APP下载

引黄灌淤耕作对剖面土壤有机质组分构成的影响*

2017-06-07董林林张海东于东升史学正郭乃嘉任杨张

土壤学报 2017年3期
关键词:引黄灌区耕作剖面

董林林张海东于东升史学正†郭乃嘉任 杨张 丽

(1 土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所),南京 210008)

(2 苏州市农业科学院,江苏苏州 215155)

(3 中宁县农业技术推广服务中心,宁夏中宁 751200)

引黄灌淤耕作对剖面土壤有机质组分构成的影响*

董林林1,2张海东1,2于东升1史学正1†郭乃嘉1任 杨3张 丽3

(1 土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所),南京 210008)

(2 苏州市农业科学院,江苏苏州 215155)

(3 中宁县农业技术推广服务中心,宁夏中宁 751200)

土壤有机质组分构成是影响土壤有机碳库稳定性最直接的原因。为研究灌溉耕作对不同组分土壤有机质含量变化产生的影响,以宁夏引黄灌区为研究对象,通过密度分组方法,测定并分析土壤轻组和重组有机碳含量的变化。结果表明,经过不同时间的引黄灌溉耕作后,土壤轻组和重组有机质含量增加,但是不同组分,其变化量之间存在差异。在剖面深度上,土壤轻组和重组有机质含量及其增加量均随土层深度的增加而降低,表层土壤轻组和重组有机质增加最显著,土壤有机质组分含量的变化受土壤类型的影响明显。与未受灌溉耕作影响的自然土壤相比,灌溉土壤0~60 cm深度内轻组有机质与总有机质间的相关性增强,而且这种相关性随土层深度增加而减弱;自然土壤和灌溉土壤剖面各层次重组有机质与总有机质间均有极强的相关性,说明重组有机质是土壤有机质最为重要的组分,但轻组有机质对灌溉耕作的响应更加敏感,重组有机质较轻组有机质具有更好的固碳效果。

引黄灌溉;土壤;轻组有机质;重组有机质

土壤有机质(Soil organic matter,SOM)是最主要的土壤肥力指标之一,其含量的高低对作物的生长产生重要影响。根据密度分组的方法,可将土壤有机质分为轻组和重组有机质[1-2]。轻组有机质(Light fraction organic matter,LFOM)相对活跃,可为作物生长提供营养物质,是陆地生态系统碳循环的重要参与者;重组有机质(Heavy fraction organic matter,HFOM)相对稳定,对促进土壤固碳和减缓全球变暖具有重要意义。由于受到自然或人为因素的影响,土壤有机质处于不断地变化之中[2-4],且各类因素对土壤有机质变化的影响存在明显差异。如:秸秆还田或作物覆盖等方法由于直接增加了有机质投入而使土壤有机质含量增加,相对而言,土壤轻组有机质含量的增加更明显[4-6];免耕及保护性耕作因减轻了对土壤的扰动,降低了土壤的呼吸速率及生物酶活性,减少了土壤有机质的矿化分解,更有利于活性较强的轻组分有机质的累积[2,7];灌溉既能促进作物生长,又能增加土壤有机质投入,是保障农业正常生产和提升土壤质量的重要措施[8-10]。

但是,由于灌溉水质、灌溉方式和时间的不同,灌溉对土壤有机质变化的影响差异较大[9-11]。较为普遍的观点认为,灌溉可以促进作物生长,增加有机质投入,从而有利于土壤有机碳的增加。如:Presley等[12]认为灌溉28~31a后,土壤有机质在剖面上未发生明显变化。Ogle 等[13]通过综合分析界定了农业管理措施对土壤有机碳的影响,并指出灌溉有利于增加土壤有机碳储量。此外引用污水进行灌溉时,由于污水中有机质的输入,可增加土壤有机质含量,如:赵加瑞等[14]在陕西交口抽渭灌区的研究表明,表层土壤活性有机质组分较井水灌溉的土壤增加显著,非活性有机质组分主要受天气和土壤属性的影响,变化不明显。Lei等[15]的分析表明,灌溉34 a后,小麦地土壤有机碳库较雨养农田表层(0~20 cm)土壤有机碳库约高出10%~12%;Boulal和Gómez-Macpherson[16]在西班牙的研究认为,持续灌溉4 a后土壤有机质含量接近于雨养保护性耕作11a的土壤有机质含量,且持续灌溉的水土保持效应明显;Mohawesh等[17]在叙利亚西南部的研究结果显示,运用有机质含量为30.57 g L-1的橄榄油厂废水灌溉5a和15a后,土壤有机碳含量由未灌溉土壤中的6.4 g kg-1分别增加至 46.5和76.8 g kg-1。但是,Negahban-Azar等[18]在美国亚利桑那州和加利福尼亚州的报道指出,运用废水灌溉的土壤,表层有机质含量较用清水灌溉的土壤分别低70%和30%;Albalawneh等[19]在约旦的研究结果显示,经过2 次处理过的废水灌溉后,土壤有机质含量出现了轻微下降,平均含量由19.9 g kg-1降至 19.1 g kg-1。

在我国西部内陆干旱—半干旱地区,引用含有大量泥沙的河水灌溉进行农业生产具有悠久的历史,而且对这些地区的土壤性质产生了巨大的影响。如:王吉智[20]和龚子同等[21]的研究指出,引黄灌溉不仅有利于土壤有机质的提升,更有利于灌淤土的形成;毛伟兵等[22]和孙玉霞等[23]的研究表明:随灌溉时间的延长,小开河引黄灌区土壤有机碳的含量有显著提高,且0~5cm 表层土壤中,土壤有机碳含量增加明显高于其他土层;郭秉晨等[24]和Dong等[25]在宁夏地区的研究结果均显示,引用含有泥沙的黄河水灌溉,能明显增加土壤有机质含量,且随着灌溉时间的延长,土壤有机质含量呈增加的趋势。但是,引用含有泥沙的河水灌溉对土壤有机质组分变化造成的影响尚不清楚。借此,本研究以宁夏引黄灌区为例,揭示高含沙黄河水灌溉、淤积和耕作影响下SOM组分含量的变化特征,及其与总有机质含量间的关系;明确不同灌溉时间作用下,总有机质与各组分有机质间相关关系随土层深度的变化趋势,以期为增加灌区土壤固碳和促进农业生产提供理论指导和科学依据。

1 材料与方法

1.1 研究区概况

宁夏引黄灌区位于宁夏回族自治区北部(35°14′25″~39°23′10″N,104°16′55″~107°38′53″E),地处中国西北半干旱地区,属温带季风气候,年降水量约为200 mm。黄河自南向北流经被誉为“西部粮仓”的宁夏北部平原。宁夏引黄灌区现有灌溉面积4.61×105hm2,其中,自流灌溉面积为3. 83×105hm2,占全区引黄灌溉总面积的83.2%,是我国四大自流灌区之一;扬黄灌溉面积为7.73×104hm2,占全区引黄灌溉总面积的16.8%。灌渠自建成之后持续使用至今,因此,在本研究中,土壤的灌溉时间可以根据灌渠的修建时间来确定。灌淤土在该区的分布最广,其次是地带性土壤淡灰钙土,此外还分布有风沙土、潮土和新积土等耕作土壤。参照灌区土壤的分布状况,共采集了5类土壤,并在没有进行灌溉耕作的区域布设对照样点(图1),根据各类土壤的分布特点结合各灌渠灌溉面积的大小布设样点45个[25]。灌淤土是其他几类土壤经灌溉、耕作等人为扰动影响下形成的土壤,因此,其他几类土壤的对照样点也是灌淤土的对照样点。样点的具体布设情况如图1所示。

1.2 样品采集与分析

土壤样品采集于2009年10月底,冬季灌水之前,采样深度为100 cm,按土壤发生分类学划分为四个层次[26],分别为0~20、20~30、30~60、60~100 cm,每层自上而下均匀采集土壤样品1.0 kg。采用环刀法测定土壤容重,每层重复采样三个[25-26]。采用改进的比重法将土壤有机质分为轻组(比重小于1.7)和重组(比重大于1.7)两类[2]。采用重铬酸钾外加热法测定重组有机质中碳含量[27],借助元素分析仪测定轻组部分碳、氮含量。

1.3 数据处理

单因素方差分析用于检验土层深度和灌溉时间对总有机质、轻组和重组有机质产生的影响。皮尔逊相关系数用于确定不同组分的有机质与总有机质间的相关关系。最小显著性差异被用来区分灌溉和对照土壤之间轻组和重组有机质之间的差异(p<0.05)。

图1 宁夏引黄灌区土壤类型及剖面样点分布Fig. 1 Distribution of soil sampling sites and soil types in the Ningxia Irrigation Zone

2 结果与讨论

2.1 灌溉耕作对土壤有机质含量的影响

在剖面深度上,灌溉土壤和对照土壤之间,有机质差异明显(图2)。

图2 宁夏引黄灌区对照土壤与灌溉土壤有机质含量的剖面分布Fig. 2 Total organic matter content in the control and irrigated soils in Ningxia Irrigation Zone,China

总体而言,与对照土壤相比,经不同时长的引黄灌溉耕作后,灌溉土壤各层次有机质含量均明显增加(p<0.05)(图1)。自表层向下,土壤有机质含量随着土层深度的增加呈下降的趋势,与对照土壤有机质含量的变化趋势相似,但变化规律更加明显。相对于自然土壤,灌溉土壤0~20 cm、20~30 cm、30~60 cm和60~100 cm各层次SOM分别增加了227.1%、150.9%、140.6%和130.1%,增加幅度随土层深度增加而降低。说明灌溉耕作引起的土壤有机质变化随土层深度的增加而降低,对表层(0~20 cm)和亚表层(20~30 cm)土壤有机质的变化影响最深刻,增加最显著(p<0.01),30~100 cm处土壤有机质含量增加相对较少。据Davidson 和Janssens[28]的研究,土壤有机质的周转时间与基质有关,但是从本研究结果来看,基质对SOM的影响与土层深度有关,基质对深层土壤有机质的影响更显著,而农业管理措施则对表层及亚表层土壤SOM的累积和矿化分解影响更大。本研究中,表层土壤有机质累积高于其他层次,一方面是因为表层外源有机质的输入相对更多,另一方面可能是因为灌溉降低了土壤中氧气的扩散,有机质只进行厌氧反应[29-30],矿化分解量相对较少,利于有机质累积。

2.2 灌溉耕作对土壤轻组有机质含量的影响

宁夏引黄灌区5种类型土壤轻组有机质含量随土层深度的变化如图3所示。

图3 宁夏引黄灌区对照与灌溉土壤轻组有机质含量的剖面分布Fig. 3 Light fraction organic matter content in the control and irrigated soils in Ningxia Irrigation Zone,China

宁夏引黄灌区5种类型土壤轻组有机质含量均随土层深度的增加呈下降趋势,但是不同深度土层内,轻组有机质因土壤类型的不同存在明显差异(图2)。在剖面深度上,相对于自然土壤,表层(0~20 cm)和亚表层(20~30 cm)土壤LFOM增加显著(p<0.05),30~100 cm土层LFOM增加不显著; 5类土壤轻组有机质含量仅表层(0~20 cm)增加明显(p<0.05),灌淤土和潮土的轻组有机质含量相对较高,淡灰钙土、风沙土和新积土轻组有机质含量相对较低。可能是由于灌淤土和潮土分布的区域,土壤灌溉条件便利,灌溉时间相对较长,土壤水分条件好,以作物秸秆及根系残留物形式进入土壤中的有机质较多,相对适宜的环境条件更有利于土壤有机质的累积,而其他几类土壤主要分布在较为干旱的山区,以扬黄灌溉为主,土壤水分条件差,不利于有机质的累积。

图3显示,与未受灌溉耕作影响的自然土壤相比,在相同土层深处,宁夏引黄灌区5种类型土壤轻组有机质含量之间差异性显著(p<0.05),但是各类土壤轻组有机质的增加量均随土层深度的增加呈现下降的趋势,说明有机质来源是影响土壤有机质含量和增加量的重要因素。灌溉耕作后,灌淤土和潮土各土层的轻组有机质含量增加更为明显,淡灰钙土除表层土壤轻组有机质含量增加外,其他各层次土壤有机质含量有所减少,说明引黄灌溉耕作对各类土壤轻组有机质含量变化的作用效果不同。土壤轻组有机质的变化应是多种因素共同作用的结果。

2.3 灌溉耕作对土壤重组有机质含量的影响

相对于未受灌溉耕作影响的自然土壤,在剖面深度上,宁夏引黄灌区5种类型土壤重组有机质的变化如图4所示。

图4 宁夏引黄灌区对照与灌溉土壤重组有机质含量的剖面分布Fig. 4 Heavy fraction organic matter Content in the control and irrigated soils in Ningxia Irrigation Zone,China

灌溉土壤和自然土壤中,重组有机质含量均随土层深度的增加而降低(图4),与轻组有机质随土层深度变化的趋势相似,符合土壤有机质剖面分布的一般规律[29-30]。与对照土壤相比,在剖面深度上,5类灌溉土壤HFOM均有增加。灌淤土各土层HFOM增加显著(p<0.05)。0~30 cm土壤重组有机质变化最剧烈,60~100 cm深度,增加较少,这些均表明,因灌溉耕作增加的SOM主要集中在耕作层和犁底层。已有研究也认为,农业生产措施仅能影响表层0~20 cm 或0~30 cm中SOM的变化,这种影响很难到达更深的土层[28,31-32]。

无论是灌溉土壤还是自然土壤,HFOM均占有绝对的比例,是土壤有机质的重要组分,其他相关研究也得到了相似的结论[29,31-32]。灌溉后,土壤剖面各层次HFOM较LFOM增加更明显,出现这种现象的原因可能与有机质的周转周期有关。耕作过程中投入的有机质,在微生物的作用下,以不同的形态赋存于土壤中,其周转时间也存在明显的差异。其中,LFOM被认为具有较短的周转周期,且易被作物吸收,是作物生长重要的营养物质来源;而HFOM相对稳定,周转时间长,约上百年或上千年,因此,可以长时间的储存于土壤之中。在宁夏引黄灌区,长期的灌溉耕作,使大量的有机质进入到土壤中,随着灌溉时间的延长,土层厚度不断增加,最早形成的有机质被封存起来。然而,由于LFOM的周转时间短,大部分的轻组物质经过矿化分解后,以CO2的形式释放到大气中,致使其含量降低,特别是灌溉时间在50年以上的土壤,深层土壤LFOM含量相对较低。但是,HFOM周转时间较长,随着灌溉时间的延长,会不断地累积起来,而使其含量不断增加,因此矿化分解的HFOM相对较少,较LFOM增加明显。但是,土层厚度增加是否能保护较老的有机质不被分解,或者灌溉水入渗会刺激较老的有机质分解等问题尚不清楚。

2.4 土壤轻组和重组有机质与总有机质的关系

在宁夏引黄灌区,对照土壤和灌溉土壤轻组和重组有机质与总有机质的关系如图5和图6所示。

图5 对照土壤剖面各层次轻组和重组有机质与总有机质间的关系Fig. 5 Relationships between total organic matter and light and heavy fraction organic matter at each depth in control soil

图5和图6显示,灌溉土壤LFOM与SOM相关性的变化最明显,灌溉土壤0~60 cm各土层轻组有机质与总有机质之间具有较强的相关性(p<0.01),对照土壤LFOM含量与总有机质含量间并无显著相关性;但是,60~100 cm土层对照土壤LFOM与总有机质间具有显著相关性(p<0.05),灌溉土壤LFOM与总有机质间无明显相关性。

图5显示,对照土壤LFOM和总有机质含量间的相关性随土层深度增加呈增强的趋势。但灌溉土壤轻组与总有机质含量之间的相关性呈现随土层深度增加而减弱的趋势(图6);灌溉土壤除表层(0~20 cm)HFOM与SOM之间的相关性稍弱于对照土壤外,其他各层次土壤HFOM与SOM含量之间的相关性均强于对照土壤(图5和图6),表明了灌溉耕作对增加土壤轻组和重组有机质含量具有积极作用。与对照土壤相比,随土层深度增加,LFOM 与SOM间相关性的增强和HFOM与SOM间相关性的减弱结果表明,土壤LFOM对灌溉耕作作用的响应要强于HFOM。然而,LFOM在土壤中的累积和分解速率快于HFOM,因此,LFOM变化更适合用于评价因引用含有泥沙的河水灌溉导致的土壤有机质变化。

2.5 灌区5种类型土壤间有机质组分构成的差异

引黄灌溉对不同深度土层土壤有机质组分变化的影响不同,剖面深度上各类土壤轻组、重组和总有机质间的相关关系见表1。

经灌溉耕作后,土壤轻组和重组有机质含量均增加,但是由于不同类型的土壤对灌溉的响应不同,而且不同类型的土壤,灌溉耕作时间也不尽相同,因此不同组分有机质的变化程度也不同。结合图6和表1不难看出,土壤轻组和重组有机质的增加与土壤总有机质的增加呈线性相关,但是,HFOM对总有机质的增加影响更大。无论是对照土壤还是灌溉土壤,HFOM与总有机质间的相关系数均大于0.97,说明HFOM对土壤总有机质的影响更大,已有的研究也得出了相似的结果[31-32]。总之,引用含有泥沙的黄河水进行灌溉、耕作,既能增加土壤含水量、减缓有机物质的矿化分解、降低土壤CO2释放量[32-33],更能促进作物生长,增加有机质投入,利于土壤有机碳的累积[34-36]。

图6 灌溉土壤剖面各层次轻组和重组有机质与总有机质间的关系Fig. 6 Relationships between total organic matter and light and heavy fraction organic matter at each depth in irrigated soil

表1 宁夏引黄灌区5种类型土壤有机质组分与总有机质间的相关性Table 1 Pearson correlation coefficient between organic matter fractions and total organic matter of the five irrigated soils in Ningxia Irrigation Zone,China

3 结 论

在宁夏引黄灌区,与对照土壤相比,灌溉耕作是增加土壤轻组、重组有机质含量的有效措施,剖面各层次土壤LFOM和HFOM均与总有机质有较好的相关性,但是HFOM与SOM间的相关性更强。灌溉耕作对土壤有机质组分变化产生的影响因土壤类型的不同差异明显。HFOM是相对稳定的碳组分,也是灌区土壤有机质的主要组分,对土壤固碳意义更大。LFOM为作物生长提供营养元素,促进作物生长,从而增加了土壤有机质投入,为土壤固碳创造了条件。与LFOM相比,HFOM具有更长的周转时间和更好的稳定性,这也是灌区土壤重组有机质累积更多的关键之处。

[1] Turchenek L W,Oades J M. Fractionation of organomineral complexes by sedimentation and density techniques. Geoderma,1979,21:311—343

[2] Nascentea A S,Li Y,Crusciol C A C. Cover crops and no-till effects on physical fractions of soil organic matter. Soil & Tillage Research,2013,130:52—57

[3] 李晓迪,王淑民,张黎明,等. 土壤数据源和制图比例尺对旱地土壤有机碳储量估算的影响. 土壤学报,2016,53(1):58—71

Li X D,Wang S M,Zhang L M,et al. Impacts of source of soil data and scale of mapping on assessment of organic carbon storage in upland soil(In Chinese). Acta Pedologica Sinica,2016,53(1):58—71

[4] Ellerbrock R H,Gerke H H,Deumlich D. Soil organic matter composition along a slope in an erosion-affected arable landscape in North East Germany. Soil Tillage Research,2016,156:209—218

[5] Malhi S S,Nyborg M,Goddard T,et al. Long-term tillage,straw management and N fertilization effects on quantity and quality of organic C and N in a Black Chernozem soil. Nutrient Cycling in Agroecosyst,2011,90:227—241

[6] Nogueirol R C,Pellegrino Cerri C E,da Silva W T L,et al. Effect of no-tillage and amendments on carbon lability in tropical soils. Soil & Tillage Research, 2014,143:67—76

[7] Guimarães D V,Isidória Silva Gonzaga M,da Silva T O,et al. Soil organic matter pools and carbon fractions in soil under different land uses. Soil & Tillage Research,2013,126:177—182

[8] Li S,Zhang S,Pu Y,et al. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain. Soil & Tillage Research,2016,155:289—297

[9] Shashi B V,Achim D,Kenneth G C,et al. Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agricultural and Forest Meteorology,2005,131:77—96

[10] Zhang G B,Ji Y,Ma J,et al. Intermittent irrigation changes production,oxidation,and emission of CH4in paddy fields determined with stable carbon isotope technique. Soil Biology & Biochemistry,2012,52:108—116

[11] 唐光木,徐万里,盛建东,等. 新疆绿洲农田不同开垦年限土壤有机碳及不同粒径土壤颗粒有机碳变化. 土壤学报,2010,47(2):279—285

Tang G M,Xu W L,Sheng J D,et al. The variation of soil organic carbon and soil particle-size in Xinjiang oasis Farmland of different years(In Chinese). Acta Pedologica Sinica,2010,47(2):279—285

[12] Presley D R,Ransom M D,Kluitenberg G J,et al. Effects of thirty years of irrigation on the genesis and morphology of two semiarid soils in Kansas. Soil Science Society of America Journal,2004,68:1916—1926

[13] Ogle S M,Breidt F J,Paustian K. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry,2005,72:87—121

[14] 赵加瑞,王益权,刘军,等. 灌溉水质与土壤有机质累积的关系. 生态环境,2008,17(3):1240—1243

Zhao J R,Wang Y Q,Liu J,et al. Effect of irrigation water quality on soil organic matter accumulation (In Chinese). Ecology and Environment,2008,17 (3):1240—1243

[15] Lei D,Zhu G Y,Tang Z S,et al. Global patterns of the effects of land-use changes on soil carbon stocks. Global Ecology and Conservation,2016,5:127—138

[16] Boula H,Gómez-Macpherson H. Dynamics of soil organic carbon in an innovative irrigated permanent bed system on sloping land in southern Spain. Agriculture,Ecosystems & Environment,2010,139(1/2):284—292

[17] Mohawesh O,Mahmoud M,Janssen M,et al. Effect of irrigation with olive mill wastewater on soil hydraulicand solute transport properties. International Journal of Environmental Science and Technology,2013,11 (4):927—934

[18] Negahban-Azar M,Sharvelle S E,Stromberger M E,et al. Fate of gray water constituents after long-term application for landscape irrigation. Water Air & Soil Pollution,2012,223(8):4733—4749

[19] Albalawneh A,Chang T,Chou C S. Impacts on soil quality from long-term irrigation with treated greywater. Paddy and Water Environment,2015,DOI 10.1007/ s10333-015-0499-6

[20] 王吉智. 灌淤土——中国干旱与半干旱地区的人为土壤.干旱区资源与环境,1993,7(3/4):233—237

Wang J Z. Irrigating Warped soils—a kind of anthrosols in arid and semiarid region in China(In Chinese). Journal of Arid Land Resources and Environment,1993,7(3/4):233—237

[21] 龚子同,张甘霖,王吉智,等. 中国的灌淤人为土. 干旱区研究,2005,22(1):4—10

Gong Z T,Zhang G L,Wang J Z,et al. Formation and taxonomy of irrigation-silted soils in China(In Chinese). Arid Zone Research,2005,22(1):4—10

[22] 毛伟兵,傅建国,孙玉霞,等. 引黄泥沙对小开河灌区土壤理化性状的影响. 人民黄河,2009,31(8):66—68

Mao W B,Fu J G,Sun Y X,et al. Effect of sediment from Yellow River water on soil physical and chemical properties in Xiaokai River irrigation area(In Chinese). Yellow River,2009,31(8):66—68

[23] 孙玉霞,杨芸,李妮,等. 小开河灌区引黄入田泥沙的土壤环境效应. 中国农村水利水电,2010,(3):51—54

Sun Y X,Yang Y,Li N,et al. Effect of sediment from Yellow River water on soil environment in Xiaokai River Irrigation Area(In Chinese). China Rural Water and Hydropower,2010,(3):51—54

[24] 郭秉晨,马玉兰,冯静,等.宁夏引黄灌区耕地土壤有机质及养分质量分数变化趋势. 农业科学研究,2006,27(3):1—5

Guo B C,Ma Y L,Feng J,et al. Changing trend of organic matter and nutrient content in cultivated land of the Ningxia irrigation area of Yellow River(In Chinese). Journal of Agricultural Sciences,2006,27 (3):1—5

[25] Dong L L,Yu D S,Zhang H D,et al. Long-term effect of sediment laden Yellow River irrigation water on soil organic carbon stocks in Ningxia,China. Soil & Tillage Research,2015,145:148—156

[26] 董林林,杨浩,于东升,等. 不同类型土壤引黄灌溉固碳效应的对比研究. 土壤学报,2011,48(5):922—930

Dong L L,Yang H,Yu D S,et al. Effect of irrigation with water diverted from the Yellow River on carbon sequestration in soils of different types in Ningxia Irrigation Zone(In Chinese). Acta Pedologica Sinica,2011,48(5):922—930

[27] 鲁如坤. 土壤农业化学分析方法. 北京:中国农业科技出版社,2000.

Lu R K. Analytical methods for soil and agro-chemistry (In Chinese). Beijing:China Agricultural Science and Technology Press,2000

[28] Davidson E A,Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature,2006,doi:10.1038/nature04514

[29] Rovira P,Vallejo V R. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil:An acid hydrolysis approach. Geoderma,2002,107:109—141

[30] Dikgwatlhe S B,Kong F L,Chen Z D. Tillage and residue management effects on temporal changes in soil organic carbon and fractions of a silty loam soil in the North China Plain. Soil Use and Management,2014,30:496—506

[31] Janzen H H,Campbell C A,Brandt S A,et al. Lightfraction organic matter in soil from long-term crop rotations. Soil Science Society of America Journal,1992,56:1799—1806.

[32] Benbi D K,Toor A S,Kumar S. Management of organic amendments in rice-wheat cropping system determines the pool where carbon is sequestered. Plant and Soil,2012,360(1-2):145—162

[33] Yang F,Zhang G L,Yang J L,et al. Organic matter controls of soil water retention in alpine grassland and its significance for hydrological processes. Journal of Hydrology,2014,519:3086—3093

[34] Dexter A R,Richard G,Arrouays D,et al. Complexed organic matter controls soil physical properties. Geoderma,2008,144(3):620—627

[35] Saxton K E,Rawls W J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal,2006,70(5):1569—1578

[36] Zornoza R,Rosales R M,Acotsta J A,et al. Efficient irrigation management can contribute to reduce soil CO2emissions in agriculture. Geoderma,2016,263:70—77

Effect of Cultivation and Irrigation with Sediment Laden Yellow River Water on SOM Composition in Profile Depth

DONG Linlin1,2ZHANG Haidong1,2YU Dongsheng1SHI Xuezheng1†GUO Naijia1REN Yang3ZHANG Li3
(1 State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,China)
(2 Suzhou academy of agricultural sciences,Suzhou,Jiangsu 215155,China)
(Zhongning Agricultural Technical Extension and Service Center,Zhongning,Ningxia 751200,China)

【Objective】Soil organic carbon(SOC),which is the largest storage of organic carbon in the terrestrial ecosystem,is subject to influences of a number of factors,such as climate,geography,human activities,etc. Irrigation is an effective measure to ensure crop production as well as to increase SOC content,particularly,in arid and semiarid areas. Northwest China is an area that has a long history of irrigation with sediment laden river water,where a special layer of anthropogenic soil or irrigation-silt has formed. The layer is quite uniform in soil color,composition,texture,calcium carbonate content,and organic carbon content. When the layer of irrigation-silted is ≥50 cm in thickness,it is termed as irrigationsilted soil. The soil is ≥4 g kg-1in SOC content,even at the bottom of the irrigation-silted layer. Composition of the soil organic matter(SOM)in fraction,heavy or light is the major factor affecting stability of the SOC storage in the layer.【Method】An irrigation zone in Ningxia Province,Northwest China,was selected in the study to evaluate effects of cultivation and irrigation with sediment laden Yellow River water on content and fractionation of SOC. The Yellow River flows through northern part of Ningxia from south to north. Irrigatedalluvial soil,Light sierozem soil,Aeolien sandy soil,Fluvi-aquic soil and Fluvent soil are the types of soils commonly distributed in the Zone. Based on that,a total of 45 soil profiles were specified,including 6 in non-cultivated and non-irrigated natural fields as control,and 39 in irrigated fields different in irrigation history. Each profile was divided into four layers(0~20,20~30,30~60 and 60~100 cm). Soil samples were collected from the layers for analysis of SOC content and for fractionations of SOC,light and heavy by density using 1.7 g m3NaI solution,so as to illustrate effects of the irrigation with Yellow River water on content and fractionation of SOC.【Result】Both light and heavy SOMs were found to have increased in content after years of irrigation,but the increment varied with the duration of irrigation and the fraction. The longer the history of irrigation,the higher the content of both light and heavy OMs in the soil regardless of type. As a result of farming cultivation,including fertilizer or manure application,the contents of OM increased the most significantly(p<0.001)in the plow or surface layer(0~20 cm),and the content and the increment declined along the profile and varied with the type of soil. Irrigated-alluvial soil with a long history of irrigation was found to be highest in OM content,which implies that soil type is another important factor influencing accumulation of SOM. Compared to non-irrigated and non-cultivated soils,irrigated soils exhibited a close relationship between the fraction of light OM and the total SOM in the 0~60 cm soil layer,and the relationship weakened with increasing soil depth,but a very close relationship was found between the fraction of heavy SOM and the total SOM in all the soil layers of both irrigated and non-irrigated fields,which indicates that heavy organic matter is the major component of SOM and accumulates more rapidly thanlight organic matter.【Conclusion】Irrigation with sediment laden Yellow River water helps increase SOC storage,either light or heavy in the Ningxia Irrigation Zone. Heavy OM is the major component of SOM,while light OM is more sensitive to cultivation and irrigation. And the former plays a better role than the latter does in sequestrating soil carbon.

Irrigation with Yellow River water;soil;Light fraction organic matter;Heavy fraction organic matter

S158.1

A

(责任编辑:檀满枝)

* 国家自然科学基金项目(41501326,41501296)、中国科学院战略性先导科技专项(XDA05050507)和江苏省博士后基金(1202051C)资助 Supported by the National Natural Science Foundation of China(Nos. 41501326,41501296),the Strategic Priority Research Program of the Chinese Academy of Sciences(No. XDA05050509)and Jiangsu Postdoctoral Science Foundation(No.1202051C)

† 通讯作者 Corresponding author,E-mail:xzshi@issas.ac.cn

董林林(1979—),女,甘肃天水人,博士后,主要从事土壤有机碳演变与全球变化研究。E-mail:jinjindoudou2005@163.com

2016-07-01;

2016-12-09;优先数字出版日期(www.cnki.net):2017-01-09

10.11766/trxb201607010301

猜你喜欢

引黄灌区耕作剖面
赵口引黄灌区迈向高质量发展之路
ATC系统处理FF-ICE四维剖面的分析
保护性耕作试验监测数据分析
耕作与施肥方式对油菜产量和养分吸收利用的影响
宁夏保护性耕作的必要性及技术模式探讨
复杂多约束条件通航飞行垂直剖面规划方法
丁庄引黄灌区存在问题及建设必要性
引黄灌区泥沙处理与利用技术发展现状及分析
船体剖面剪流计算中闭室搜索算法
西洞庭湖区免耕耕作模式及其配套技术