循环肿瘤DNA及其在癌症液体活检中的应用
2017-05-04李泰伯美国哈佛大学医学院遗传系马萨诸塞州波士顿05美国伯德研究所马萨诸塞州堪布里奇04
李 君,李泰伯(美国哈佛大学医学院遗传系,马萨诸塞州波士顿05;美国伯德研究所,马萨诸塞州堪布里奇04)
·专家述评·
循环肿瘤DNA及其在癌症液体活检中的应用
李 君1,李泰伯2(1美国哈佛大学医学院遗传系,马萨诸塞州波士顿02115;2美国伯德研究所,马萨诸塞州堪布里奇02142)
目前对癌症组织进行基因分型仍旧是癌症临床诊断和治疗的黄金依据.然而癌症组织往往很难获取,并且无法体现癌症组织的异质性和组织各个部位基因突变的情况,因此出现了许多肿瘤治疗方式,甚至包括分子靶向药的失效.非侵入性的血液液体活检为解决癌症异质性检测带来了新的机遇.血液中的循环肿瘤DNA(ctDNA)作为生物标记具有对整个肿瘤组织进行基因分型的潜力.本综述主要阐述ctDNA的如下几个方面:ctDNA的生物学特性;肿瘤特异性ctDNA突变;ctDNA的表观遗传学改变;ctDNA的检验方法;ctDNA在肿瘤诊断、治疗和预后中的潜在应用.
循环肿瘤DNA;液体活检;诊断、治疗和预后
0 引言
癌症是世界范围内导致死亡的主要疾病之一.目前在癌症诊断的一系列病理检测中,组织活检具有重要的地位.癌症基因分型的材料一般取自组织活检,分型结果可以辅助靶向药物使用的诊断.但是组织活检仍存在很大的局限性,例如取样困难,无法反应癌症组织的异质性,同时对癌症早筛、转移、用药剂量和预后等作用有限[1-2].循环肿瘤DNA(circulating tumor DNA,ctDNA)由肿瘤细胞释放到血液中,往往带有肿瘤组织的基因突变信息[3].近年来基于ctDNA的液体活检为癌症的分子诊断和监控提供了新的契机.用ctDNA进行基因突变检测可以进行癌症的早期筛查,实时监控癌症的发展、转移和预后,帮助癌症用药的判断[4-8],因而极大地改进了目前的癌症诊断方法.
1 ctDNA的生物学特性
ctDNA存在于细胞质或血清之中,为单链或双链DNA,长度约为150~200 bp,半衰期短,约为15分钟至数小时(平均约2 h)[9].早期研究表明,ctDNA具有许多同癌症相关联的特性,比如单核苷酸突变[10-14]、甲基化改变[15-18]以及癌症引起的病毒序列[19-21],因此被认为是从肿瘤组织中衍生而来.目前认为有三种可能的ctDNA来源:①凋亡或坏死的肿瘤细胞;②活肿瘤细胞;③循环肿瘤细胞[22-25].实际上,ctDNA极可能有多种而非一种来源.ctDNA携带着肿瘤细胞中的基因突变和表观遗传学改变,诸如点突变、完整度、序列重排、拷贝数差异、微卫星序列不稳定、杂合性缺失和DNA甲基化等[26].
2 肿瘤特异性ctDNA突变
2.1 胰腺癌胰腺癌是第一个在ctDNA中发现特异性突变的实体瘤,其中一个重要原因是KRAS基因经常突变且容易检测.Sorenson等[3]使用了等位基因特异性扩增的方法,在胰腺癌患者的血浆或血清中测定KRAS第12位密码子的突变.根据ctDNA检测原发性胰腺癌的灵敏度一般为30%~50%,而特异度则会更高,约为90%[27].大部分胰腺癌研究侧重于KRAS突变,因为这种突变发生率较高.同时,胰管腺癌相较于其它恶性肿瘤而言含有更多的ctDNA,并且转移性病变较非转移性病变含有更多的ctDNA.据此可见,从生物学和临床角度,胰腺癌都是使用ctDNA作诊断和预后的理想选择[28].
2.2 肺癌非小细胞肺癌(non⁃small cell lung cancer,NSCLC)携带的基因突变常存在于EGFR、KRAS、ALK、HER2、BRAF、ROS1和RET中[29-34].血浆中KRAS基因突变的状态可以作为NSCLC患者对EGFR⁃TKI耐药的一个预测性标志物.研究[35]表明,血浆KRAS基因突变状态与肿瘤组织的一致性为76.7%,KRAS突变可能导致NSCLC患者对EGFR⁃TKI疗效不佳,这可能成为NSCLC患者靶向治疗的一个筛选指标.另外,约50%的NSCLC患者因EGFR的突变T790M的出现而出现耐药[36].这些结果首先从对EGFR耐药的NSCLC患者肿瘤组织中发现,随后从ctDNA中得到验证,首次提出了可以在患者血液中无创性地检测实体瘤靶向药物治疗后出现的耐药性[37].
2.3 结肠直肠癌KRAS、APC和TP53在结肠直肠癌中有很高的突变频率.这些基因在血清或血浆中的变异状态与结肠直肠癌的诊断、预后和治疗反应有关[38-39].在结肠直肠癌患者的血清或血浆中,KRAS突变的总体检测率为25%~50%[39].晚期患者的ctDNA中则检测到更多KRAS突变[40].同时,ctDNA中的KRAS突变也与术后复发的风险呈正相关[41-42].对于循环中突变DNA的分析可以同时监测结肠直肠癌患者对于单克隆抗体疗法的反应,而这使得疗程中反复监测患者成为可能[43].对ctDNA中APC基因突变的研究主要集中于外显子15.外显子15是结肠直肠癌中APC突变的热点.在原发性结肠直肠癌中,APC的突变频率约为45%.而对于TP53而言,约40%的患者样本被测定出具有这一基因的突变.大部分研究集中在TP53的外显子4和外显子8,这也是TP53在结肠直肠癌中最常见的突变区域[39].针对KRAS、TP53和APC的基因突变检测能够在大约75%的结肠直肠癌组织样本中检测到至少一个基因突变,然而这些突变只能在约45%的患者的血清中检测到[44].
3 ctDNA甲基化和表观遗传学改变
在DNA突变之外,甲基化同样可以影响基因的表达,并在ctDNA中被检测到.肿瘤发生不仅受基因调控,也受到表观遗传学的调控[45].DNA甲基化倾向于发生在肿瘤抑制基因启动子区域的CpG二核苷酸处,从而导致基因沉默[46].ctDNA甲基化检测主要集中在结肠直肠癌、肺癌、乳腺癌、胰腺癌,以及其它种类的癌症.同基因突变相比,DNA甲基化的一致性使得它成为了一个能够指导诊断、分期、监测反应以及患者预后的有前景的生物标记.因此,近些年来甲基化的ctDNA逐渐成为液体活检的新型目标,并且取得了一些有前景的成果.
3.1 结肠直肠癌结肠直肠癌对于男性和女性来说都是全球范围内第三大常见的癌症[47].结肠直肠癌的早期诊断依赖于简单有效的筛查实验.研究发现,SEPT9基因的启动子高甲基化与结肠直肠癌的发展高度相关.基于针对SEPT9启动子甲基化的PCR的回顾性实验发现,SEPT9启动子甲基化对结直肠癌检测的灵敏度为72%~90%,特异度为88%~90%[48-51].另一项来自美国的研究[50]表明血浆中甲基化的SEPT9 DNA可以筛查72%的结肠直肠癌,并且实现了93%的特异度.另外,SEPT9的甲基化也在结肠直肠癌的癌前病变中被发现.其它与结肠直肠癌有关的生物标记有APC、RASSF1A和E⁃钙黏蛋白[52-53],以及血浆中其它新标记.一项来自德国的研究[54]发现,血清中HLTF和HPP1的甲基化与肿瘤的大小、阶段和转移状态显著相关,这两个基因也可以在转移性结肠直肠癌患者中作为预后标记.
3.2 乳腺癌乳腺癌在发达地区和发展中地区的女性中都是最为常见的癌症.许多研究使用了候选基因测试来分析乳腺癌中生物标记基因的甲基化状态,并评估可能的临床价值.这意味着大多数标记都是研究较多的基因,比如细胞周期蛋白D2、RARβ2[55]、ESR1[56]等.Dulaimi等[57]发现在94%的乳腺癌患者血清样本里,APC、RASSFIA或DAP⁃激酶中至少有一个存在超甲基化.来自全印度医学科学研究所的研究人员也对100例侵入性导管乳腺癌患者进行了一系列前瞻性研究.他们测试了MDR1、Stratifin、ERα和PR,以及DNA修复基因BRCA1、MGMT和GSTP1的甲基化状态.以上基因启动子的甲基化状态可以显著区分肿瘤组织和对照血清.然而这些基因的敏感度并不高(MDR1 50%,Stratifin 56%,ERα 55%,PRB 55%,BCRA1 22%,MGMT 26%,GSTP1 22%)[58-60].
3.3 肺癌肺癌是癌症相关死亡的主要原因,部分原因是缺乏早期检测方法[61].DNA甲基化的变化可能发生在其早期阶段.DNA甲基化检测预计将是肺癌早期诊断中的一种重要方法.目前已知有超过80个与肺癌相关的高甲基化基因,比如APC[62-63]、RARb[64-65]、RASSF1A[66]、CDH13[62-65]、SHOX2[67]、SHP⁃1[68].除早期诊断外,部分研究侧重于甲基化状态与患者存活的相关性,并证实CHFR甲基化状态与366例患者中179例的二线化疗或EGFR TKIs的结果相关[69].
总而言之,ctDNA的甲基化检验是一项很有希望的诊断或监测肿瘤的方法.目前由于不具备足够特异度和灵敏度的单一生物标记,故可以使用同时检测多个基因的测试方法.
4 ctDNA的检测方法
4.1 ctDNA基因突变的检测方法ctDNA在外周血中总细胞游离DNA所占比例较小(有时<0.01%)[2].最初,研究人员使用Sanger测序来检测血浆ctDNA.然而,基于Sanger测序的ctDNA检测存在许多缺点,例如低通量、步骤繁复、高成本和PCR方法引入的潜在偏差[4].基因芯片(microarray)的方法无法进行准确定量,信噪比低,因此在ctDNA的检测上也有较大缺点.在过去十年中,二代测序(next generation sequencing,NGS)技术的进步使研究人员能够开发出许多有效和方便的Sanger测序替代方法.Diehl等[9]开发了一种称为BEAMing的技术来检测血液中的ctDNA.该技术使用含有已知标签序列的引物扩增目标DNA片段,使其与磁珠共价结合.含有突变的珠子最终被流式细胞术分选.Newman等开发了另一种新技术,称为CAPP⁃Seq的(cancer personalized profiling by deep sequencing),即通过深度测序的癌症个性化分析来定量ctDNA.他们使用针对相关癌症中复发突变区的生物素化DNA寡核苷酸组成探针组,在100%的Ⅱ~Ⅳ期和50%的Ⅰ期NSCLC患者中检测到ctDNA,其中对于低至0.02%等位基因频率的突变的特异度为96%[4].近年来,数字PCR(digital PCR)技术的成熟可以使ctDNA检测灵敏度达到0.01%或更低.与之前的方法相比,这些新技术显著提高了ctDNA检测的灵敏度,并且具有高通量和低价格的优点.然而,这些新技术也有局限性.首先,基于NGS的方法仅能为约50%的早期阶段患者提供有价值的诊断[2,4],因此其灵敏度需要进一步改善.此外,这些技术的成本依然相对较高,从而限制了其在临床实践中的应用.
4.2 ctDNA甲基化的检测方法ctDNA甲基化的检测方法有很多种,主要分为三个类别.①甲基化含量:高效液相色谱法(high⁃performance liquid chroma⁃tography,HPLC)或高效毛细管电泳(high⁃perform⁃ance capillary electrophoresis,HPCE).②候选基因:甲基化敏感性限制内切酶⁃PCR/Southern(methyla⁃tion⁃sensitive restrictionendonuclease⁃PCR/Southern,MSRE⁃PCR/Southern)、亚硫酸氢盐测序、甲基化特异性PCR(methylation⁃specific PCR,MS⁃PCR)、Meth⁃yLight等.③甲基化模式和甲基化谱:限制性标记基因组扫描(restriction landmark genomic scanning,RLGS)、甲基化间位点扩增(amplification of inter⁃methylated sites,AIMS)、甲基化CpG岛扩增(methyl⁃ated CpG⁃island amplification,MCA)等.目前最常见的方法是MS⁃PCR.
5 ctDNA在肿瘤诊断、治疗和预后中的潜在应用
ctDNA在肿瘤临床医学中具有多种应用潜力(表1).例如,对于人群的液体活检检测是否含有ctDNA及其突变类型,可以早期筛查癌症,进行早期干预.对于局部性癌症,ctDNA的突变类型可协助选择其治疗方法.同时在治疗过程中,血液中ctDNA的含量可以监测肿瘤负荷和疗效.治疗后仍可实时检测ctDNA含量和突变来达到监控癌症复发和转移的目的.同时针对难治性癌症,对ctDNA突变型的挖掘可以发现新的生物标记,从而深度了解抵抗机制,这些新的生物标记也可以用于新型靶向药物的研发.下面将举例说明ctDNA在肿瘤诊断、治疗和预后中的潜在应用.
表1 ctDNA在肿瘤临床医学中的潜在应用
5.1 监测肿瘤负荷和治疗反应ctDNA的动力学性质诸如ctDNA水平、肿瘤负荷和治疗反应之间的关系已经在各种实体恶性肿瘤中被研究过[5,9,70-73].蛋白质生物标志物常被用于癌症诊断和治疗应答的评估,例如癌胚抗原(CEA),前列腺特异性抗原(PSA),癌抗原(CA)19⁃9和CA⁃125.然而这些蛋白质生物标志物的特异性和可靠性并不令人满意,许多恶性肿瘤甚至没有任何可靠的蛋白质生物标志物[74-75].ctDNA携带全面、固有高特异度和高敏感度的信息,因此具有优于常规蛋白质生物标志物的独特优势.关于黑色素瘤[7,76]、乳腺癌[70]、卵巢癌[77]和结肠癌[9,78]的研究已经确立了ctDNA在治疗过程中动态并精确监测肿瘤负荷的潜在应用价值.ctDNA水平随疾病进展而快速增加,并在成功治疗后相应地下降[7,9,70,76-77].ctDNA水平的定量评估也可以作为预后的重要指标.一些初步数据支持在晚期癌症患者的ctDNA水平和预后之间的关联[70-81].
耐药性是癌症患者治疗中的主要问题.ctDNA可以有效评估与治疗耐药相关的突变的出现[43,82-85].KRAS的分子改变与结肠直肠癌的抗EGFR治疗的获得性耐药性的起因有关.检测接受抗EGFR治疗的患者的ctDNA中KRAS变体可以在放射学记录疾病进展之前10个月鉴定复发[82].此外,通过使用全外显子组测序,连续ctDNA分析可以在获得治疗耐药性的过程中针对基因组的改变提供公正和全面的评估[86].
ctDNA分析最终可以提供遗传改变的综合图谱,包括突变谱的动态变化以及癌症治疗过程中的肿瘤异质性和进化.这种综合图谱可以帮助设计组合治疗以最大程度避免治疗抗性.
5.2 监测最小残留病变ctDNA可被应用在手术后或治愈性疗法之后检测最小残留病变.在某些类型的癌症中,手术便可治愈大部分患有早期或局部肿瘤的患者.然而,目前尚无有效的方法区分哪些患者被治愈,哪些患者会出现残留病变导致的复发.因此,一些通过手术治愈的患者仍然由于缺乏是否确诊复发的信息而接受不必要的辅助化疗.ctDNA是手术切除后残留病变的潜在标志物,可以用来鉴定具有复发风险的患者.研究表明,对于在手术切除后血浆
DNA中肿瘤特异性突变的评估可以识别具有残留病变的个体[3],并检测疾病复发[87-88].早期预测复发将有助于在肿瘤负荷仍最小时引入有效的治疗策略.
6 总结与展望
对ctDNA的生物学和临床应用的最新研究证实,基于ctDNA的液体活检可以通过基因分型、疾病监测、治疗评估等途径改善癌症诊断和治疗.然而,为使该技术最终可以应用到常规临床实践中,目前仍然存在一些问题与挑战需要解决.首先,使用ctDNA作为诊断标记物,非常重要的一点是需要更好地理解ctDNA的生物学特性,包括其与肿瘤组织的各个部分、原病灶、转移病灶等基因组成的关联性.此外,尽管ctDNA的临床相关性已被验证,但是将该技术应用于常规临床实践仍需要进一步证明其分析有效性和临床有效性,并且建立统一的临床标准.同时以NGS为基础的方法往往用时长、成本高,这为其临床应用带来了困难.但是随着测序技术的进步,测序所需时间会逐渐缩短,成本会进一步降低,因此长远来看ctDNA的液体活检成为临床检验标准更多的是时间问题.ctDNA的液体活检的临床应用面临的另外一个困难是检测方法的敏感度有限,尤其面临癌症早筛和检测残留病变时.现阶段以NGS为基础的方法的敏感度受限于DNA聚合酶的扩增错误率,普遍认为为0.01%.随着三代测序技术的出现,ctDNA的检测不再受限于DNA聚合酶的扩增.总之,随着测序技术的快速发展和对ctDNA生物学及其临床潜力的理解加深,ctDNA终将会在临床实践中得到广泛应用.
[1]Gerlinger M,Rowan AJ,Horswell S,et al.Intratumor heterogeneity and branched evolution revealed by multiregion sequencing[J].N Engl J Med,2012,366(10):883-892.
[2]Yong E.Cancer biomarkers:Written in blood[J].Nature,2014,511(7511):524-526.
[3]Sorenson GD,Pribish DM,Valone FH,et al.Soluble normal and mutated Dna-sequences from single⁃copy genes in human blood[J].Cancer Epidemiol Biomarkers Prev,1994,3(1):67-71.
[4]Newman AM,Bratman SV,To J,et al.An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage[J].Nat Med,2014,20(5):548-554.
[5]Diaz LA Jr,Bardelli A.Liquid biopsies:genotyping circulating tumor DNA[J].J Clin Oncol,2014,32(6):579-586.
[6]Romero D.Breast cancer:Tracking ctDNA to evaluate relapse risk[J].Nat Rev Clin Oncol,2015,12(11):624.
[7]Bidard FC,Madic J,Mariani P,et al.Detection rate and prognostic value of circulating tumor cells and circulating tumor DNA in meta⁃static uveal melanoma[J].Int J Cancer,2014,134(5):1207-1213.
[8]Martignetti JA,Camacho⁃Vanegas O,Priedigkeit N,et al.Personal⁃ized ovarian cancer disease surveillance and detection of candidate therapeutic drug target in circulating tumor DNA[J].Neoplasia,2014,16(1):97-103.
[9]Diehl F,Schmidt K,Choti MA,et al.Circulating mutant DNA to assess tumor dynamics[J].Nat Med,2008,14(9):985-990.
[10]Chan KC,Jiang P,Zheng YW,et al.Cancer genome scanning in plasma:detection of tumor⁃associated copy number aberrations,single⁃nucleotide variants,and tumoral heterogeneity by massively parallel sequencing[J].Clin Chem,2013,59(1):211-224.
[11]Yung TK,Chan KC,Mok TS,et al.Single⁃molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non⁃small cell lung cancer patients[J].Clin Cancer Res,2009,15(6):2076-2084.
[12]Diehl F,Li M,Dressman D,et al.Detection and quantification of mutations in the plasma of patients with colorectal tumors[J].Proc Natl Acad Sci U S A,2005,102(45):16368-16373.
[13]Qiu M,Wang J,Xu Y,et al.Circulating tumor DNA is effective for the detection of EGFR mutation in non⁃small cell lung cancer:a meta⁃analysis[J].Cancer Epidemiol Biomarkers Prev,2015,24(1):206-212.
[14]Freidin MB,Freydina DV,Leung M,et al.Circulating tumor DNA outperforms circulating tumor cells for KRAS mutation detection in thoracic malignancies[J].Clin Chem,2015,61(10):1299-1304.
[15]Wong IH,Lo YM,Zhang J,et al.Detection of aberrant p16 methyl⁃ation in the plasma and serum of liver cancer patients[J].Cancer Res,1999,59(1):71-73.
[16]Chan KC,Lai PB,Mok TS,et al.Quantitative analysis of circulating methylated DNA as a biomarker for hepatocellular carcinoma[J].Clin Chem,2008,54(9):1528-1536.
[17]Balgkouranidou I,Chimonidou M,Milaki G,et al.Breast cancer metastasis suppressor⁃1 promoter methylation in cell⁃free DNA pro⁃vides prognostic information in non⁃small cell lung cancer[J].Br J Cancer,2014,110(8):2054-2062.
[18]Chan KC,Jiang P,Chan CW,et al.Noninvasive detection of canc⁃er⁃associated genome⁃wide hypomethylation and copy number aberra⁃tions by plasma DNA bisulfite sequencing[J].Proc Natl Acad Sci,2013,110(47):18761-18768.
[19]Lo YM,Chan LY,Lo KW,et al.Quantitative analysis of cell⁃freeEpstein⁃Barr virus DNA in plasma of patients with nasopharyngeal carcinoma[J].Cancer Res,1999,59(6):1188-1191.
[20]Chan KC,Hung EC,Woo JK,et al.Early detection of nasopharyn⁃geal carcinoma by plasma Epstein⁃Barr virus DNA analysis in a surveillance program[J].Cancer,2013,119(10):1838-1844.
[21]Campitelli M,Jeannot E,Peter M,et al.Human papillomavirus mutational insertion:Specific marker of circulating tumor DNA in cervical cancer patients[J].PLoS One,2012,7(8):e43393.
[22]Mouliere F,Rosenfeld N.Circulating tumor⁃derived DNA is shorter than somatic DNA in plasma[J].Proc Natl Acad Sci U S A,2015,112(11):3178-3179.
[23]Anker P,Mulcahy H,Chen XQ,et al.Detection of circulating tumour DNA in the blood(plasma/serum)of cancer patients[J].Cancer Metastasis Rev,1999,18(1):65-73.
[24]Stroun M,Lyautey J,Lederrey C,et al.About the possible origin and mechanism of circulating DNA[J].Clin Chim Acta,2001,313(1-2):139-142.
[25]van der Vaart M,Pretorius PJ.The origin of circulating free DNA[J].Clin Chem,2007,53(12):2215.
[26]Marzese DM,Hirose H,Hoon DS.Diagnostic and prognostic value of circulating tumor⁃related DNA in cancer patients[J].Expert Rev Mol Diagn,2013,13(8):827-844.
[27]Jiao L,Zhu J,Hassan MM,et al.K⁃ras mutation and p16 and preproenkephalin promoter hypermethylation in plasma DNA of pancreatic cancer patients:in relation to cigarette smoking[J].Pancreas,2007,34(1):55-62.
[28]Liggett T,Melnikov A,Yi QL,et al.Differential methylation of cell⁃free circulating DNA among patients with pancreatic cancer versus chronic pancreatitis[J].Cancer,2010,116(7):1674-1680.
[29]Soda M,Choi YL,Enomoto M,et al.Identification of the transfor⁃ming EML4⁃ALK fusion gene in non⁃small⁃cell lung cancer[J].Nature,2007,448(7153):561-566.
[30]Santos E,Martin⁃Zanca D,Reddy EP,et al.Malignant activation of a K⁃ras oncogene in lung carcinoma but not in normal tissue of the same patient[J].Science,1984,223(4637):661-664.
[31]Davies H,Bignell GR,Cox C,et al.Mutations of the BRAF gene in human cancer[J].Nature,2002,417(6892):949-954.
[32]Paez JG,Jänne PA,Lee JC,et al.EGFR mutations in lung cancer:correlation with clinical response to gefitinib therapy[J].Science,2004,304(5676):1497-1500.
[33]Takeuchi K,Soda M,Togashi Y,et al.RET,ROS1 and ALK fusions in lung cancer[J].Nat Med,2012,18(3):378-381.
[34]Kohno T,Ichikawa H,Totoki Y,et al.KIF5B⁃RET fusions in lung adenocarcinoma[J].Nat Med,2012,18(3):375-377.
[35]Wang S,An T,Wang J,et al.Potential clinical significance of a plasma⁃based KRAS mutation analysis in patients with advanced non⁃small cell lung cancer[J].Clin Cancer Res,2010,16(4):1324-1330.
[36]Oxnard GR,Arcila ME,Sima CS,et al.Acquired resistance to EGFR tyrosine kinase inhibitors in EGFR⁃mutant lung cancer:distinct natu⁃ral history of patients with tumors harboring the T790M mutation[J].Clin Cancer Res,2011,17(6):1616-1622.
[37]Taniguchi K,Uchida J,Nishino K,et al.Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adeno⁃carcinomas[J].Clin Cancer Res,2011,17(24):7808-7815.
[38]Hsieh JS,Lin SR,Chang MY,et al.APC,K⁃ras,and p53 gene mutations in colorectal cancer patients:correlation to clinicopathologic features and postoperative surveillance[J].Am Surg,2005,71(4):336-343.
[39]Lecomte T,Ceze N,Dorval E,et al.Circulating free tumor DNA and colorectal cancer[J].Gastroenterol Clin Biol,2010,34(12):662-681.
[40]Kopreski MS,Benko FA,Borys DJ,et al.Somatic mutation screen⁃ing:identification of individuals harboring K⁃ras mutations with the use of plasma DNA[J].J Natl Cancer Inst,2000,92(11):918-923.
[41]Lecomte T,Berger A,Zinzindohoué F,et al.Detection of free⁃circu⁃lating tumor⁃associated DNA in plasma of colorectal cancer patients and its association with prognosis[J].Int J Cancer,2002,100(5):542-548.
[42]Bazan V,Bruno L,Augello C,et al.Molecular detection of TP53,Ki⁃Ras and p16INK4A promoter methylation in plasma of patients with colorectal cancer and its association with prognosis.Results of a 3⁃year GOIM(Gruppo Oncologico dell’Italia Meridionale)prospec⁃tive study[J].Ann Oncol,2006,17(Suppl 7):vii84-90.
[43]Diaz LA Jr,Williams RT,Wu J,et al.The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers[J].Nature,2012;486(7404)::537-540.
[44]Wang JY,Hsieh JS,Chang MY,et al.Molecular detection of APC,K⁃ras,and p53 mutations in the serum of colorectal cancer patients as circulating biomarkers[J].World J Surg,2004,28(7):721-726.
[45]Gold B,Cankovic M,Furtado LV,et al.Do circulating tumor cells,exosomes,and circulating tumor nucleic acids have clinical utility?:A report of the association for molecular pathology[J].J Mol Diag⁃nostics,2015,17(3):209-224.
[46]Herman JG,Baylin SB.Gene silencing in cancer in association with promoter hypermethylation[J].N Engl J Med,2003,349(21):2042-2054.
[47]Siegel R,Ma J,Zou Z,et al.Cancer statistics,2014[J].CA Cancer J Clin,2014,64(1):9-29.
[48]Tóth K,Galamb O,Spisák S,et al.The influence of methylated septin 9 gene on RNA and protein level in colorectal cancer[J].Pathol Oncol Res,2011,17(3):503-509.
[49]Grützmann R,Molnar B,Pilarsky C,et al.Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay[J].PLoS One,2008,3(11):e3759.
[50]DeVos T,Tetzner R,Model F,et al.Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer[J].Clin Chem,2009,55(7):1337-1346.
[51]Warren JD,Xiong W,Bunker AM,et al.Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer[J].BMC Med,2011,9:133.
[52]Cassinotti E,Melson J,Liggett T,et al.DNA methylation patterns in blood of patients with colorectal cancer and adenomatous colorectal polyps[J].Int J Cancer,2012,131(5):1153-1157.
[53]Pack SC,Kim HR,Lim SW,et al.Usefulness of plasma epigenetic changes of five major genes involved in the pathogenesis of colorectal cancer[J].Int J Colorectal Dis,2013,28(1):139-147.
[54]Philipp AB,Stieber P,Nagel D,et al.Prognostic role of methylated free circulating DNA in colorectal cancer[J].Int J Cancer,2012,131(10):2308-2319.
[55]Liggett TE,Melnikov AA,Marks JR,et al.Methylation patterns in cell⁃free plasma DNA reflect removal of the primary tumor and drug treatment of breast cancer patients[J].Int J Cancer,2011,128(2):492-499.
[56]Martínez⁃Galán J,Torres⁃Torres B,Núñez MI,et al.ESR1 gene promoter region methylation in free circulating DNA and its correla⁃tion with estrogen receptor protein expression in tumor tissue in breast cancer patients[J].BMC Cancer,2014,14:59.
[57]Dulaimi E,Hillinck J,Ibanez de Caceres I,et al.Tumor suppressor gene promoter hypermethylation in serum of breast cancer patients[J].Clin Cancer Res,2004,1010(18 Pt 1):6189-6193.
[58]Sharma G,Mirza S,Parshad R,et al.CpG hypomethylation of MDR1 gene in tumor and serum of invasive ductal breast carcinoma patients[J].Clin Biochem,2010,43(4-5):373-379.
[59]Mirza S,Sharma G,Parshad R,et al.Clinical significance of Strati⁃fin,ERalpha and PR promoter methylation in tumor and serum DNA in Indian breast cancer patients[J].Clin Biochem,2010,43(4-5):380-386.
[60]Sharma G,Mirza S,Parshad R,et al.Clinical significance of pro⁃moter hypermethylation of DNA repair genes in tumor and serum DNA in invasive ductal breast carcinoma patients[J].Life Sci,2010,87(3-4):83-91.
[61]Knoepp UW,Ravenel JG.CT and PET imaging in non⁃small cell lung cancer[J].Crit Rev Oncol Hematol,2006,58(1):15-30.
[62]Zhang Y,Wang R,Song H,et al.Methylation of multiple genes as a candidate biomarker in non⁃small cell lung cancer[J].Cancer Lett,2011,303(1):21-28.
[63]Usadel H,Brabender J,Danenberg KD,et al.Quantitative adenom⁃atous polyposis coli promoter methylation analysis in tumor tissue,serum,and plasma DNA of patients with lung cancer[J].Cancer Res,2002,62(2):371-375.
[64]Wang YC,Hsu HS,Chen TP,et al.Molecular diagnostic markers for lung cancer in sputum and plasma[J].Ann N Y Acad Sci,2006,1075:179-184.
[65]Rykova EY,Skvortsova TE,Laktionov PP,et al.Investigation of tumor⁃derived extracellular DNA in blood of cancer patients by methylation⁃specific PCR[J].Nucleosides Nucleotides Nucleic Acids,2004,23(6-7):855-859.
[66]Ponomaryova AA,Rykova EY,Cherdyntseva NV,et al.Potentiali⁃ties of aberrantly methylated circulating DNA for diagnostics and post⁃treatment follow⁃up of lung cancer patients[J].Lung Cancer,2013,81(3):397-403.
[67]Kneip C,Schmidt B,Seegebarth A,et al.SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer in plasma[J].J Thorac Oncol,2011,6(10):1632-1638.
[68]Vinayanuwattikun C,Sriuranpong V,Tanasanvimon S,et al.Epithelial⁃specific methylation marker:a potential plasma biomarker in advanced non⁃small cell lung cancer[J].J Thorac Oncol,2011,6(11):1818-1825.
[69]Salazar F,Molina MA,Sanchez⁃Ronco M,et al.First⁃line therapy and methylation status of CHFR in serum influence outcome to chemo⁃therapy versus EGFR tyrosine kinase inhibitors as second⁃line therapy in stage IV non⁃small⁃cell lung cancer patients[J].Lung Cancer,2011,72(1):84-91.
[70]Dawson SJ,Tsui DW,Murtaza M,et al.Analysis of circulating tumor DNA to monitor metastatic breast cancer[J].N Engl J Med,2013,368(13):1199-1209.
[71]McBride DJ,Orpana AK,Sotiriou C,et al.Use of cancer⁃specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors[J].Genes Chromosomes Cancer,2010,49(11):1062-1069.
[72]Leary RJ,Kinde I,Diehl F,et al.Development of personalized tumor biomarkers using massively parallel sequencing[J].Sci Transl Med,2010,2(20):20ra14.
[73]Lipson EJ,Velculescu VE,Pritchard TS,et al.Circulating tumor DNA analysis as a real⁃time method for monitoring tumor burden in melanoma patients undergoing treatment with immune checkpoint blockade[J].J Immunother Cancer,2014,2(1):42-48.
[74]Yoshimasu T,Maebeya S,Suzuma T,et al.Disappearance curves for tumor markers after resection of intrathoracic malignancies[J].Int J Biol Markers,1999,14(2):99-105.
[75]Ito K,Hibi K,Ando H,et al.Usefulness of analytical CEA doubling time and half⁃life time for overlooked synchronous metastases in colo⁃rectal carcinoma[J].Jpn J Clin Oncol,2002,32(2):54-58.
[76]Shinozaki M,O'Day SJ,Kitago M,et al.Utility of circulating B⁃RAF DNA mutation in serum for monitoring melanoma patients receiving biochemotherapy[J].Clin Cancer Res,2007,13(7):2068-2074.
[77]Forshew T,Murtaza M,Parkinson C,et al.Noninvasive identifica⁃tion and monitoring of cancer mutations by targeted deep sequencing of plasma DNA[J].Sci Transl Med,2012,4(136):136ra68.
[78]Tie J,Kinde I,Wang Y,et al.Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer[J].Ann Oncol,2015,26(8):1715-1722.
[79]Pathak AK,Bhutani M,Kumar S,et al.Circulating cell⁃free DNA in plasma/serum of lung cancer patients as a potential screening and prognostic tool[J].Clin Chem,2006,52(10):1833-1842.
[80]Nygaard AD,Garm Spindler KL,Pallisgaard N,et al.The prognostic value of KRAS mutated plasma DNA in advanced non⁃small cell lung cancer[J].Lung Cancer,2013,79(3):312-317.
[81]Olsson E,Winter C,George A,et al.Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease[J].EMBO Mol Med,2015,7(8):1034-1047.
[82]Misale S,Yaeger R,Hobor S,et al.Emergence of KRAS mutations and acquired resistance to anti EGFR therapy in colorectal cancer[J].Nature,2014,486(7404):532-536.
[83]Misale S,Arena S,Lamba S,et al.Blockade of EGFR and MEK intercepts heterogeneousmechanismsofacquiredresistanceto anti⁃EGFR therapies in colorectal cancer[J].Sci Transl Med,2014,6(224):224ra26.
[84]Bardelli A,Corso S,Bertotti A,et al.Amplification of the MET receptor drives resistance to anti⁃EGFR therapies in colorectal cancer[J].Cancer Discov,2013,3(6):658-673.
[85]De Mattos⁃Arruda L,Cortes J,Santarpia L,et al.Circulating tumour cells and cell⁃free DNA as tools for managing breast cancer[J].Nat Rev Clin Oncol,2013,10(7):377-389.
[86]Murtaza M,Dawson SJ,Tsui DW,et al.Non⁃invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA[J].Nature,2013,497(7447):108-112.
[87]Nawroz H,Koch W,Anker P,et al.Microsatellite alterations in serum DNA of head and neck cancer patients[J].Nat Med,1996,2(9):1035-1037.
[88]Gang F,Guorong L,An Z,et al.Prediction of clear cell renal cell carcinoma by integrity of cell⁃free DNA in serum[J].Urology,2010,75(2):262-265.
Circulating tumor DNA and its application in liquid biopsy of cancer
LI Jun1,LI Tai⁃Bo2
1Department of Genetics,Harvard Medical School,Boston MA 02115,USA;2Broad Institute,Cambridge MA 02142,USA
Tissue biopsy and genotyping are standard diagnostic procedures for categorizing tumors for clinical decisions at present.However,tumor tissues are often difficult to obtain and only provide a snapshot.Tumor heterogeneity is a significant cause of failures of cancer therapeutics,even molecularly targeted thera⁃pies.Noninvasive liquid biopsy from blood has been attempted to characterize tumor heterogeneity.Cell⁃free circulating tumor DNA(ctDNA)in the bloodstream is a versatile biomarker with good potential to genotype the entire tumor.This review focuses on the following aspects of ctDNA:the biology of ctDNA;tumor⁃specific ctDNA mutations;the epigenetic alterations of ctDNA;ctDNA detection methods;the potential application of ctDNA in the diag⁃nosis,treatment and prognosis of tumor.
circulating tumor DNA;liquid biopsy;diagnosis,treatment and prognosis
R740.43
A
2095⁃6894(2017)03⁃01⁃06
2016-12-14;接受日期:2016-12-30
李 君.博士,哈佛大学医学院博士后研究员.研究方向:循环肿瘤DNA、液体活检.E⁃mail:Jun_Li2@hms.harvard.edu