数学史上的三次数学危机的成因分析
2017-06-26雷玲玲
雷玲玲
330001 南昌市洪城学校 江西南昌
【摘 要】①公元前580~568年之间,希帕索斯发现了第一个无理数,促使了第一次数学危机的发生。而后,在几何学中引进了不可通约量,使欧式几何变得更加完善。②大约在公元前450年,莱布尼茨提出“无穷小量是零还是非零”促使了第二次数学危机的发生。而后,柯西提出极限理论,使微积分更完善。③十九世纪下半叶,罗素悖论的提出,促使了第三次数学危机的发生。而后,弗芝克尔改进策梅罗的七条公理得出ZF公理系统,使得集合论得到了发展。
【关键词】危机;无理数;无穷小;罗素悖论
数学,绝对不是只有加、减、乘、除那样简单的运算而已。它是一个早从“石器时代”就开始发展的一段历史,是一个演变和提升的过程。悖论历史悠久,它的出现,本来并没有引起人们的重视,可是由于19世纪末20世纪初,在集合论中出现了3个著名的悖论,引起了当时数学界、逻辑学界以至于哲学界的震惊,触发了数学史上的第三次危机,才引起了现代数学界和逻辑学界的极大注意。本文试图对悖论的定义、成因以及由于数学悖论引起的数学史上的三次危机作以简要分析。
1第一次数学危机及成因
1.1危机介绍
第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。希伯索斯的发现被认为是“荒谬”和违反常识的事。它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。
1.2危机成因分析
毕达哥拉斯学派主张“数”是万物的本原、始基,而宇宙中一切现象都可归结为整数或整数之比。公元前5世纪,毕达哥拉斯学派的成员希帕索斯(470B.C.前后)发现:等腰直角三角形斜边与一直角边是不可公度的,它们的比不能归结为整数或整数之比。这一发现不仅严重触犯了毕达哥拉斯学派的信条,同时也冲击了当时希腊人的普遍见解,因此在当时它就直接导致了认识上的“危机”。希帕索斯的这一发现,史称“希帕索斯悖论”,从而触发了数学史上的第一次危机。
2第二次数学危机及成因
2.1第二次危机介绍
第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。其实我翻了一下有关数学史的资料,微积分的雏形早在古希腊时期就形成了,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到2100年后,牛顿和莱布尼兹开辟了新的天地——微积分。微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾。焦点是:无穷小量是零还是非零?如果是零,怎么能用它做除数?如果不是零,又怎么能把包含着无穷小量的那些项去掉呢?直到19世纪,柯西详细而有系统地发展了极限理论。
2.2危机成因分析
第二次数学危机的产物——分析基础理论的严密化与集合论的创立。“贝克莱悖论”提出以后,许多著名数学家从各种不同的角度进行研究、探索,试图把微积分重新建立在可靠的基础之上。法国数学家柯西是数学分析的集大成者,通过《分析教程》(1821)、《无穷小计算讲义》(1823)、《无穷小计算在几何中的应用》(1826)这几部著作,柯西建立起以极限为基础的现代微积分体系。但柯西的体系仍有尚待改进之处。比如:他关于极限的语言尚显模糊,依靠了运动、几何直观的东西;缺乏实数理论。法国数学家魏尔斯特拉斯是数学分析基础的主要奠基者之一,他改进了波尔查诺、阿贝尔、柯西的方法,首次用“e—d”方法叙述了微积分中一系列重要概念如极限、连续、导数和积分等,建立了该学科的严格体系。“e—d”方法的提出和应用于微积分,标志着微积分算术化的完成。为了建立极限理论的基本定理,不少数学家开始给出无理数的严格定义。1860年,魏尔斯特拉斯提出用递增有界数列来定义无理数;1872年,戴德金提出用分割来定义无理数;1883年,康托尔提出用基本序列来定义无理数;等等。这些定义,从不同的侧面深刻揭示了无理数的本质,从而建立了严格的实数理论,彻底消除了希帕索斯悖论,把极限理论建立在严格的实数理论的基础上,并进而导致集合论的诞生。
3第三次数学危机及成因
3.1危机介绍
第三次数学危机发生在1902年。罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。罗素在该悖论中所定义的集合R,被几乎所有集合论研究者都认为是在朴素集合论中可以合法存在的集合。事实虽是这样但原因却又是什么呢?这是由于R是集合,若R含有自身作为元素,就有R R,那么从集合的角度就有R R.一个集合真包含它自己,这样的集合显然是不存在的。因为既要R有异于R的元素,又要R与R是相同的,这显然是不可能的。因此,任何集合都必须遵循R R的基本原则,否则就是不合法的集合。这样看来,罗素悖论中所定义的一切R R的集合,就应该是一切合法集合的集合,也就是所有集合的集合,这就是同类事物包含所有的同类事物,必会引出最大的这类事物。归根结底,R也就是包含一切集合的“最大的集合”了。因此可以明确了,实质上,罗素悖论就是一个以否定形式陈述的最大集合悖论。
3.2危机成因分析
第三次数学危机的产物——数理逻辑的发展与一批现代数学的产生。为了解决第三次数学危机,数学家们作了不同的努力。由于他们解决问题的出发点不同,所遵循的途径不同,所以在本世纪初就形成了不同的数学哲学流派,这就是以罗素为首的逻辑主义学派、以布劳威尔(1881—1966)为首的直觉主义学派和以希尔伯特为首的形式主义学派。这三大学派的形成与发展,把数学基础理论研究推向了一个新的阶段。三大学派的数学成果首先表现在数理逻辑学科的形成和它的现代分支——证明论等——的形成上。为了排除集合论悖论,罗素提出了类型论,策梅罗提出了第一个集合论公理系统,后经弗伦克尔加以修改和补充,得到常用的策梅罗——弗伦克尔集合论公理体系,以后又经伯奈斯和哥德尔进一步改进和简化,得到伯奈斯——哥德尔集合论公理体系。希尔伯特还建立了元数学。作为对集合论悖论研究的直接成果是哥德尔不完全性定理。
时至今日,第三次数学危机还不能说已从根本上消除了,因为数学基础和数理逻辑的许多重要课题还未能从根本上得到解决。然而,人们正向根本解决的目标逐渐接近。可以预料,在这个过程中还将产生许多新的重要成果。
4结论
发现和提出悖论并加以研究,对于数学基础、逻辑学和哲学都有重要意义。正如塔斯基所指出的:“必须强调的是,悖论在建立现代演绎科学的基础上占有一个特别重要的地位。正如集合论的悖论,特别是罗素悖论成为逻辑和数学相容性形式化的起点一样,撒谎者悖论及其语义学悖论导致了理论语义学的发展。”
参考文献:
[1]解恩泽,徐本顺 编.数学思想方法[M].济南:山东教育出版社,1995
[2]刘永振 编.科技思想方法的历史沿革[M].济南:山东教育出版社,1992
[3]赵树智 编.潜数学思想方法[M].济南:山东教育出版社,1994
[4]趙振威 编.数学发现导论[M].合肥:安徽教育出版社,1993