICU)试验结果见表4。淋滤前后黄土均表现为强烈的应变软化特性,试样强度在轴向应变(εa)为0.5%~1.8%时达到峰值,而后试样强度迅速降低,随着轴向应变的继续增加而趋于稳定,脆性指数随固结压力增大而降低,在低固结压力条件下为60%~65%[图14(a)];试验过程中,超孔隙水压力在較小轴向应变条件下急剧上升,然后随着变形的增加而趋于稳定,一般能达到固结压力的88%~98%[图14(b)];图14(c)展示了等压固结不排水剪试验的应力路径;所有试样完成试验后均不能自立,破坏时黄土含水率均在30%以上,高于液限(图15)。与未淋滤黄土相比,淋滤后黄土峰值应变略有增大,超孔隙水压力有降低的趋势,表明淋滤后黄土脆性破坏特征有所减弱。
等压固结不排水剪试验结果表明,所有试样均达到稳定状态(Steady State)。稳定状态是指土体在常体积、常法向应力和常剪应力下保持常速率变形的状态,是孔隙比的唯一函数,而与固结压力无关。连接不同孔隙比的稳定状态点即可得到稳态线。Poulos等将稳态强度和稳态线作为判断砂土是否液化的依据[29]。前人将当前孔隙比与稳态孔隙比之差作为状态参数[30]。其关系式为
式中:Ψ为状态参数;e为当前孔隙比;ess为稳态孔隙比。
当状态参数为正数时,土具有液化潜势;当其为负数时,土不具有液化潜势。根据等压固结不排水剪试验结果得到不同淋滤时间的饱和原状黄土稳态线,并将其绘制在ess-ln p′[KG-30x]ss中进行对比,探究淋滤对稳态线的影响。以第一组等压固结不排水剪试验结果为例(图16),与未淋滤黄土相比,淋滤后黄土稳态线略有上移,状态参数减小,黄土液化潜势降低。
5 结 语
(1)长期灌溉对黄土物质组成产生显著影响,特别是造成可溶盐含量降低,进而对黄土物理力学性质产生影响。
(2)甘肃黑方台地区因长期农业灌溉,造成黄土天然密度、含水率和干密度增大,孔隙比减小,同时造成黏粒含量增多,粉粒和砂粒含量减少,塑性指数增大。与样品TJ-1相比,样品TJ-2黄土天然密度平均增加0.26 g·cm-3,含水率平均增加9.51%,干密度平均增加0.12 g·cm-3,孔隙比平均减少0.18。
(3)淋滤前后饱和黄土均表现出强烈的静态液化特征。与未淋滤黄土相比,淋滤后黄土脆性破坏特征有所减弱,表现为峰值应变增大、超孔隙水压力减小和稳态线上移。
(4)由于本次试验采用自来水淋滤,且淋滤时间有限,黄土中难溶盐淋滤较少,所以难溶盐对原状黄土物理力学性质的影响有待于进一步试验研究。
参考文献:
References:
[1]雷祥义.陕西泾阳南塬黄土滑坡灾害与引水灌溉的关系[J].工程地质学报,1994,3(1):56-64.
LEI Xiang-yi.The Hazards of Loess Landslides in the Southern Tableland of Jingyang County,Shaanxi and Their Relationship with the Channel Water into Fields[J].Journal of Engineering Geology,1994,3(1):56-64.
[2]赵尚学,李鸿琏,马东涛.盐锅峡库区黄土台缘滑坡研究[J].水土保持通报,1995,15(1):19-22,58.
ZHAO Shang-xue,LI Hong-lian,MA Dong-tao.Study on the Landslides at the Edge of Loess Terrace in Yanguoxia Reservior Region[J].Bulletin of Soil and Water Conservation,1995,15(1):19-22,58.
[3]范立民,岳 明,冉广庆.泾河南岸崩岸型滑坡的发育规律[J].中国煤田地质,2004,16(5):33-35,42.
FAN Li-min,YUE Ming,RAN Guang-qing.Development Pattern of Slumping Bank Type Landslides at the South Bank of Jinghe,Shaanxi Province[J].Coal Geology of China,2004,16(5):33-35,42.
[4]李 文,龙建辉,李同录,等.陕西泾阳南塬黄土滑坡滑带土残余剪切强度特性[J].地球科学与环境学报,2012,34(4):95-101.
LI Wen,LONG Jian-hui,LI Tong-lu,et al.Residual Shear Strength Characteristics of Landslide Soil in Loess Landslide of Jingyang Southern Highland,Shaanxi[J].Journal of Earth Sciences and Environment,2012,34(4):95-101.
[5]胡 炜,朱立峰,张茂省,等.灌溉引起的黄土工程地质性质变化[J].地质通报,2013,32(6):875-880.
HU Wei,ZHU Li-feng,ZHANG Mao-sheng,et al.The Changes of Engineering Geological Properties of Loess Caused by Irrigation[J].Geological Bulletin of China,2013,32(6):875-880.
[6]张茂省,朱立峰,胡 炜,等.灌溉引起的地质环境变化与黄土地质灾害:以甘肃黑方台灌区为例[M].北京:科学出版社,2016.
ZHANG Mao-sheng,ZHU Li-feng,HU Wei,et al.The Changes of the Geological Environment and the Geological Disaster of Loess by Irrigation:A Case Study of Heifangtai Irrigation Area,Gansu Province[M].Beijing:Science Press,2016.
[7]张茂省,李同录.黄土滑坡诱发因素及其形成机理研究[J].工程地质学报,2011,19(4):530-540.
ZHANG Mao-sheng,LI Tong-lu.Triggering Factors and Forming Mechanism of Loess Landslides[J].Journal of Engineering Geology,2011,19(4):530-540.
[8]习 羽,李同录,邢鲜丽.灌渠渗漏诱发的黄土滑坡泥流触发机理分析[J].地球科学与环境学报,2017,39(1):135-142.
XI Yu,LI Tong-lu,XING Xian-li.Analysis of the Triggering Mechanism of a Loess Flowslide Induced by Water Canal Leakage[J].Journal of Earth Sciences and Environment,2017,39(1):135-142.
[9]王家鼎.高速黄土滑坡的一种机理:饱和黄土蠕动液化[J].地质论评,1992,38(6):532-539.
WANG Jia-ding.A Mechanism of High-speed Loess Landslides:Saturated Loess Creeping Liquefaction[J].Geological Review,1992,38(6):532-539.
[10]赵春宏,戴福初.深圳某填土滑坡破坏机理研究[J].中国地质灾害与防治学报,2007,18(2):1-8.
ZHAO Chun-hong,DAI Fu-chu.Study on Failure Mechanism of a Fill Slope in Shenzhen[J].The Chinese Journal of Geological Hazard and Control,2007,18(2):1-8.
[11]金艳丽,戴福初.灌溉诱发黄土滑坡机理研究[J].岩土工程学报,2007,29(10):1493-1499.
JIN Yan-li,DAI Fu-chu.The Mechanism of Irrigation-induced Landslides of Loess[J].Chinese Journal of Geotechnical Engineering,2007,29(10):1493-1499.
[12]金艷丽,戴福初.饱和黄土的静态液化特性试验研究[J].岩土力学,2008,29(12):3293-3298.
JIN Yan-li,DAI Fu-chu.Experimental Investigation of Static Liquefaction of Saturated Loess[J].Rock and Soil Mechanics,2008,29(12):3293-3298.
[13]武彩霞,许 领,戴福初,等.黑方台黄土泥流滑坡及发生机制研究[J].岩土力学,2011,32(6):1767-1773.
WU Cai-xia,XU Ling,DAI Fu-chu,et al.Topographic Features and Initiation of Earth Flows on Heifangtai Loess Plateau[J].Rock and Soil Mechanics,2011,32(6):1767-1773.
[14]邴 慧,武俊杰,邓 津.黄土状盐渍土洗盐前后物理力学性质的变化[J].冰川冻土,2011,33(4):796-800.
BING Hui,WU Jun-jie,DENG Jin.Variations of Physical and Mechanical Properties of Saline Loess Before and After Desalting[J].Journal of Glaciology and Geocryology,2011,33(4):796-800.
[15]WEN B P,HE L.Influence of Lixiviation by Irrigation Water on Residual Shear Strength of Weathered Red Mudstone in Northwest China:Implication for Its Role in Landslides Reactivation[J].Engineering Geology,2012,151:56-63.
[16]何 蕾,文宝萍.灌溉溶滤对西北地区红层风化泥岩不排水抗剪强度的影响[J].水文地质工程地质,2014,41(3):47-52.
HE Lei,WEN Bao-ping.Effect of Lixiviation by Irrigation Water on Undrained Shear Strength of Weathered Red Mudstone in Northwest China[J].Hydrogeology and Engineering Geology,2014,41(3):47-52.
[17]卢雪清.盐分变化对黄土强度特性影响的试验研究[D].杨凌:西北农林科技大学,2012.
LU Xue-qing.Study on the Effect of Salinity Changes on Strength Character of Loess[D].Yangling:Northwest A&F University,2012.
[18]ZHANG F Y,WANG G H,KAMAI T,et al.Undrained Shear Behavior of Loess Saturated with Different Concentrations of Sodium Chloride Solution[J].Engineering Geology,2013,155:69-79.
[19]许 强,彭大雷,亓 星,等.2015年4.29甘肃黑方台党川2#滑坡基本特征与成因机理研究[J].工程地质学报,2016,24(2):167-180.
XU Qiang,PENG Da-lei,QI Xing,et al.Dangchuan 2# Landslide of April 29,2015 in Heifangtai Area of Gansu Province:Characteristices and Failure Mechanism[J].Journal of Engineering Geology,2016,24(2):167-180.
[20]亓 星,许 强,彭大雷,等.地下水诱发渐进后退式黄土滑坡成因机理研究:以甘肃黑方台灌溉型黄土滑坡为例[J].工程地质学报,2017,25(1):147-153.
QI Xing,XU Qiang,PENG Da-lei,et al.Mechanism of Gradual Retreat Loess Landslide Caused by Groundwater:A Case Study of the Irrigation Loess Landslide in Heifangtai,Gansu Province[J].Journal of Engineering Geology,2017,25(1):147-153.
[21]曹从伍,许 强,彭大雷,等.基于物理模拟实验的黑方台黄土滑坡破坏机理研究[J].水文地质工程地质,2016,43(4):72-77.
CAO Cong-wu,XU Qiang,PENG Da-lei,et al.Research on the Failure Mechanism of the Heifangtai Loess Landslides Based on the Physical Simulation Experiments[J].Hydrogeology and Engineering Geology,2016,43(4):72-77.
[22]李驊锦,许 强,何雨森,等.甘肃黑方台滑坡滑距参数的BP神经网络模型[J].水文地质工程地质,2016,43(4):141-146,152.
LI Hua-jin,XU Qiang,HE Yu-sen,et al.BP Neural Network Model for Analyzing the Impact Factors of the Travel Distance of the Heifangtai Landslide in Gansu[J].Hydrogeology and Engineering Geology,2016,43(4):141-146,152.
[23]周 飞,许 强,巨袁臻,等.黑方台黄土斜坡变形破坏机理研究[J].水文地质工程地质,2017,44(1):157-163.
ZHOU Fei,XU Qiang,JU Yuan-zhen,et al.A Study of the Deformation and Failure Mechanism of the Heifangtai Loess Slope[J].Hydrogeology and Engineering Geology,2017,44(1):157-163.
[24]谷天峰,朱立峰,胡 炜,等.灌溉引起地下水位上升对斜坡稳定性的影响:以甘肃黑方台为例[J].现代地质,2015,29(2):408-413.
GU Tian-feng,ZHU Li-feng,HU Wei,et al.Effect on Slope Stability due to Groundwater Rising Caused by Irrigation:A Case Study of Heifang Platform in Gansu,China[J].Geoscience,2015,29(2):408-413.
[25]关文章.试论可溶盐与黄土湿陷机理[J].桂林冶金地质学院学报,1986,6(3):271-278.
GUAN Wen-zhang.On Soluble Salts and the Mechanism of Loess Collapsibility[J].Journal of Guilin College of Geology,1986,6(3):271-278.
[26]文宝萍,余志山,黎志恒,等.灌溉条件下黑方台黄土湿陷特征及其内在机理[J].兰州大学学报:自然科学版,2015,51(6):777-785.
WEN Bao-ping,YU Zhi-shan,LI Zhi-heng,et al.Collapsibility of the Loess Soils on Heifangtai Tableland Due to Wetting by Flooding Irrigation and Its Mechanism[J].Journal of Lanzhou University:Natural Sciences,2015,51(6):777-785.
[27]陈 瑾,韩庆宪,李保雄.永靖黑方台灌区台面沉陷灾害、水土流失及防治[J].中国水土保持,1999(4):15-17.
CHEN Jin,HAN Qing-xian,LI Bao-xiong.Land Surface Settlement,Soil Loss and Corresponding Harness in Heifangtai Irrigation Area in Yongjing County[J].Soil and Water Conservation in China,1999(4):15-17.
[28]BS 1377-8:1990.British Standard Methods of Test for Soil for Civil Engineering Purposes Part 8:Shear Strength Tests(Effective Stress)[S].
[29]POULOS S J,CASTRO G,FRANCE J W.Liquefaction Evaluation Procedure[J].Journal of Geotechnical Engineering,1985,111(6):772-792.
[30]魏匡民,陳生水,李国英,等.基于状态参数的筑坝粗粒土本构模型[J].岩土工程学报,2016,38(4):654-661.
WEI Kuang-min,CHEN Sheng-shui,LI Guo-ying,et al.Constitutive Model for Coarse-grained Dam Materials Considering State Parameter[J].Chinese Journal of Geotechnical Engineering,2016,38(4):654-661.