分散事件触发NCS的H∞控制器设计
2017-07-12韩丽丽赵立英白敬
韩丽丽+赵立英+白敬
摘要:针对具有时变时延的网络化控制系统(networked control system,NCS),提出一种新的分散事件触发通讯机制。该机制可以有效的节约网络资源并且不依赖于状态数据的完整信息,若干个空间分布式传感器结点采集状态数据的局部信息并根据子传输机制传输信号。本文首先建立包含网络时延和分散事件触发条件的闭环NCS模型,然后利用Lyapunov稳定性理论和线性矩阵不等式方法给出闭环系统渐近稳定的充分条件,进而给出 控制器和分散事件触发机制的协同设计方法,最后通过Matlab数值仿真验证该方法的有效性。
关键字:网络控制系统;分散事件触发机制;时变时延;线性矩阵不等式
中图分类号:TP273 文献标志码:A
Abstract: Aim at the networked control systems with time-varying delay (networked control system, NCS), in order to save the limited network resources, decentralized event-trigger communication mechanism is introduced. This mechanism can effectively save network resources and does not depend on the complete information of state data, many spatially distributed sensors collecte local information and transmit it according to sub-communication scheme.By establishing a closed-loop NCS model containing the delay and decentralized event-trigger, and using Lyapunov stability theory and liner matrix inequality approach, the sufficient condition is derived for the closed-loop system with asymptotic stability. Moreover, a method of co-design is given for controller and decentralized event-trigger mechanism. At last, a numerical simulation example is given to prove the effectiveness of the method.
Key word: Networked control systems;decentralized event-trigger; time-vary delay; liner matrix inequality
1.引言部分
网络控制系统是由传感器,控制器,执行器等部件通过网络构成的闭环系统,与传统的控制系统相比,NCS具有成本低,接线少,便于维护与安装等优点,但是由于网络宽带有限,该系统面临着时延,丢包,失稳等现象[1-3]。另外,由于NCS的大规模分布式构架,工作环境和系统建模误差的变化,其不确定因素也变多,所以针对同时具有参数不确定性和外部扰动的系统有必要研究其鲁棒稳定性[4-5]。
为了有效利用网络资源,事件触发控制成为当前研究的热点之一。文献[6]提出一种离散事件触发机制,即在采样时刻检测系统的状态并计算相应误差,然后与预先设定阈值比较,判断系统状态数据是否需要传输。文献[7]在离散事件触发基础上研究了含参数不确定的时变时延控制系统的鲁棒完整性。文献[8]在文献[7]的时变时延系统中又增加了外部扰动因素并进行了 控制器的设计保证系统具有 性能。文献[9]和文献[10]研究的分别是数据采样系统和神经网络控制系统,为了达到节约有限资源的作用而提出一种分散事件触发机制。受此启发,把这一思想运用在网络控制系统中。考虑到现有的网络控制系统中关于事件触发的文献都是假设用一个事件触发条件判断采集的数据是否可以通过网络传输。而本文提出的分散事件触发机制与现有文献相比有以下几点创新:第一,用若干个空间分布式传感器采集状态数据的局部信息,然后利用相应的事件触发条件判断局部信息是否需要传输。显然这样设计的优点在于不同的事件触发机制提供不同的传输条件,每个触发机制只是依赖状态数据的局部信息。第二,改善以往的单通道数据传输方式,采用多通道传输的思想,尽可能缓解带宽受限的问题。第三,分散事件触发机制具有更广泛的意义,文献[6-8]提到的离散事件触发机制都是分散事件触发机制的特殊情况。
本文在文献[6-8]的基础上,考虑不确定性网络时延的NCS并通过分散事件触发机制来提高网络资源的利用率。首先提出包含网络属性,不确定参数和触发条件的閉环系统渐近稳定的充分条件,进一步给出 状态反馈控制器和分散事件触发机制的协同设计方法。最后通过仿真算例验证了该方法的有效性。
5结论
本文针对一类具有时变时延的不确定NCS,提出了一种新颖的事件触发机制,即分散事件触发机制,使得系统在保持稳定的前提下还有效的节约了网络资源并降低了信号的传输率。同时给出了网络控制系统 控制器和通讯协议协同设计的方法。最后通过数值仿真验证了本文所提方法的有效性。
参考文献
[1] Huijun Gao,Xiangyu Meng,Tongwen Chen.Stab-
ilization of network control systems with a new
delay Characterization[J].IEEE Transaction on
Automatic Control,2008,53(9):2142-2148 .
[2] Zidong Wang,Fuwen Yang,Daniel W.C.Ho,Xiao
hui Liu.Robust control for network systems
with random packet losses[J].IEEE Transactions
on Systems,Man,and Cybernetics,Part B(Cybern-
etics),2007,37(4):916-924.
[3] Liqian Zhang,Yang Shi,Tongwen Chen,Biao Hua-
ng.A new method for stabilization of networked
control systems with random delays[J].IEEE Tran-
sactions on AutomaticControl,2005,50(8):1177-
1181.
[4] Dong Yue,Qinglong Han,James Lam.Networked-
based robust control of systems with uncer-
tainty[J].Automatica,2005,41(6):999-1007.
[5] Hai Lin,Guisheng Zhai,P.J.Antsaklis.Robust stab-
ility and disturbance attenuation analysis of a class
of networked control systems[J]. In Proceedings
of the conference on decision and control,2003,2
(10):1182-1187.
[6] Peng Chen,QingLong Han,Dong Yue.To transmmit
or not transmit:a discrete event-triggered commu-
nication Scheme for networked Takagi-Sugeno fu-
zzy systems [J],IEEE Transactions on Fuzzy Syst-
Ems,,2013,21(1):164-170.
[7] 李煒,赵莉,蒋栋年等.基于事件触发的NCS鲁棒
完整性设计[J].兰州理工大学学报,2014,40(1):
74-79.
[8] Shen Yan,Huaichen Yan,Hongbo Shi,Hao Zhang.
controller design of event-triggered networ-
ked control systems[C].International Conference
on Mechatronics and Control,2014:1972-1976.
[9] Yanpeng Guan,Qinglong Han,Chen peng.Decentr-
alized event-triggered control for sampled-data
systems with asnchronous sampling[C].American
Conrol Conference.2013:6565-6570.
[10] Jin Zhang,Peng Chen.Synchronization of master-
slave neural networks with a decentralized event
triggered communication scheme[J].Neurocomp-
uting.2016,173:1824-1831.
[11] Xiaofeng Wang, Michael D. Lemmon. Self-
feedback control systems with finite-L2 gain
stability[J].IEEE Transactions on Automatic
Control.2009,54(3):452-467.
[12] Xiefu Jiang,Qinglong Han,Shirong Liu,Anke
Xue.A new stabilization criterion for net-
worked control systems[J].IEEE Transactions
on Automatica Control.2008,53(4):1025-1032.
[13] Park Poogyeon,Ko Jeong Wan,Jeong Changki.
Reciprocally convex approach to stability of
systems with timi-varying delay[J].Automatic.
2011,47(1):235-238.
[14] Xie Lihua.Output feedback control of syst-
ems with parameter uncertainty[J].International
Journal of Control.1996,63(4):741-750.
[15] Junlin Xiong,James Lam. Stabilization of netwo-
rked control systems with a logic ZOH[J].IEEE
Transactions on Automatic Control.2009,54(2):
358-363.