APP下载

基于大数据环境的web可视化应用研究

2017-04-29孙海

商情 2017年9期
关键词:可视化大数据

孙海

(辽宁省科学技术情报研究所)

【摘要】人类对大量的数据,甚至海量信息的理解能力有限,这就需要计算机从各种角度对人脑的思维能力进行输出,其中数据可视化技术可以帮助人们理解大量的数据信息,发现数据中隐含的规律,从而提高数据的使用效率。面对大数据深奥的面貌,如何才能让大型数据集变得亲切和易于理解,可视化无疑是最有效的途径。对大数据背景下的数据可视化应用展开研究,将有助于我们发展和创新数据可视化技术。

【关键词】大数据 Web 可视化

一、大数据时代的机遇

物联网、云计算、移动互联网、手机、平板电脑、PC 以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。随着社交网络的普及,使得人们的行为和情绪的细节化测量成为可能。挖掘用户的行为习惯和喜好,凌乱纷繁的数据背后找到更符合用户兴趣和习惯的产品和服务,并对产品和服务进行针对性地调整和优化,这就是大数据的价值。大数据也日益显现出对各个行业的推进力。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

二、数据可视化技术及主要特点

数据可视化(Data Visual)技术是指运用计算机图形学和图像处理技术,将数据转换为图形或图像在屏幕上显示出来,并进行交互处理的理论、方法和技术。它能够提供多种同时进行数据分析的图形方法,反映信息模式、数据关联或趋势,帮助决策者直观地观察和分析数据,实现人与数据之间直接的信息传递,从而发现隐含在数据中的规律。数据可视化技术的基本思想是将数据库中每一个数据项作为单个图元元素来表示,大量的数据集构成数据图像,同时将数据的各个属性值以多维数据的形式表示,可以从不同的维度观察数据,从而对数据进行更深入的观察和分析。

三、基于Web的数据可视化的参考模型

(1)在服务器端生成描述数据的图形,然后在客户端实现图形的显示,客户端用浏览器来显示;(2)服务器端经过可视化映射后,输出VRML(Virtual Reality Modeling Language,簡称VRML)成Java 3D格式的3D模型,返回给客户,客户端利用支持VRML或Java 3D的浏览器来绘制和操纵3D模型,这种方式的交互局限于绘制阶段;(3)客户下载数据,在客户端执行可视化流水线,利用Java Applet实现可视化计算,客户还可以下载可视化软件。虽然客户端可以完全控制可视化过程,但对客户端的硬件、软件资源要求高,并且对大规模过程的控制。

模型2和模型3需要针对具体的应用编制Java绘图程序,模型4采用了复杂的可视化计算在服务器端处理,避免了客户端较高的资源要求,同时客户端又能完成可视化结果的交互绘制,具有较好的交互性以及计算负荷分摊的优点,但同样编制程序复杂。而模型1使用TeeChart Pro AetiveX控件,可以直接安装在服务器端,在服务器端动态生成图形文件(JPEG格式),然后将图形传回客户端,在浏览器中显示出来,方法可以适用于任何流行的客户端浏览器。

四、大数据的Web数据可视化方法流程

1、发现问题

数据可视化都是为了解决某个问题的。所以,面对海量的数据,首先要思考如何针对领域问题合理抽取对应的数据。为创建信息可视化而提出问题时,我们应该尽可能地关注以数据为中心的问题。那些以“在哪里”、“什么时间”“有多少”或者“有多频繁”开头的问题通常是不错的开始,这些问题使我们专注于在特定的参数集合内查找数据,因此更有可能找到适用于可视化的数据。

2、收集数据

数据的收集和整理则是数据可视化的重中之重。然而准确地找到所需要的数据是一个非常困难的任务。通常,最好从已经可用的数据着手并尽量找到一种方式来描绘它,而不是尝试自己去收集数据。得到原始数据之后.则要着手于数据的解析、组织、分组或者修改,对数据进行再加工。

3、选择一种可视化方式展现数据

在明确想要展现的内容后,就要综合运用视觉元素的造型,色彩的选取,动态等赋予图表更好的视觉体验。数据可视化的过程要始终围绕着数据可视化的核心目标:帮助读者更好更准确的理解数据。web常见的的可视化有:地图、时间轴、网络图、树状图、矩阵图、散点图、气泡图、流程图、折线图、标签云、数据表、雷达图、热力图、平行坐标轴等等。

五、大数据的Web数据可视化展现方式

1、尺寸:这是最常用的可视化展现方式。当辨别两个对象时,我们可以通过尺寸对比快速地区分它们。此外,使用尺寸可以加快理解两组不熟悉的数字之间的区别。如百度统计,这个应用指在通过对网站流量的专业分析,帮助用户不断从网站流量数据中挖掘有价值的信息,指导网站运营。如这个网页目录的访客数统计图,采用了气泡面积的可视化展现方式,通过气泡尺寸面积对比,直观的展现出各网页目录的访客数多少。

2、色彩:色彩是展现大数据集的一种优秀方式,我们可以通过色彩识别出很多层次和色调。这一点使得色彩成为展现宏观趋势的必然选择。运用色彩进行可视化创作时要特别注意的是要确保读者能够区分出在45%和55%的数据点。

3、位置:基于位置的展现方式就是把数据和某些类型的地图关联起来,或者把它和一个真实或虚拟地方相关的可视化元素进行关联。

六、结论

数据可视化通过图像、图形技术对数据进行形象化处理,通过信息技术对数据进行准确、实时、自动化的高度透明的处理。在实际项目中,将大量的数据以图形人的方式在Web页面上展现出来,有助于分析数据,揭示数据内部规律。随着计算机图形学、多媒体技术、人机交互技术及各应用领域的需要,数据可视化将会有更加广阔的发展空间。

参考文献:

[1]Nathan Yau、向怡宁译. 鲜活的数据—数据可视化指南 [M].人民邮电出版社,2012

[2]杨彦波、刘滨、祁明月. 信息可视化研究综述 [J].河北科技大学学报,2014

猜你喜欢

可视化大数据
数据可视化设计在美妆类APP中的应用
画图:数学思维可视化的有效工具
思维可视化
基于GeoGebra的高中物理可视化教学研究
复变函数级数展开的可视化实验教学
复变函数级数展开的可视化实验教学
复变函数共形映射的可视化实验教学
复变函数共形映射的可视化实验教学
大数据环境下基于移动客户端的传统媒体转型思路
基于大数据背景下的智慧城市建设研究