APP下载

三叉神经痛的病因学及相关MRI研究进展

2017-03-22郭田田苗重昌

磁共振成像 2017年7期
关键词:髓鞘三叉神经三叉神经痛

郭田田,苗重昌

三叉神经痛的病因学及相关MRI研究进展

郭田田,苗重昌*

三叉神经痛(trigeminal neuralgia,TN)是颅神经病变中最常见的一种,其可能的病因、发病机制及病理变化尚未被明确统一和证实。MR融合成像技术能够更精确评估三叉神经与邻近血管的关系,更直观地指导相关手术。MR功能成像的应用对深入了解TN的发病机制及评估预后有重要意义。作者旨在对其病因学及相关的MRI研究进展作一综述。

三叉神经痛;磁共振成像

三叉神经痛(trigeminal neuralgia,TN)主要发生于中老年人,表现为三叉神经分布区强烈的针刺样疼痛,仅有1%的患者在20岁前发病[1]。 关于TN的病因及发病机理国内外学者有不同的学说和观点[2]。尽管如此,功能性MR成像仍在TN的发生、发展及预后方面取得很大的进步。

1 TN的病因学

1.1 神经血管压迫

约8 0%~9 0%的T N是由神经血管压迫(neurovascular compression,NVC)所致,且压迫点距脑干越近(<3 mm)越容易出现TN的症状[3-4]。Harsha等[5]认为后颅窝发育畸形、狭小及高血压都会增加血管神经接触的机会,从而导致TN。NVC的责任血管中动脉约占98%,其中小脑上动脉约占60%~90%[6-7]。静脉性压迫能否导致TN至今尚存在争议[8]。

TN患者的主要病理机制为神经纤维髓鞘的脱失及再生[9]。三叉神经中枢与周围髓鞘的移行区(transition zone,TZ)大约长2 mm[10],血管的压迫使该区域神经纤维绝缘层受损,裸露的轴突直接接触并形成“短路”,异常传导的神经冲动使非伤害性的感觉刺激引起异常的疼痛反应。

已证实微血管减压术(microvascular decompression,MVD)是针对病因行之有效的治疗方法,在缓解疼痛的同时可有效保留面部感觉功能[11]。

1.4 %~28.5%的TN患者术中并未发现责任血管[12],而部分正常人群中存在NVC征象,这表明NVC不是导致TN的唯一病因。

1.2 其他病因

桥小脑角区占位性病变,增加了神经与血管接触的可能性,从而导致TN。颅底蛛网膜粘连可以直接浸润三叉神经脑池段,产生疼痛症状。Pruvo[13]认为累及到脑干及三叉神经的病变,均有可能引起TN。

典型的TN发作时,通过刺激疼痛相关脑功能区,如大脑运动皮质、小脑前蚓部等,患者的症状会有所减轻[14-15]。可见,除了NVC因素外,疼痛相关脑功能区的病变也参与了TN的形成。Lin等[16]认为责任血管管径的大小也可能是TN的影响因素,有临床症状的患者通常是血管的近端压迫神经,这更容易导致神经髓鞘的脱失,从而产生TN。

2 MR断层血管成像

2.1 三叉神经常规形态学成像

三叉神经常规形态学成像方法大致包括两类,一类是“白血法”,以3D-TOF序列为代表,所得二维图像中显示高信号的血管,等信号的神经以及低信号的脑脊液。三者信号差异明显,并可通过多平面重建,从不同的方位使神经与邻近责任血管的关系得以清晰显示。但是该序列对背景的信号抑制较差,使得血流与背景间的信号对比度小,因此对慢流速静脉产生的低信号显示欠满意。另一类是“黑血法”,以3D-FIESTA序列为代表,其利用重T2WI的效果使流动的脑脊液呈高信号。该序列加用流动补偿技术,消除了流动干扰伪影,对静脉的显示较佳,弥补了前者的不足。但是,当相邻的小血管环绕三叉神经或血管位于神经的上方并与之重叠时,常规的形态学成像会将这种空间上的重叠、环绕误认为接触,从而造成影像诊断中的假阳性[17]。

2.2 图像融合技术与定量测量

MVD是神经外科治疗原发性TN的重要方法。但是由于术中视野小,无法对邻近区域的血管进行很好的显示,术前责任血管的精确判定能够提高手术的成功率。Docampo等[3]人通过将3D-FIESTA与3D TOF-MRA VR融合,得到可以任意角度旋转的三维图像,能够清晰显示神经与邻近血管的解剖位置关系。Han等[18]使用切割软件实现了脑干、桥前池神经及血管的3D建模,实现了神经与血管关系的三维可视化、模拟手术入路,进行精确导航。Satoh等[19]亦利用融合成像技术,发现症状侧的压迫较对侧以及健康志愿者的三叉神经更常见、更明显。也有学者将FA图、ADC图分别于FIESTA图融合,通过测量感兴趣区的FA值及ADC值来评价三叉神经微结构的改变[20-21]。

Yildiz等[22]应用3.0 T MR对正常志愿者三叉神经的体积进行在体测量,结果显示男性约77.4~78 mm³,女性约66.1~66.4 mm³,且双侧比较没有统计学差异。Leal 等[23]利用3.0 T MR仪对50例TN患者及20名健康志愿者三叉神经的体积及横断面积进行定量测量,发现患侧三叉神经的体积和横断面积分别为(60.35±21.74) mm³、(4.17±1.74) mm²,明显小于对侧[分别为(78.62±24.62) mm³、5.41±1.89) mm²]及正常志愿者(89.09±14.72mm³、5.64±0.85mm²),且神经的萎缩程度与预后有明显的相关性。

3 基于体素形态学测量

定量测量技术的应用也为TN的诊断提供了一个新的思路。基于体素形态学测量(voxel-based morphometry,VBM)技术通过定量活体检测、计算分析不同脑组织成分的密度和体积,来反映相应解剖结构的差异,其是评价脑微结构异常的一种新方法,为阐明病理机制和病程监测提供了有力的工具。

许多研究已经发现,TN患者脑灰质体积(gray matter volume,GMV)存在潜在的改变。Desouza等[24]通过采用ROI法对24例右侧三叉神经痛患者的GMV进行测量,结果发现与痛觉有关的感觉皮层厚度增加,而痛觉调节中枢皮层变薄。蒋元明等[25]通过对43例原发性TN患者及25例健康志愿者的对比研究发现,原发性TN患者双侧小脑半球的GMV均明显增加,可能与疼痛的“易化性”增加或抑制性功能紊乱有关。疼痛发生在左侧的患者,其左后扣带回、左楔前叶GMV减少;当疼痛发生在右侧时,其左海马旁回、左岛叶及右楔叶GMV增加。Gustin等[26]应用VBM对21例TN患者、20例颞下颌关节紊乱患者及36名正常志愿者进行研究,发现在T1加权图像中,TN 患者初级躯体感觉皮质、前岛叶、壳核和伏隔核的灰质体积较健康志愿者低,后部脑岛灰质体积增加。此外,还发现存在三叉神经病变的患者丘脑体积减少。而在颞下颌关节紊乱病人的研究中则没有发现明显的灰质体积异常, 这表明神经性疼痛与非神经性疼痛的发病机制是不同的。TN 相关疼痛感觉的产生或维持可能与大脑皮质的改变有关。因此,TN的发生可能与GMV的异常导致中枢神经系统对疼痛的传导和调节失衡有关。

4 磁共振波谱

磁共振波谱(MR spectroscopy,MRS)是目前唯一可以无创活体研究脑组织代谢、对生化改变进行定量分析的方法。通过对N-乙酰天冬氨酸(N acetylaspartate,NAA)、肌酸(Creatine,Cr)、胆碱(Choline,Cho)和乳酸(Lactic,Lac)等代谢物的量化分析,评价脑组织内神经元功能变化、能量代谢以及细胞膜的分解和合成代谢。

丘脑是特异性和非特异性感觉传输和整合的中继站,其内含有大量功能复杂的神经核团[27]。多种MR成像新技术(如VBM[26,28]、fMRI[29]等)的研究均提示丘脑与原发性TN病情进展密切相关。Gustin等[26]发现在丘脑体积减小的区域,NAA/Cr比值明显减低。王渊等[30]采用多体素MRS技术对原发性TN患者和健康志愿者丘脑各亚区代谢分布进行研究,结果发现患侧丘脑后内侧部NAA/Cr比值明显减低、提示该区神经元数量减少或存在不同程度的功能异常,还发现NAA/Cr比值与VAS评分及病程长短呈负相关。

因此,MRS可以作为临床评价TN患者相应脑区神经元活动及细胞膜功能的无创性检查方法。

5 磁共振扩散张量成像

磁共振扩散张量成像(diffusion tensor imaging,DTI)是扩散加权成像(diffusion weighted imaging,DWI)的发展和深化,是无创活体评价髓鞘完整性的非侵入性检查方法。可以通过各向异性分数(fractional anisotropy,FA)、表观扩散系数(apparent diffusion coefficient,ADC)及平均扩散系数(mean diffusivity,MD)等参数进行定量测量血管压迫导致的神经纤维髓鞘的脱失及轴突的破裂等微结构的改变,还有助于区分伴有神经血管压迫的正常人和TN患者[31-32]。

Herweh等[33]最先将DTI用于TN的研究中,发现6例TN患者中,有3例患者患侧三叉神经FA值明显低于健侧,而正常志愿者两侧三叉神经FA值无明显差异。Lummel等[20]通过对12例TN患者及12名健康志愿者行对比研究,发现原发性TN患者患侧三叉神经的FA值低于对侧,且双侧三叉神经的FA值均明显低于健康志愿者;患侧三叉神经的ADC值明显高于健康对照组。Liu等[34]还发现患侧FA值与疼痛程度评分有显著相关性。FA值反映了脑白质的完整性及方向性,FA值的减低可能与长期的NVC导致神经纤维髓鞘的脱失及再生有关;ADC值反映了组织中水分子的扩散运动,长时间的血管压迫,导致三叉神经慢性低灌注、细胞外水肿,扩散加快,从而导致ADC值的升高。

对于具有NVC征象的非TN患者,有研究表明双侧三叉神经FA值、ADC值等均无明显差异[35],而Lin等[32]认为,只要存在血管压迫,就有FA值的减低及ADC值的升高。

Herweh等[33]发现TN患者在行MVD治疗5个月后,患侧三叉神经的FA值较前发生可逆性改变。也有学者发现,MVD后1周患侧三叉神经的FA值稍有上升,到术后6个月与健康对照组的FA值相比已无明显差别[36]。

因此,DTI不仅可以检测三叉神经微结构的改变,还可以作为术后随诊的重要方法。

综上所述,多种致病因素可以导致TN,其最主要的病理变化为神经纤维髓鞘的脱失及再生。三叉神经常规形态学成像可以显示三叉神经与邻近血管的关系,有助于发现病因;图像融合及3D建模实现了神经与血管关系的三维可视化,能够更精确地发现异常,预现手术局部的解剖空间结构,更直观地指导相关手术。DTI成像技术的应用不仅可以对神经纤维的微结构进行定量测量分析,还有助于区分伴有神经血管压迫症状的正常人和TN患者,有助于阐明血管压迫性TN的发病机理。相信随着MRI技术的进一步发展,TN的相关研究将会取得更大的进展。

[References]

[1] Bahgat D, Ray D, Raslan A, et al. Trigeminal neuralgia in young adults. J Neurosurg, 2011, 114(5): 1306-1311.

[2] Sabalys G, Juodzbalys G, Wang HL. Aetiology and pathogenesis of trigeminal neuralgia:a comprehensive review. J Oral Maxillofac Res,2013, 3(4): e2.

[3] Docampo J, Gonzalez N, Munoz A, et al. Neurovascular study of the trigeminal nerve at 3 T MRI. Neuroradiol J, 2015, 28(1): 28-35.

[4] Suzuki M, Yoshino N, Shimada M, et al. Trigeminal neuralgia:differences in magnetic resonance imaging characteristics of neurovascular compression between symptomatic and asymptomatic nerves. Oral Surg Oral Med Oral Pathol Oral Radiol, 2015, 119(1):113-118.

[5] Harsha KJ, Kesavadas C, Chinchure S, et al. Imaging of vascular causes of trigeminal neuralgia. J Neuroradiol, 2012, 39(5): 281-289.

[6] Maarbjerg S, Wolfram F, Gozalov A, et al. Significance of neurovascular contact in classical trigeminal neuralgia. Brain, 2015,138(2): 311-319.

[7] Lutz J, Linn J, Mehrkens JH, et al. Trigeminal neuralgia due to neurovascular compression: high-spatial-resolution diffusion-tensor imaging reveals microstructural neural changes. Radiology, 2011,258(2): 524-530.

[8] Chen GQ, Wang XS, Wang L, et al. Arterial compression of nerve is the primary cause of trigeminal neuralgia. Neurol Sci, 2014, 35(1):61-66.

[9] Thomas KL, Vilensky JA. The anatomy of vascular compression in trigeminal neuralgia. Clin Anat, 2014, 27(1): 89-93.

[10] Sekula RJ, Frederickson AM, Jannetta PJ, et al. Microvascular decompression for elderly patients with trigeminal neuralgia: a prospective study and systematic review with meta-analysis. J Neurosurg, 2011, 114(1): 172-179.

[11] Guclu B, Sindou M, Meyronet D, et al. Cranial nerve vascular compression syndromes of the trigeminal, facial and vagoglossopharyngeal nerves: comparative anatomical study of the central myelin portion and transitional zone; correlations with incidences of corresponding hyperactive dysfunctional syndromes. Acta Neurochir(Wien), 2011,153(12): 2365-2375.

[12] Kolluri S, Heros RC. Microvascular decompression for trigeminal neuralgia: a five-year follow-up study. Surg Neurol, 1984, 22(3):235-240.

[13] Pruvo JP. Diagnostic and interventional imaging. Diagn Interv Imaging, 2012, 93(1): 1.

[14] Meng YP, Zhang XD. Current research on the pathogenesis of primary trigeminal neuralgia. Chin J Stereotact Funct Neurosurg,2013, 26(5): 317-320.孟永鹏, 张新定. 原发性三叉神经痛发病机制的研究现状. 立体定向和功能性神经外科杂志, 2013, 26(5): 317-320.

[15] Gillig PM, Sanders RD. Psychiatry, neurology, and the role of the cerebellum. Psychiatry (Edgmont), 2010, 7(9): 38-43.

[16] Lin W, Zhu WP, Chen YL, et al. Large-diameter compression arteries as a possible facilitating factor for trigeminal neuralgia: analysis of axial and radial diffusivity. Acta Neurochir (Wien), 2016, 158(3):521-526.

[17] Meng XY, Tang H, Wang QX, et al. Non-contrast-enhanced MR angiography using spatial labeling with mul11tiple inversion pulses sequence imaging in pulmonary artery: a feasibility study. Chin J Magn Reson Imaging, 2014, 5(5): 343-347.孟晓岩, 汤浩, 王秋霞, 等. 非对比剂增强MR血管成像联合多反转空间标记脉冲技术在肺动脉成像的可行性研究. 磁共振成像,2014, 5(5): 343-347.

[18] Han KW, Zhang DF, Chen JG, et al. Presurgical visualization of the neurovascular relationship in trigeminal neuralgia with 3D modeling using free slicer software. Acta Neurochir (Wien), 2016, 158(11):2195-2201.

[19] Satoh T, Omi M, Nabeshima M, et al. Severity analysis of neurovascular contact in patients with trigeminal neuralgia:assessment with the inner view of the 3D MR cisternogram and angiogram fusion imaging. AJNR Am J Neuroradiol, 2009, 30(3):603-607.

[20] Lummel N, Mehrkens JH, Linn J, et al. Diffusion tensor imaging of the trigeminal nerve in patients with trigeminal neuralgia due to multiple sclerosis. Neuroradiology, 2015, 57(3): 259-267.

[21] Lutz J, Linn J, Mehrkens JH, et al. Trigeminal neuralgia due to neurovascular compression: high-spatial-resolution diffusion-tensor imaging reveals microstructural neural changes. Radiology, 2011,258(2): 524-530.

[22] Yildiz E, Yolcu S. Volume of the cisternal portion of the trigeminal nerve: a study with 3.0-Tesla constructive-interference-in-steadystate imaging of healthy subjects. J Neurological Sci (Turkish), 2015, 32:106-114.

[23] Leal PR, Barbier C, Hermier M, et al. Atrophic changes in the trigeminal nerves of patients with trigeminal neuralgia due to neurovascular compression and their association with the severity of compression and clinical outcomes. J Neurosurg, 2014, 120(6):1484-1495.

[24] Desouza DD, Moayedi M, Chen DQ, et al. Sensorimotor and pain modulation brain abnormalities in trigeminal neuralgia: a paroxysmal, sensory-triggered neuropathic pain. PLoS One, 2013,8(6): e66340.

[25] Jiang YM, Huang JQ, Li ZF, et al. Abnormalities of gray matter volume in patients with idiopathic trigeminal neuralgia: a voxelbased morphometry study. Chin J Med Imaging Technol, 2015,31(6): 826-830.蒋元明, 黄建强, 李宗芳, 等. 基于体素的形态学测量原发性三叉神经痛患者脑灰质体积. 中国医学影像技术, 2015, 31(6):826-830.

[26] Gustin SM, Peck CC, Wilcox SL, et al. Different pain, different brain: thalamic anatomy in neuropathic and non-neuropathic chronic pain syndromes. J Neurosci, 2011, 31(16): 5956-5964.

[27] Weigel R, Krauss JK. Center median-parafascicular complex and pain control: review from a neurosurgical perspective. Stereotact Funct Neurosurg, 2004, 82(2-3): 115-126.

[28] Obermann M, Rodriguez RR, Naegel S, et al. Gray matter volume reduction reflects chronic pain in trigeminal neuralgia. Neuroimage,2013, 74: 352-358.

[29] Moisset X, Villain N, Ducreux D, et al. Functional brain imaging of trigeminal neuralgia. Eur J Pain, 2011, 15(2): 124-131.

[30] Wang Y, Li D, Bao FX, et al. Multi-voxel 1H-MRS in observation on metabolic abnormalities of thalamus in patients with idiopathic trigeminal neuralgia. Chin J Med Imaging Technol, 2014, (3):339-343.王渊, 李丹, 包发秀, 等. 多体素~1H-MRS观察原发性三叉神经痛患者丘脑代谢异常. 中国医学影像技术, 2014, (3): 339-343.

[31] DeSouza DD, Hodaie M, Davis KD. Abnormal trigeminal nerve microstructure and brain white matter in idiopathic trigeminal neuralgia. Pain, 2014, 155(1): 37-44.

[32] Lin W, Chen YL, Zhang QW. Vascular compression of the trigeminal nerve in asymptomatic individuals: a voxel-wise analysis of axial and radial diffusivity. Acta Neurochir (Wien), 2014, 156(3): 577-580.

[33] Herweh C, Kress B, Rasche D, et al. Loss of anisotropy in trigeminal neuralgia revealed by diffusion tensor imaging. Neurology, 2007,68(10): 776-778.

[34] Liu Y, Li J, Butzkueven H, et al. Microstructural abnormalities in the trigeminal nerves of patients with trigeminal neuralgia revealed by multiple diffusion metrics. Eur J Radiol, 2013, 82(5): 783-786.

[35] You C, Chai WM, Chen KM, et al. Diffusion tensor imaging of trigeminal neuralgia due to neurovascular contact/compression. Chin Comput Med Imag, 2012, 18 (3): 193-197.尤超, 柴维敏, 陈克敏, 等. 三叉神经痛血管接触/压迫征象的弥散张量成像研究. 中国医学计算机成像杂志, 2012, 18(3):193-197.

[36] Zhang WF, Zhao WG, You C, et al. Diffusion tensor imaging detects trigeminal nerve microstructure changes after MVD in trigeminal neuralgia patients. Chin J Neurosurg Dis Res, 2012, 11( 6): 525-529.张卫峰, 赵卫国, 尤超, 等. 磁共振DTI序列检测MVD对三叉神经微结构的影响. 中华神经外科疾病研究杂志, 2012, 11(6):525-529.

Research progress of etiology and related magnetic resonance imaging in trigeminal neuralgia

GUO Tian-tian, MIAO Zhong-chang*
Department of Radiology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222000, China

Trigeminal neuralgia is the most common form of cranial neuropathy. Its possible etiology, pathogenesis and pathological changes have not been clearly identified and confirmed.Fusion imaging technology can more accurately assess the relationship between trigeminal nerve and adjacent vessels, more intuitive guidance related surgery.The application of functional magnetic resonance imaging plays an important role in understanding the pathogenesis of trigeminal neuralgia and evaluating prognosis. This article aims to review its etiology and related MRI research progress.

Trigeminal neuralgia; Magnetic resonance imaging

江苏省卫生科研项目(编号:Z201417)

徐州医科大学附属连云港医院影像科,连云港 222000

苗重昌,E-mail:lygzhchmiao@163.com

2016-12-28

接受日期:2017-05-08

R445.2;R745.11

A

10.12015/issn.1674-8034.2017.07.013

郭田田, 苗重昌. 三叉神经痛的病因学及相关MRI研究进展. 磁共振成像,2017, 8(7): 542-546.*Correspondence to: Miao ZC, E-mail: lygzhchmiao@163.com

Received 28 Dec 2016, Accepted 8 May 2017

ACKNOWLEDGMENTSHealth Science and research project in Jiangsu (No.Z201417).

猜你喜欢

髓鞘三叉神经三叉神经痛
听觉神经系统中的髓鞘相关病理和可塑性机制研究进展
难以忍受的疼痛——三叉神经痛
机械敏感性离子通道TMEM63A在髓鞘形成障碍相关疾病中的作用*
特殊类型血管神经压迫致三叉神经痛二例报道并文献复习
人从39岁开始衰老
脑白质病变是一种什么病?
三叉神经痛患者三叉神经脑池段MR形态测量研究
原发性三叉神经痛罕见病因分析及手术方法
丙泊酚复合芬太尼在老年三叉神经痛治疗中的麻醉效果探讨
“能帮医师治疗三叉神经痛的机器人”在京面世