陆地棉开花相关基因GhFLP5的表达及功能分析
2017-07-24王聪聪张晓红王小艳张盼范术丽庞朝友马启峰魏恒玲王寒涛宿俊吉喻树迅
王聪聪,张晓红,王小艳,张盼,范术丽,庞朝友,马启峰,魏恒玲,王寒涛,宿俊吉,喻树迅
(中国农业科学院棉花研究所/棉花生物学国家重点实验室,河南安阳 455000)
陆地棉开花相关基因GhFLP5的表达及功能分析
王聪聪,张晓红,王小艳,张盼,范术丽,庞朝友,马启峰,魏恒玲,王寒涛,宿俊吉,喻树迅
(中国农业科学院棉花研究所/棉花生物学国家重点实验室,河南安阳 455000)
【目的】克隆陆地棉开花促进因子家族的一个基因Flowering Promoting Factor1-like Protein 5(GhFLP5),并对其时空表达模式进行研究,解析其在开花调控过程中的作用,为创制早熟陆地棉材料奠定基础。【方法】根据NCBI数据库中的序列,用Oligo7软件设计引物,以中棉所50(CCRI50)的cDNA为模板,克隆获得GhFLP5。在ExPASy网站上预测其蛋白的理化性质,同时在NCBI中检索其他物种中的FPF蛋白,使用ClustalX2进行多重序列比对,并用MEGA6构建系统进化树;取陆地棉早熟品种CCRI50和中晚熟品种鲁棉研28(Lu28)不同生长时期、不同组织的样品,对GhFLP5的时间和空间表达模式进行分析;从基因组数据库中调取GhFLP5起始密码子上游1 500 bp的片段,用PlantCARE在线工具预测其顺式作用元件,选取相关激素对二叶期棉花幼苗进行叶面喷施处理,研究GhFLP5的应答反应;构建植物表达载体pBI121-GhFLP5,转化拟南芥,观察转基因株系的表型,并用qRT-PCR对其内源基因表达的变化进行测定。【结果】GhFLP5开放阅读框长300 bp,编码的蛋白质分子量为11.4 kD,共包含3个比较保守的区域,与大豆、苜蓿和毛果杨的开花促进因子亲缘关系较近。空间表达模式分析表明,GhFLP5在叶片中优势表达,且在早熟品种CCRI50中的表达量显著高于晚熟品种Lu28;时间表达模式分析表明,在CCRI50中其表达量高峰出现在三叶期,而在Lu28中四叶期表达量最高。GhFLP5的启动子上主要存在两大类顺式作用元件,一类是光响应元件和生物钟元件,一类是胁迫响应元件。根据顺式作用元件的分布和功能选取水杨酸(SA)、脱落酸(ABA)和茉莉酸(JA)喷施处理棉花幼苗,结果表明,GhFLP5能响应外源SA和ABA而上调,也会被外施JA抑制。组成型表达GhFLP5的拟南芥株系抽薹时间提前约9 d,开花时间提前约7 d,莲座叶数目减少,差异达到极显著水平。荧光定量的结果表明转基因拟南芥中促进开花的基因LEAFY(AtLFY)、SUPPRESSOR OF OVEREXPRESSION OF CONSTANS(AtSOC1)、FLOWERING LOCUS T(AtFT)、APETALA1(AtAP1)和FRUITFULL(AtFUL)表达量显著升高,抑制开花的基因Flowering Locus C(AtFLC)表达量显著降低。在转基因拟南芥中生长素应答基因SMALL AUXIN UPREGULATED 20(AtSAUR20)和SMALL AUXIN UPREGULATED 22(AtSAUR22)显著上调,具有生物活性的赤霉素(GA)合成的相关基因GIBBERELLIN 20-OXIDASE 1(GA20OX1)的表达量提高2倍。【结论】转基因拟南芥早花表型明显,GhFLP5可能在调控中发挥了双重作用,通过IAA和GA途径促进拟南芥的开花转型。
陆地棉;开花时间;GhFLP5;表达模式;基因功能
0 引言
【研究意义】中国耕地数量有限,粮棉争地矛盾突出,培育生长发育期相对较短的短季棉已成为中国棉花育种的重要研究方向[1]。花发育与棉花早熟性密切相关[2],开花时间直接决定了熟性的早晚[3]。因此,研究陆地棉开花相关基因的表达和功能,明确其在开花调控网络中的角色,对于研究棉花花芽分化的规律、推动棉花种质资源创新具有至关重要的意义。【前人研究进展】开花的过程不仅与环境信号如日照时间、光强度、环境温度等有关,还与植株的内源激素及年龄有关[4]。同时研究表明,开花基因在高等植物之间具有很高的保守性[5]。MELZER等[6]利用差减杂交和差异显示的方法,从长日照植物白芥的顶芽中得到一个开花特异基因pSFD5.04(SaFPF1),长日照诱导之后该基因表达量迅速升高并缓慢降低。随后在拟南芥中克隆得到同源基因,发现无论日照长短,此基因过表达都会使拟南芥提前开花,因此命名为Arabidopsis thaliana flowering promoting factor 1(AtFPF1)[7],随后证实AtFPF1通过赤霉素(GA)途径调节拟南芥开花时间[8]。FPF1可以下调晶体蛋白基因ACD31.2,而该基因也会受GA成花诱导的负调控[9]。在温带禾谷类作物中,FPF1不仅能在春化途径中响应低温,并且能响应日照长度,参与光周期调控的花芽分化[10]。在杂交白杨中异源表达FPF1,白杨开花时间无明显变化,但是SOC1/TM3类基因Populus tremuloides MADS-box 5(PTM5)显著上调,木材密度降低[11]。在水稻中异源表达FPF1,发现转基因水稻抽穗时间提前[12],但过表达其同源基因Oryza sativa Root Architecture Associated 1(OsRAA1),抽穗时间无显著变化且不定根形成增多,初生根生长受到抑制,与生长素处理的表型类似[13]。随后的研究表明OsRAA1是一个细胞循环抑制子,其泛素化降解对于细胞分裂从中期到后期的转变是必须的,正是这个转变影响根系的生长和发育[14]。在黄花蒿的研究中发现,FPF1异源表达株系中青蒿素含量无显著变化,但开花时间提前约20 d[15]。将FPF1转化到甘蓝型油菜中,转基因株系表现出明显的提前开花性状,且经赤霉素(GA)处理后的转基因株系较未处理的转基因株系开花时间更早[16]。此外,一系列研究表明FPF1在大麦、小麦、菊花、萝卜中与花发育密切相关[10,17-18]。【本研究切入点】陆地棉开花促进因子基因家族的6个成员中,已经证实GhFPF1、GhFLP1都能使拟南芥开花提前。GhFPF1参与避荫反应调控[19],使拟南芥莲座叶和茎生叶减少,叶绿素含量降低[20]。GhFLP1也能促进拟南芥开花,并能响应水杨酸(SA)和GA调控[21],而GhFLP2、GhFLP3、GhFLP4和GhFLP5 4个成员的表达模式及功能尚未明确,不能确定该家族基因在功能上是否存在分化或冗余。【拟解决的关键问题】本研究从陆地棉中棉所50(CCRI50)中克隆了一个开花促进因子基因家族成员GhFLP5,对其进行表达分析,并通过转基因拟南芥验证其在开花过程中的功能。
1 材料与方法
1.1 试验材料
所用陆地棉品种为CCRI50及鲁棉研28(Lu28)。拟南芥为哥伦比亚野生型背景。
试验所用到的酶、pMD18-T载体、反转录试剂盒及荧光定量试剂盒均购自TaKaRa公司,大肠杆菌感受态DH5α购自北京全式金公司,质粒提取试剂盒购自Magen生物公司,胶回收试剂盒购自Omega Bio-Tek公司,pBI121载体及农杆菌LBA4404由棉花生物学国家重点实验室保存。
1.2 材料处理及取样
GhFLP5优势表达部位及优势表达时期的分析所用材料为CCRI50和Lu28,于夏播期种植于中国农业科学院棉花研究所白壁试验田,大田管理。于一叶期到六叶期取长势均匀的棉花的根、茎、新叶、顶芽,并于成熟期取6 mm大小的蕾、开花当天的花瓣、雄蕊、雌蕊以及生长5 d的纤维,取样后快速放入液氮中冷冻并存于-80℃冰箱中备用。激素处理所用材料为CCRI50,室内种植条件为14 h光照/10 h黑暗,温度为26℃。于二叶一心期叶面喷施激素,以清水为对照,喷施至叶面有水珠滴落。所用SA浓度为200 μmol·L-1, ABA 和JA浓度为100 μmol·L-1。拟南芥种植条件为16 h光照/8 h黑暗,温度22℃,相对湿度55%[22]。取生长18 d的拟南芥的地上部分,分析转基因拟南芥内源基因表达量变化。
1.3 GhFLP5的克隆
以拟南芥AtFPF1的蛋白序列为参比序列,在中棉所陆地棉数据库(http://cgp.genomics.org.cn/page/ species/index.jsp)中检索,共得到6条相似性比较高的表达片段。根据NCBI上已经发布的GhFLP5序列设计引物,并以CCRI50的cDNA为模板进行扩增,将得到的片段切胶回收之后连接TaKaRa公司的pMD18-T载体,得到重组质粒转化大肠杆菌DH5α,将新鲜菌液送样至金唯智生物科技有限公司进行测序,并保存测序正确的单克隆菌液以供后续试验使用。
1.4 GhFLP5的生物信息学分析
所用到的氨基酸序列下载自NCBI网站,多重序列比对使用ClustalX2软件,进化树的构建使用MEGA6.06最大似然方法。利用ExPASy网站上的Compute pI/Mw(http://web.expasy.org/compute_pi/)对其蛋白质的理化性质进行预测和分析,并用NCBI的CDD(https://www.ncbi.nlm.nih.gov/Structure/cdd/ cdd.shtml)数据库对其结构域进行预测。
1.5 基因的定量表达分析
RNA提取使用天根多糖多酚RNA提取试剂盒,所使用的RNA的质量必须保证OD260/280为1.8—2.1,OD260/230大于1.8。反转录使用TaKaRa RR047A试剂盒,使用gDNA Eraser消化总RNA中残留的基因组DNA后进行15 min的反转录反应合成cDNA。荧光定量使用SYBR Green分析法,所用试剂盒为TaKaRa RR420A,所用仪器为Applied Biosystems 7500实时定量PCR仪。陆地棉中以HISTONE 3(GhHis3)为内参,拟南芥中以UBIQUITIN 5(AtUBQ5)为内参。所用引物见附表1。
1.6 植物表达载体的构建
扩增T-A克隆的测序正确的阳性菌液,提取重组质粒为模板,用PCR的方法分别将XbaⅠ和SacⅠ位点引入到GhFLP5编码区片段的5′端和3′端。然后用SacⅠ和XbaⅠ酶消化得到的含有酶切位点的PCR产物片段和pBI121载体,并将得到的产物胶回收。采用T4连接酶16℃过夜连接,转化大肠杆菌DH5α,送公司测序。将测序正确的重组表达载体转化农杆菌。
1.7 拟南芥的遗传转化及阳性筛选
用农杆菌蘸花法转化拟南芥。扩摇农杆菌菌液至OD600=1.2—1.6。5 000 r/min离心10 min收集菌体,用含有0.02% Silwet L-77的1/2 MS渗透液重悬菌液至OD600=0.9。将已经剪去结荚角果的拟南芥花序蘸入转化介质中约45 s,然后于暗中培养24 h[23]。得到的种子为T0代种子。
将种子播种于含有卡那霉素的1/2 MS培养基上,具体做法为:在超净台内,先用0.1%的HgCl2消毒3 min,然后用75%的酒精消毒3 min,再用灭菌水清洗4—5次,于滤纸上风干后将种子播种在含抗生素的固体培养基上。放置在4℃冰箱中春化48 —72 h,取出后放在培养箱中,16 h光照条件下培养,待真叶长出后移栽到土壤中。生长两周后取样提取DNA进行PCR检测,鉴定引物上游靶定在35S启动子上,下游靶定在外源基因GhFLP5上。收获阳性株种子,直至纯合世代。
2 结果
2.1 陆地棉GhFLP5的序列分析
GhFLP5位于陆地棉Dt亚组第10染色体上,开放阅读框长300 bp,无内含子,编码氨基酸长度为99 aa。经ExPASy网站预测可知,其编码蛋白质为11.4 kD,等电点为8.04。根据NCBI的Protein数据库和Nucleotide数据库中已提交的不同物种的FPF的序列并考虑物种间亲缘关系的远近,选取玉米、水稻、大豆、毛果杨、白芥、拟南芥、苜蓿等物种的FPF蛋白序列与陆地棉的FPF蛋白序列进行多重比对(图1-a),不同物种的开花促进因子家族的蛋白质的序列一致性较高,从氨基末端到羧基末端共有3个比较保守的区域,分别为-MSFVWVFKNGV-、-LGWERYYG-和-MYDIVVKNPN-。利用MEGA6构建进化树(图1-b),GhFLP5与大豆、苜蓿和毛果杨的开花促进因子同源性较高。
2.2 GhFLP5的时空表达模式分析
根据已有的研究表明,三叶期是棉花生长的关键时期。早熟品种如中棉所36(CCRI36)等,二叶期花原基开始伸长,在三叶期已分化出4—5个果枝原基,而晚熟品种如TM-1在三叶期才开始进行花芽分化[24]。为研究GhFLP5的表达特性,分别以早熟品种CCRI50和晚熟品种Lu28为试验材料,检测GhFLP5在三叶期的根、茎、叶、顶芽,成熟期的蕾,开花当天的雄蕊、雌蕊、花瓣和5 d的纤维中的表达量(图2-a)。GhFLP5组织表达特异性很强,在叶片中表达量较高,而在其他部位略有表达甚至检测不到。早熟品种CCRI50叶片中的表达量显著高于晚熟品种Lu28。
由GhFLP5的优势表达部位可知,在幼苗期GhFLP5主要是在叶片中表达。为研究GhFLP5的时间表达模式,分别取一叶期到六叶期的倒一叶叶片,提取其总RNA,进行荧光定量检测(图2-b)。早熟品种CCRI50中,GhFLP5的表达从一叶期开始上升,在三叶期表达量达到高峰而后降低。晚熟品种Lu28中,GhFLP5的表达在三叶期较低而在四叶期达到高峰,这与前人关于棉花花芽分化理论的研究结果一致[24],表明在陆地棉的生长过程中,GhFLP5很有可能与其花原基发育相关。
2.3 GhFLP5的启动子分析及其对外源激素的应答
从中棉所陆地棉基因组数据库中调取GhFLP5起始密码子上游1 500 bp的序列,并利用PlantCARE数据库对其顺式作用元件进行了预测(表1)。该基因启动子主要存在两大类顺式作用元件,一类是光响应元件和生物钟元件;一类是胁迫响应元件,如与胁迫相关的脱落酸响应元件、干旱响应元件等。已知ABA、JA和SA都是与植物胁迫响应相关的激素[25-26]。因此,通过在棉花二叶期喷施外源激素研究GhFLP5的应答。喷施SA、ABA及JA24 h内对GhFLP5表达量进行研究(图3-a—图3-c)。经SA处理后,2 h后GhFLP5的表达量出现一个小高峰,12 h后到达峰值,表达量约是对照组中GhFLP5表达量的10倍。经ABA处理4 h后处理组中的GhFLP5表达量达到最大值,而对照组则是在8 h后达到高峰而后降低。经JA处理后,GhFLP5的表达量降低,显著低于对照组。以上结果表明,GhFLP5可以响应SA、ABA、JA这3种外源激素。SA和ABA都可以促进陆地棉中GhFLP5的表达,而JA对GhFLP5的转录起抑制作用。
2.4 GhFLP5在拟南芥中的功能验证
为进一步研究GhFLP5的功能,构建植物表达载体(图4-a),用含有重组质粒的农杆菌转化拟南芥,将培养基上筛选得到的幼苗移栽到土壤中,提取DNA鉴定阳性株(图4-b)。在纯合世代分别提取各个株系的RNA,检测发现转基因拟南芥中GhFLP5高调表达(图4-c)。
图1 氨基酸序列比对及进化树分析Fig. 1 Multiple alignment and phylogenetic comparison of GhFLP5 between different species
图2 GhFLP5的时空表达模式分析Fig.2 Temporal and spatial expression patterns of GhFLP5
表1 陆地棉GhFLP5启动子顺式作用元件预测Table 1 Predicted cis-acting elements on the promoter of GhFLP5
图4 植物表达载体构建及转基因拟南芥的阳性鉴定Fig. 4 Construction of the expression plasmid and identification of positive transgenic Arabidopsis thaliana lines
图5 异源表达GhFLP5的拟南芥开花时间提前Fig. 5 The Arabidopsis heterelogous-expressing GhFLP5 bolts and blooms earlier than the wild type
在长日照条件下同时种植野生型拟南芥和转基因拟南芥,观察二者生长状况(图5),异源表达株系呈现明显的早花表型。转基因拟南芥在播种16 d后开始抽薹,平均抽薹时间在17 d左右,极显著地低于野生型的26 d。35S::GhFLP5株系的开花时间在22 d左右,而野生型的开花时间为29 d,差异达到极显著水平,同时,其莲座叶数目也显著减少(表2)。
为了深入研究异源表达GhFLP5促进拟南芥开花的分子机制,取生长18 d的拟南芥的地上部分,提取RNA,检测拟南芥一些内源基因的表达。在组成型表达GhFLP5的转基因株系中,开花促进基因LEAFY(AtLFY)、SUPPRESSOR OF OVEREXPRESSION OF CONSTANS(AtSOC1)、FLOWERING LOCUS T(AtFT)、APETALA1(AtAP1)和FRUITFULL(AtFUL)的表达量都有所上调,尤其是AtAP1,表达量超过野生型中的16倍(图6-a)。而开花抑制因子FLOWERING LOCUS C(AtFLC)的表达则被抑制(图6-a),这也与在拟南芥中组成型表达GhFLP5正调控开花时间的表型相符。
同时,根据已有的报道对调控拟南芥开花时间的激素的生物合成酶的编码基因进行了检测,包括乙烯(ETH)、GA、油菜素内酯(BR)、生长素(IAA)的合成基因,发现只有GIBBERELLIN 20-OXIDASE 1(GA20OX1)的表达量上调超过两倍,其余基因的表达均无显著差异(图6-c)。虽然生长素合成基因的表达量无显著差异,生长素应答基因SMALL AUXIN UPREGULATED 20(AtSAUR20)和SMALL AUXIN UPREGULATED 22(AtSAUR22)在异源表达GhFLP5的转基因株系中表达量要显著高于野生型(图6-b)。
表2 野生型和转基因拟南芥抽薹、开花时间及莲座叶数目统计Table 2 Bolting time, flowering time and the number of rosette leaves of wild and transgenic plants
图6 转基因拟南芥中开花及激素合成相关基因表达量变化Fig.6 The transcript analysis of some genes related to blooming and phytohormones biosynthesis in transgenic lines
3 讨论
开花是陆地棉的重要农艺性状之一。花期的早晚影响产量的高低,也影响品种的区域适应性。虽然开花是一个由多基因控制的数量性状,经典遗传学研究也表明许多开花相关的基因符合孟德尔遗传定律[27]。陆地棉全基因组测序的完成对深入研究开花的遗传控制具有重要的意义和推动作用。从陆地棉基因组数据库中共检索到6个开花促进因子基因家族成员,本研究克隆了GhFLP5,其功能研究结果表明,GhFLP5可以响应外源激素SA、ABA、JA处理,异源表达GhFLP5使拟南芥提前开花,且转基因株系中成花基因AtAP1表达量升高达16倍,生长素应答基因AtSAUR20和AtSAUR22,赤霉素合成相关基因GA20OX1的表达也显著上调。
ABA是调节干旱胁迫的关键激素,它可以促进GIGANTEA(GI)、FT、TWIN SISTER OF FT(TSF)的表达而促进开花[28],也可以激活FLC的表达而抑制开花[29]。SA是与植物胁迫相关的重要激素,也是诱导开花的常用化学试剂[30]。它不仅能参与光周期途径通过GI调节植物花期,也可以通过FVE在自主途径中促进开花[31]。JA是高等植物中的天然生长调节剂,它在植物衰老、根系发育、花粉开裂和防御反应中都发挥重要作用[32],同时它也可以通过负向调控成花素基因FT的表达延迟植物开花[33]。本研究表明GhFLP5可以响应ABA和SA诱导而高调表达,也会被JA抑制,这都与35S:GhFLP5拟南芥提前开花的表型一致。
AP1是植物中特有的MADS-box基因,它不仅是花序分生组织特征基因,与LFY和CAULIFLOWER(CAL)共同促进花序分生组织的形成,也是花器官形态特征基因,调节花瓣和萼片的发育[34]。AP1可以抑制下游的生长素合成基因LONELY GUY1(LOG1)的表达,并上调生长素降解基因CYTOKININ OXIDASE/DEHYDROGENASE3(CKX3)的表达[35]。35S::GhFLP5株系中,生长素合成基因IAAs和YUCs的表达量无显著变化,但生长素应答基因AtSAUR20和AtSAUR22表达量显著升高。已有报道证明二者都参与调节细胞伸长,表达量升高可以增强IAA在植物体内的运输,过表达会增强拟南芥对生长素的耐受性[36],这说明GhFLP5很有可能是通过生长素的调节途径控制拟南芥的开花转变。GA20OX1是催化合成具有生物活性的赤霉素的关键基因,其表达量的升高也暗示了GhFLP5的调控可能结合了双子叶植物拟南芥和单子叶植物水稻中的双重作用,同时通过IAA和GA影响植物的生长发育。
除了AtFPF1,拟南芥中还存在FPF1-LIKE PROTEIN 1(AtFLP1)和FPF1-LIKE PROTEIN 2(AtFLP2)2个同源基因,其编码蛋白与AtFPF1具有92%和80%的同源性。这两个基因过表达都能使拟南芥开花提前,但与AtFPF1在顶芽中表达不同,AtFLP1主要在根和花中表达,AtFLP2则主要在萼片中表达[37]。陆地棉GhFLP1也能促进拟南芥开花,但其主要在棉花的花器官中表达且受外施GA调控[21]。此外,虽然35S::GhFLP5拟南芥早花表型明显,但与GhFPF1影响植物避荫反应[20]不同,AtPHYB的表达量并无显著变化,说明该家族的基因在表达和功能上都出现了一定的分化。
4 结论
从CCRI50中成功克隆GhFLP5,其位于Dt亚组第10染色体上,全长300 bp,无内含子。其表达具有强烈的组织特异性,在叶片中优势表达,且在早熟陆地棉品种中表达量高峰早于晚熟陆地棉品种。GhFLP5在叶片中的表达受到SA和ABA的诱导之后表达量上升,而外施JA会抑制GhFLP5的表达。在拟南芥中异源表达该基因,拟南芥呈现明显的早花表型,推测可能通过IAA和GA途径调节植物开花转型。
[1] 喻树迅, 宋美珍, 范术丽. 我国短季棉遗传育种研究进展. 棉花学报, 2007, 19(5): 331-336.
YU S X, SONG M Z, FAN S L. Advances of genetics and breeding of short season cotton in China. Cotton Science, 2007, 19(5): 331-336. (in Chinese)
[2] 李威. 陆地棉花芽分化诱导阶段茎尖的表达谱分析[D]. 武汉: 华中农业大学, 2011.
LI W. Transcriptome profiling of upland cotton shoot apex during floral induction[D].Wuhan: Huazhong Agricultural University, 2011. (in Chinese)
[3] 吴嫚. 中棉所36花发育相关功能基因的发掘及其验证[D]. 杨陵:西北农林科技大学, 2010.
WU M. Research on the flowering-related gene in CCRI36[D]. Yangling: Northwest A&F University, 2010. (in Chinese)
[4] YU S, CAO L, ZHOU C M, ZHANG T Q, LIAN H, SUN Y, WU J Q,
HUANG J R, WANG G D, WANG J W. Sugar is an endogenous cue for juvenile-to-adult phase transition in plants. Elife Sciences, 2013, 2(2): e00269.
[5] 孙昌辉, 邓晓建, 方军, 储成才. 高等植物开花诱导研究进展. 遗传, 2007, 29(10): 1182-1190.
SUN C H, DENG X J, FANG J, CHU C C. An overview of flowering transition in higher plants. Hereditas, 2007, 29(10): 1182-1190. (in Chinese)
[6] MELZER S, MAJEWSKI D M, APEL K. Early changes in gene expression during the transition from vegetative to generative growth in the long-day plant Sinapis alba. The Plant Cell, 1990, 2(10): 953-961.
[7] KANIA T, RUSSENBERGER D, PENG S, APEL K, MELZER S. FPF1 promotes flowering in Arabidopsis. The Plant Cell, 1997, 9(8): 1327-1338.
[8] MELZER S, KAMPMANN G, CHANDLER J, APEL K. FPF1 modulates the competence to flowering in Arabidopsis. The Plant Journal, 1999, 18(4): 395-405.
[9] CHANDLER J W, MELZER S. An alpha-crystallin gene, ACD31.2 from Arabidopsis is negatively regulated by FPF1 overexpression, floral induction, gibberellins, and long days. Journal of Experimental Botany, 2004, 55(401): 1433-1435.
[10] GREENUP A G, SASANI S, OLIVER S N, TALBOT M J, DENNIS E S, HEMMING M N, TREVASKIS B. ODDSOC2 is a MADS box floral repressor that is down-regulated by vernalization in temperate cereals. Plant Physiology, 2010, 153(3): 1062-1073.
[11] HOENICKA H, LAUTNER S, KLINGBERG A, KOCH G, EL-SHERIF F, LEHNHARDT D, ZHANG B, BURGERT I, ODERMATT J, MELZER S, FROMM J, FLADUNG M. Influence of over-expression of the Flowering Promoting Factor 1 gene (FPF1) from Arabidopsis on wood formation in hybrid poplar (Populus tremula L. × P. tremuloides Michx.). Planta, 2012, 235(2): 359-373. [12] XU M L, JIANG J F, GE L, XU Y Y, CHEN H, ZHAO Y, BI Y R, WEN J Q, CHONG K. FPF1 transgene leads to altered flowering time and root development in rice. Plant Cell Reports, 2005, 24(2): 79-85. [13] GE L, CHEN H, JIANG J F, ZHAO Y, XU M L, XU Y Y, TAN K H, XU Z H, CHONG K. Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity. Plant Physiology, 2004, 135(3): 1502-1513.
[14] Xu Y Y, CAO H, CHONG K. APC-targeted RAA1 degradation mediates the cell cycle and root development in plants. Plant Signaling & Behavior, 2010, 5(3): 218-223.
[15] Wang H, Ge L, Ye H C, CHONG K, LIU B Y, LI G F. Studies on the effects of fpf1 gene on Artemisia annua flowering time and on the linkage between flowering and artemisinin biosynthesis. Planta Medica, 2004, 70(70): 347-352.
[16] 黄琼华, 杨光伟, 李德谋, 罗小英, 裴炎. 农杆菌介导法将FPF1基因导入油菜的研究初报. 西南大学学报, 2002, 24(2): 124-127.
HUANG Q H, YANG G W, LI D M, LUO X Y, PEI Y. Preliminary studies on transgenic rapeseed (Brassica Napus L.) with FPF1 gene mediated by Agrobacterium Tumefacien. Journal of Southwest Agricultural University, 2002, 24(2): 124-127. (in Chinese)
[17] 皮伟, 李名扬. 根癌农杆菌介导FPF1基因转化菊花的研究. 西南大学学报, 2007, 29(4): 70-73.
PI W, LI M Y. Transferring FPF1 into Chrysanthemum mediated by Agrobacterium tumefaciens. Journal of Southwest Agricultural University, 2007, 29(4): 70-73. (in Chinese)
[18] 许园园, 王燕, 柳李旺, 徐良, 王克磊, 张凤娇, 聂姗姗, 龚义勤.萝卜抽薹开花促进因子RsFPF1基因克隆与功能分析. 南京农业大学学报, 2014, 37(4): 31-38.
XU Y Y, WANG Y, LIU L W, XU L, WANG K L, ZHANG F J, NIE S S, GONG Y Q. Molecular cloning and functional analysis of flowering promoting factor 1 gene (RsFPF1) involved in bolting and flowering control in radish (Raphanus sativus L.). Journal of Nanjing Agricultural University, 2014, 37(4): 31-38. (in Chinese)
[19] WANG X Y, PANG C Y, WEI H L, YU S X. Involvement of cotton gene GhFPF1 in the regulation of shade avoidance responses in Arabidopsis thaliana. Plant Signaling & Behavior, 2015, 10(9): 631-634.
[20] WANG X Y, FAN S L, SONG M Z, PANG C Y, WEI H L, YU J W, MA Q F, YU S X. Upland cotton gene GhFPF1 confers promotion of flowering time and Shade-Avoidance Responses in Arabidopsis thaliana. PLoS ONE, 2014, 9(3): e91869.
[21] 张盼, 范术丽, 宋美珍, 庞朝友, 魏恒玲, 喻树迅. 陆地棉开花相关基因GhFLP1的克隆与功能验证. 棉花学报, 2016, 28(3): 199-207.
ZHANG P, FAN S L, SONG M Z, PANG C Y, WEI H L, YU S X. Cloning and functional analysis of the flowering-related gene GhFLP1 from upland cotton (Gossypium hirsutum L.). Cotton Science, 2016, 28(3): 199-207. (in Chinese)
[22] SUKHATME J, SMITH L M. Arabidopsis Protocols, 2nd Eidtion. Springer, Berlin, 2006.
[23] CLOUGH S J, BENT A F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal for Cell & Molecular Biology, 1998, 16(6): 735-743.
[24] LI J, FAN S L, SONG M Z, PANG C Y, WEI H L, LI W, MA J H, WEI J H, JING J G, YU S X. Cloning and characterization of a FLO/LFY ortholog in Gossypium hirsutum L.. Plant Cell Reports, 2013, 32(11): 1675-1686.
[25] PARK C, LIM C W, BAEK W, LEE S C. RING type E3 ligase CaAIR1 in pepper acts in the regulation of ABA signaling and drought stress response. Plant and Cell Physiology, 2015, 56(9): 1808-1819.
[26] KAWAGOE Y, SHIRAISHI S, KONDO H, YAMAMOTO S, AOKI Y,SUZUKI S. Cyclic lipopeptide iturin a structure-dependently induces defense response in Arabidopsis plants by activating SA and JA signaling pathways. Biochemical & Biophysical Research Communications, 2015, 460(4): 1015-1020.
[27] HORI K, MATSUBARA K, YANO M. Genetic control of flowering time in rice: Integration of mendelian genetics and genomics. Japanese Journal of Applied Physics, 1992, 31(Part 2, No. 9A): L1236-L1238.
[28] RIBONI M, TEST A R, GALBIATI M, TONELLI C, CONTI L. ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana. Journal of Experimental Botany, 2016, 67(22): 6309-6322.
[29] SHU K, CHEN Q, WU Y, LIU R J, ZHANG H W, WANG S F, TANG S Y, YANG W Y, XIE Q. ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription. Journal of Experimental Botany, 2016, 67(1): 195-205.
[30] 黄猛, 许亚良, KHAESO K, 孙雪飘, 张家明. 水杨酸诱导膨胀浮萍(Lemna gibba SH0204)开花. 植物生理学报, 2015(4): 559-565. HUANG M, XU Y L, KHAESO K, SUN X P, ZHANG J M. Flower-induction of Lemna gibba SH0204 by salicylic acid. Plant Physiology Journal, 2015(4): 559-565. (in Chinese)
[31] MARTÍNEZ C, PONS E, PRATS G, LEON J. Salicylic acid regulates flowering time and links defence responses and reproductive development. The Plant Journal, 2004, 37(2): 209-217.
[32] KIM J, DOTSON B, REY C, LINDSEY J, BLEECKER A B, BINDER B M, PATTERSON S E. New clothes for the jasmonic acid receptor coi1: Delayed abscission, meristem arrest and apical dominance. PLoS ONE, 2013. 8(4): e60505.
[33] ZHAI Q, ZHANG X, WU F, FENG H, DENG L, XU L, ZHANG M, WANG Q, LI C. Transcriptional mechanism of jasmonate receptor COI1-mediated delay of flowering time in Arabidopsis. The Plant Cell, 2015, 27(10): 2814-2828.
[34] HAN Y, JIAO Y. APETALA1 establishes determinate floral meristem through regulating cytokinins homeostasis in Arabidopsis. Plant Signaling & Behavior, 2015, 10(11): e989039.
[35] HAN Y, ZHANG C, YANG H, JIAO Y. Cytokinin pathway mediates APETALA1 function in the establishment of determinate floral meristems in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(18): 6840-6845.
[36] SPARTZ A K, SANG H L, WENGER J P, GONZATEZ N, INZE D, PEER W A, MURPHY A S, OVERVOORDE P J, GRAY W M. The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. Plant Journal for Cell & Molecular Biology, 2012, 70(6): 978-990.
[37] BORNER R, KAMPMANN G, APEL K, MELZER S. The FPF1 gene family and flowering time control in Arabidopsis. 11th International Conference on Arabidopsis Research: June 24-28, Madison, Wisconsin, USA.
(责任编辑 李莉)
The Expression Patterns and Function Analysis of GhFLP5, a Gene Related to Flowering in Upland Cotton (Gossypium hirsutum L.)
WANG CongCong, ZHANG XiaoHong, WANG XiaoYan, ZHANG Pan, FAN ShuLi, PANG ChaoYou, MA QiFeng, WEI HengLing, WANG HanTao, SU JunJi, YU ShuXun
(Institute of Cotton Research of Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang 455000, Henan)
upland cotton; flowering time; GhFLP5; expression patterns; gene functions
附表1 引物序列Supplementary Table 1 Primers used in this study
续附表1
2016-12-01;接受日期:2017-03-07
国家重点研发计划(2016YFD0101006)
联系方式:王聪聪,Tel:18211623061;E-mail:wangcongc1992@163.com。通信作者喻树迅,Tel:0372-2525363;E-mail:Ysx195311@163.com
Abstract:【Objective】To provide more information for breeding, the gene Flowering Promoting Factor1-like Protein 5 (GhFLP5), a member of the flowering promoting factor family in Gossypium hirsutum L., was cloned, and then its expression patterns were studied to characterize its functions in flowering process. 【Method】According to the sequences on NCBI , specific primers were designed by Oligo7 and GhFLP5 was cloned from cDNA of cultivar CCRI50. The protein properties were predicted via ExPASy. FPFs of other species were retrieved from NCBI. ClustalX2 was used for multiple sequence alignment and phylogenetic tree was constructed by MEGA6. The samples of different stages and different tissues of early maturity variety CCRI50 and later maturity variety Lu28 were used to study the spatial and temporal expression profiles of GhFLP5. A 1 500 bp fragment upstream the start codon was taken from the genomic database, then the cis-acting elements were analysed with PlantCARE. Based on the predictions, several phytohormones were selected to explore the responses of GhFLP5. pBI121-GhFLP5, a recombinant expression plasmid was constructed and transformed into Arabidopsis. The homozygous overexpression lines were observed and expression profiles were performed with quantitative real-time PCR (qRT-PCR). 【Result】With a 300 bp coding frame, GhFLP5 encoded a 11.4 kD protein. There were three pretty conserved domains, which reveals that GhFLP5 has a close relationship with those of Glycine max, Medicago truncatula and Polulus trichocarpa. Spatial expression patterns showed that it expressed predominantly in leaves. And GhFLP5 was transcribed at a higher level in early maturity variety CCRI50 than in later maturity variety Lu28. Temporal expression patterns showed that it hit a peak at three-true-leaf stage in CCRI50 but at four-true-leaf stage in Lu28. There were mainly two kinds of cis-acting elements in promoter region: one was light-response elements and circadian elements, and the other was stress-response elements. According to the elements' distributions and functions, salicylic acid (SA), abscisic acid (ABA) and jasmonic acid (JA) were selected to treat cotton seedlings. As a result, GhFLP5 was activated by SA and ABA, while it was suppressed by JA. The overexpression plants bolted about 9 days and flowered about 7 days earlier than the wild type. Meanwhile, the rosette leaves decreased, and all the differences were extremely significant. Quantitative analysis showed that the genes promoting flowering such as LEAFY (AtLFY), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (AtSOC1), FLOWERING LOCUS T (AtFT), APETALA1 (AtAP1) and FRUITFULL (AtFUL) were up-regulated in 35S::GhFLP5 lines, while the gene AtFLC, delaying flowering, was down-regulated. Moreover, the auxin-responsive genes SMALL AUXIN UPREGULATED 20 (AtSAUR20) and SMALL AUXIN UPREGULATED 22 (AtSAUR22) were induced in transgenic Arabidopsis lines. GIBBERELLIN 20-OXIDASE 1 (GA20OX1), a gene involved in gibberellin (GA) biosynthesis, was also up-regulated more than two folds. 【Conclusion】The Arabidopsis thaliana lines over-expressing GhFLP5 performed an obvious early-flowering phenotype. Moreover, the gene expression profiles indicated that GhFLP5 may play dual roles in the transition to flowering via both GA and IAA signaling pathways.