APP下载

多重随机环境中马氏链及其强大数定律

2017-08-02费时龙

浙江大学学报(理学版) 2017年4期
关键词:中马马氏马尔科夫

费时龙

(宿州学院 数学与统计学院, 安徽 宿州 234000)

多重随机环境中马氏链及其强大数定律

费时龙

(宿州学院 数学与统计学院, 安徽 宿州 234000)

引入了多重随机环境中的马尔科夫链模型,该模型是随机环境中马尔科夫链模型的推广,适用范围更广.给出了多重随机环境中马尔科夫链模型的2个应用背景;讨论了m重随机环境中马尔科夫链、n重随机环境中马尔科夫链、马氏链、2m维链的相互关系及性质.最后,利用得到的多重马氏链的相关性质获得了多重随机环境中马尔科夫链强大数定律成立的充分条件,推广了部分文献的结论.

随机环境;m重马氏链;强大数定律

0 引 言

马尔科夫链(以下简称经典马氏链)是随机过程中最重要的分支之一,其理论已广泛应用于金融、保险、现代物理、分子生物学、随机服务系统等领域.基于经典马氏链理论研究,考虑到经典马氏链中的转移函数会受外部随机因素的干扰,COGBURN[1]增加了随机变量,并引入了随机环境中的马尔科夫链模型(简称MCRE).自20世纪80年代以来,MCRE的理论研究得到了各国学者的广泛关注,并取得了丰富的成果.COGBURN在MCRE的状态分类与性质[1-2]、中心极限定理[3]等方面获得了丰富的研究成果.OREY[4]对COGBURN等的工作进行了总结和评价,同时得到类似于经典马氏链理论方面的很多成果并提出一些问题.李应求[5-7]研究了MCRE的常返性.胡迪鹤[8-9]给出了MCRE的构造.近年来,MCRE极限理论及其研究受到很多学者的重视,王汉兴等[10]研究了MCRE的Poisson极限律,方大凡[11]研究了MCRE的Shannon-McMillan-Breiman定理,郭明乐[12-13]、万成高[14]、王伟刚[15]分别研究了MCRE的强大数定律.胡迪鹤[16]则对MCRE作了详细介绍与研究.本文主要讨论MCRE模型的推广,通过引入多重随机环境中的马尔科夫链模型,讨论m重随机环境中的马尔科夫链、k重随机环境中的马尔科夫链、MCRE、双链、2m维链的相互关系,给出研究多重随机环境中马尔科夫链的一种方法,以获得多重随机环境下马尔科夫链强大数定律成立的充分条件.推广了部分文献的结论.

1 m重MCRE模型及性质

(i)对任意θm∈Θm及xm∈Xm,p(θm;xm,·)是A上的概率测度.

(ii)对任意θm∈Θm及A∈A,p(θm;·,A)关于Am可测.

(iii)对任意xm∈Xm及A∈A,p(·;xm,A)关于Bm可测.

(iv)对任意A∈Ap(·;·,A)关于Bm×Am可测.

则称p(·;·,·)为一个m重随机马尔科夫核.

(1)

(2)

证明 设p(·;·,·)为一个m重随机马尔科夫核,若记

p((θn,…,θn+k-1);(xn,…,xn+k-1);A)=

p((θn+k-m,…,θn+k-1);(xn+k-m,…,xn+k-1);A),

从而由单调类定理易得

注2 由注1及定理1知,m重随机环境中的马尔科夫链是随机环境中马尔科夫链模型的推广,其直观想法为:系统或过程未来(n+m时刻)的演变规律只与最近一段时间内(n时刻到n+m-1时刻)系统或过程所处的状态和环境有关,与过去(n时刻之前)无关.

下面给出该模型的2个应用背景.

例1(生物群体繁殖模型) 研究某种生物群体数量的演变规律,以Xn表示第n个单位时刻生物群体的数量,ξn表示第n个单位时刻生物群体所处的外部环境,若不考虑环境因素的变化(即假定ξn为常量),且假定已知过去和现在群体数量,下一个单位时间群体数量的演变规律只与现在有关,即在X0,X1,…,Xn状态已知的条件下,Xn+1所处状态的转移规律只与Xn有关,与X0,X1,…,Xn-1无关,即为经典的马尔科夫链模型.更一般地,考虑生物群体受生育和存活时间段及外部环境的随机变化影响,在过去和现在群体数量和外部环境所处状态已知的条件下,群体数量下一个单位时间的演变规律只与现在至过去一段时间内的群体数量和环境状态有关,即在X0,X1,…,Xn+m-1,ξ0,ξ1,…,ξn+m-1所处状态已知的条件下,Xn+m只与Xn,Xn+1,…,Xn+m-1,ξn,ξn+1,…,ξn+m-1所处的状态有关,该模型即为m重随机环境中的马尔科夫链.

例2(短线交易中的股票价格预测模型) 研究某种股票价格的预测模型,若换手率较高,则表明大部分投资人会在较短的时间内发生交易.将时间离散化,以Xn,n=0,1,2,…表示在n时刻股票的价格,以ξn,n=0,1,2,…表示在n时刻的外部环境(如经济政策、公司经营状况、市场环境等因素),在不考虑环境因素变化(即假定ξn为常量)且假定在过去和现在股票价格已知的条件下,股票价格下一个单位时间的演变规律只与现在有关,与过去无关,即在已知X0,X1,…,Xn状态的条件下,Xn+1所处状态的转移规律只与Xn有关,与X0,X1,…,Xn-1无关,即为经典的马尔科夫链模型.该模型的假设过于理想化,不符合股市的运行规律.一般情形下,由于短期内大部分投资人会发生交易,因此,假设在已知过去和现在股票价格和外部环境所处状态的条件下,股票价格下一个单位时刻的演变规律只与现在至过去一段时间内的股票价格和环境状态有关是合理的.即在已知X0,X1,…,Xn+m-1,ξ0,ξ1,…,ξn+m-1所处状态的条件下,Xn+m只与Xn,Xn+1,…,Xn+m-1,ξn,ξn+1,…,ξn+m-1所处的状态有关,该模型即为m重随机环境中的马尔科夫链.

定理2 下列条件等价:

(b)下列条件成立:

(c)下列条件成立:

(2) {Wn=(Xn,Xn+1,…,Xn+l-1,ξn,ξn+1,…,ξn+l-1),n≥0}为马尔科夫链.

P((Xn+l,ξn+l)∈A×B)|

((Xn+l-1,ξn+l-1),…,(Xn,ξn)).

(2)令Wn=(Yn,Yn+1,…,Yn+l-1),

则由(1)知{Yn=(Xn,ξn),n≥0}为一个l重马尔科夫链,从而

{Wn=(Yn,Yn+1,…,Yn+l-1),n≥0}

为马尔科夫链.

(2) 2m维链{Wn=(Yn,Yn+1,…,Yn+m-1),n≥0}为马尔科夫链.

(2) 2m维链{Wn=(Yn,Yn+1,…,Yn+m-1),n≥0}为时齐的马尔科夫链.

2 m重MCRE的强大数定律

P((Yn,Yn+1,…,Yn+m-1)=

(x0,θ0,x1,θ1,…,xm-1,θm-1), i.o.)=1

(1)

成立,即(x0,θ0,x1,θ1,…,xm-1,θm-1)是Wn的一个常返状态.对每个k≥0,τ0≡0,定义一列马尔科夫时间为

τk+1=inf{n>τk:(Yn,Yn+1,…,Yn+m-1)=

(x0,θ0,x1,θ1,…,xm-1,θm-1)},

σk=τk+1-τk, Ωτk={τk<∞},

Fn=σ((Xi,ξi):0≤i≤n+m-1),

Fτk={A⊂Ωτk:∀n≥0,A∩{τk≤n}∈Fn},

Fτk=σ((Xτk+n,ξτk+n):n≥0).

再令l(n)=k,当τk

则有

引理1 (i){Zk,k≥0}是概率空间(Ω,F,P)上的独立随机变量列.

(ii)若EZk有限,∀k≥0,则

∫{l(n)

证明 (i)由假设知{Zk,k≥0}是取至多可列多个值的随机变量,且对任意实数cr(0≤r

{Zr=cr,τk=n}=

所以Y0,Y1,…,Yk-1是Fτk可测的,令w=(x0,θ0,x1,θ1,…,xm-1,θm-1),则

{σk=u}={Wτk+1≠w,…,Wτk+u-1≠w,Wτk+u=w}∈Fτk.

从而由强马氏性质知

P(Z0=c0,Z1=c1,Zk-1=ck-1,Zk=ck)=

P(Z0=c0,Z1=c1,Zk-1=ck-1)P(Zk=ck).

利用数学归纳法易证引理1的(i)成立.

(ii){l(n)

∫{l(n)

∫l(n)

∫{l(n)

推论3 对任意实数a,b,{aZk+bσk,k≥0}与{aUk+bσk,k≥0}均为(Ω,F,P)上的独立随机变量列,且{σk,k≥0}为(Ω,F,P)上的独立同分布随机变量列.

条件I 存在非负且数学期望有限的随机变量Y,使得对任意x>0,n∈N,有

qn(x)≡P(Un(x)+σn(x)>x)≤

q(x)≡1-FY(x).

引理2[2]若满足条件I,则对任意n≥0,有

(1)E|Zn|+Eσn≤EUn+Eσn≤EY<∞;

引理3[17]若满足条件I,则

引理4 若满足条件I,则

证明 由l(n)的定义知:

显然,上式最后一个等式第1项为0,由引理1知第2项为0,从而有

故由引理2知

引理5 若满足条件I,则

定理4 若满足条件I,则有下列强大数定律成立:

0(n→∞) a.s.

证明 显然

由引理2~5知,上式每项均几乎处处收敛于0,所以定理得证.

推论4 设gi(·,·)为满足条件I的二元函数,则有下列强大数定律成立:

证明 只需在定理3中令

fi(Xi,ξi,Xi+1,ξi+1,…,Xi+m-1,ξi+m-1)=gi(Xi,ξi).

注3 推论4即为文献[13]的主要结果.

[1] COGBURN R. Markov chains in random environments[J]. Ann Probab,1980,8(3):908-916.

[2] COGBURN R. The ergodic theory of Markov chains in random environments[J]. Probability Theory and Related Fields,1984,66(1):109-128.

[3] COGBURN R. On the central limit theorem for Markov chains in random environments[J]. Ann Probab, 1991,19(2):587-604.

[4] OREY S. Markov chains with stochastically stationary transition probabilities[J]. Ann Probab,1991,19(3):907-928.

[5] 李应求.双无限环境中马氏链的常返性与不变侧度[J].中国科学:A辑,2001,31(8):702-707. LI Y Q. The recurrence and invariant measures for Markov chains in bi-infinite environments[J]. Science in China:Ser A,2001,31(8):702-707.

[6] 李应求.双无限随机环境中马氏链的暂留性[J].数学物理学报:A辑,2007,27(2):269-276. LI Y Q. Transience for Markov Chains in double infinite random environments[J]. Acta Mathematica Scientia:Ser A,2007,27(2):269-276.

[7] 李应求.双无限随机环境中的常返马氏链[J].数学学报:A辑,2007,50(5):1099-1100. LI Y Q. The recurrent Markov chains in bi-infinite random environments[J]. Acta Mathematica Sinica: Ser A,2007,50(5):1099-1100.

[8] 胡迪鹤.随机环境中q-过程的存在唯一性[J].中国科学:A辑,2004,34(5):625-640. HU D H. The existence and uniqueness ofq-process Science in random environments[J]. Science in China: Ser A,2004,34(5):625-640.

[9] 胡迪鹤.从P-m链到随军环境中的马氏链[J].数学年刊:A辑,2004,25(1):65-78. HU D H. FromP-mchains to Markov chains in random environments[J]. Chinese Annals of Mathematics:Ser A,2004,25(1):65-78.

[10] 王汉兴,戴永隆.马氏的Poisson极限律[J].数学学报,1997,40(2):266-270. WANG H X, DAI Y L. Poisson limit law for Markov a chains in Markovian environments[J]. Acta Mathematica Sinica,1997,40(2):266-270.

[11] 方大凡.马氏环境中马氏链的Shannon-McMillan-Breiman定理[J].应用概率统计,2000,16(3):295-298. FANG D F. Shannon-McMillan-Breiman theorem for Markov chains in Markovian environments[J]. Chinese Journal of Applied Probability and Statistics, 2000,16(3):295-298.

[12] 郭明乐.马氏环境中的马氏链的强大数定律[J].应用数学,2003,16(4):143-148. GUO M L. The strong law of large numbers for Markov chains in Markovian environments[J]. Mathematica Applicata,2003,16(4):143-148.

[13] 郭明乐.随机环境中的马氏链的强大数定律[J].应用概率统计,2004,20(2):154-160. GUO M L. The strong law of large numbers for Markov chains in random environments[J]. Chinese Journal of Applied Probability and Statistics, 2004,20(2):154-160.

[14] 万成高.马氏环境中马氏链的强大数定律[J].应用概率统计,2003,19(2):155-160. WAN C G. On the strong law of large numbers for Markov chains in Markovian environments[J]. Chinese Journal of Applied Probability and Statistics, 2003,19(2):155-160.

[15] 王伟刚.一般随机环境中马氏链的强大数律[J].数学杂志,2011,31(3):481-487. WANG W G. The strong law of large numbers for Markov chains in random environments[J]. Journal of Mathematics, 2011,31(3):481-487.

[16] 胡迪鹤.随机环境中的马尔可夫过程[M].北京:高等教育出版社,2011. HU D H. Markov Processes in Random Environments[M]. Beijing: Higher Education Press,2011.

[17] 朱成熹.随机极限引论[M].天津:南开大学出版社,1987. ZHU C X. An Introduction to Random Limit[M]. Tianjin: Nankai University Press, 1987.

The multiple Markov chains in a random environment and the strong law of large numbers.

FEI Shilong

(SchoolofMathematicsandStatistics,SuzhouUniversity,Suzhou234000,AnhuiProvince,China)

The model of multiple Markov chains in a random environment is introduced which is a promotion of Markov chains in a random environment with a more general application scope. Two application backgrounds of the multiple Markov chains in a random environment are given. Then, we discuss some relations and properties of the ordermMarkov chains and the orderkMarkov chains in a random environment,Markov chains, and 2mdimensional chains. At last, using the property of the multiple Markov chains in a random environment, we obtain the sufficient condition of the strong law of large numbers of the multiple Markov chains in a random environment, which are a promotion of the results from some literatures.

random environments; Markov chains with orderm; strong law of large numbers

2016-01-18.

安徽省高等学校省级自然科学基金资助项目(KJ2016A770);安徽省高校优秀青年人才支持计划重点项目(gxyqZD2016340).

费时龙(1980-),ORCID:http://orcid.org/0000-0003-4352-9345,男,硕士,副教授,主要从事随机过程研究,E-mail:fsl627@sina.com.

10.3785/j.issn.1008-9497.2017.04.005

O 211.62

A

1008-9497(2017)04-411-06

Journal of Zhejiang University(Science Edition), 2017,44(4):411-416

猜你喜欢

中马马氏马尔科夫
基于三维马尔科夫模型的5G物联网数据传输协议研究
基于叠加马尔科夫链的边坡位移预测研究
基于改进的灰色-马尔科夫模型在风机沉降中的应用
中国与马来西亚双边贸易存在的问题与对策
马尔科夫链在企业沙盘模拟教学质量评价中的应用
马尔科夫链在企业沙盘模拟教学质量评价中的应用
《封神演义》中马氏形象的另类解读
抱琴
基于马氏距离的舰船装备修理价格组合预测
新床的声音