APP下载

非线性多比例延迟微分方程的稳定性分析

2017-03-12刘小刚唐贤芳

洛阳师范学院学报 2017年2期
关键词:单支时滞步长

张 如, 刘小刚, 唐贤芳

(1. 西北工业大学明德学院,陕西西安 710124; 2. 西北大学现代学院,陕西西安 710124)

非线性多比例延迟微分方程的稳定性分析

张 如1, 刘小刚2, 唐贤芳1

(1. 西北工业大学明德学院,陕西西安 710124; 2. 西北大学现代学院,陕西西安 710124)

本文应用单支q1,q2,…,ql∈(0,1)-方法和线性0

单支q1,q2,…,ql∈(0,1)-方法;线性0

1 预备知识

非线性多比例时滞微分方程

(1)

其中q1, q2, …, ql∈(0, 1),并且0

这里适当地选取函数f与初始条件,使得这个非线性系统的解析解u(t)存在并且唯一.

引入微分方程

(2)

其中q1, q2, …, ql∈(0, 1),并且0

解析解z(t)存在并且唯一.

定义1 对于非线性多比例时滞微分方程(1)和(2),如果离散的数值解un和zn能够满足条件

定理1 如果对任意的t≥0,非线性多比例时滞微分方程(1)都满足β1+β2+…+βl≤-α

其中

(3)

(4)

(5)

并且对∀x∈Cd,存在Cd上的内积,使原文为‖x‖2=[x,x],那么这个非线性多比例时滞微分方程(1)是稳定的.

2 单支θ-方法的稳定性分析

可见Hk呈现指数递增趋势,再将Hk分成等步长的m份,令

为了简化,假设t0=T0=1,并令t-(m+1)=0,t-i=q1tm-i, (i=m,m-1, …, 1), 有

(6)

(7)

又因为0

由上式可见δi与m, n无关,并令γi=1-δi, i=1, 2, …, l

用变步长单支θ-方法求解非线性多比例时滞微分方程(1)和(2), 可以得到差分方程:

un+1=un+hn+1f [(1-θ)tn+θtn+1, (1-θ)un+θun+1, uh(q1((1-θ)tn+θtn+1)),uh(q2((1-θ)tn+

θtn+1)), …, uh(ql((1-θ)tn+θtn+1))]

(8)

zn+1=zn+hn+1f[(1-θ)tn+θtn+1, (1-θ)zn+θzn+1, zh(q1((1-θ)tn+θtn+1)), zh(q2((1-θ)tn+

θtn+1)), …, zh(ql((1-θ)tn+θtn+1))]

(9)

uh(qitn)=δiun-sim+(1-δi)un-(si+1)m

uh(qi(1-θ)tn+qiθtn+1))=δi[(1-θ)un-sim+θun+1-sim]+(1-δi)[(1-θ)un-(si+1)m+θun+1-(si+1)m]

uh(q1tn)=un-m,uh(q1tn+1)=un-m+1

再用具有变步长格式的单支θ-方法(8)和(9)求解非线性多比例时滞微分方程(1)和(2), 可以得到差分方程

un+1=un+hn+1f[(1-θ)tn+θtn+1, (1-θ)un+θun+1, (1-θ)un-m+θun+1-m,δ2((1-θ)un-s2m+θun+1-s2m)+(1-δ2)((1-θ)un-(s2+1)m+θun+1-(s2+1)m), …,δl((1-θ)un-slm+θun+1-slm)+(1-δl)((1-θ)un-(sl+1)m+θun+1-(sl+1)m)]

(10)

zn+1=zn+hn+1f[(1-θ)tn+θtn+1, (1-θ)zn+θzn+1, (1-θ)zn-m+θzn+1-m,δ2((1-θ)zn-s2m+

θzn+1-s2m)+(1-δ2)((1-θ)zn-(s2+1)m+θzn+1-(s2+1)m), …,δl((1-θ)zn-slm+θzn+1-slm)+(1-δl)((1-θ)zn-(sl+1)m+θzn+1-(sl+1)m)]

(11)

‖ωn+1‖2≤‖ωn‖2+2Re<σ(E)ωn,ρ(E)ωn>

其中ωn=yn-zn,ρ(ξ)=ξ-1,σ(ξ)=θξ+(1-θ),ξ∈C, (Eωn=ωn+1,Eun=un+1).

定理2 如果变步长格式满足(6)、(7),那么有

证明 由差分方程(10)和(11),将两式子做差可以得到

ρ(E)ωn=hn+1[f(σ(E)tn,σ(E)un,σ(E)un-m,δ2σ(E)un-s2m+(1-δ2)σ(E)un-(s2+1)m, …,δlσ(E)un-slm+(1-δl)σ(E)un-(sl+1)m)-f(σ(E)tn,σ(E)zn,σ(E)zn-m,δ2σ(E)zn-s2m+(1-δ2)σ(E)zn-(s2+1)m, …,δlσ(E)zn-slm+(1-δl)σ(E)zn-(sl+1)m)]

2Re<σ(E)ωn,ρ(E)ωn>≤2hn+1α‖σ(E)ωn‖2+hn+1(β1+β2+…+βl)‖σ(E)ωn‖2+hn+1β1‖σ(E)ωn-m‖2)+hn+1β2max{‖σ(E)ωn-(s2+1)m‖2, ‖σ(E)ωn-s2m‖2}+…+

hn+1βlmax{‖σ(E)ωn-(sl+1)m‖2, ‖σ(E)ωn-slm‖2}

由定理2,通过迭代分析可得

‖σ(E)ωi-slm‖2}

再由引理1可知

可知微分方程(1)的单支θ-方法是稳定的.

3 线性θ-方法的渐近稳定性分析

继续使用半几何步长格式,非线性多比例时滞微分方程(1)和(2)满足条件(3)~(5).

对于非线性多比例时滞微分方程(1)和(2)使用线性θ-方法,可以分别得到差分方程

un+1=un+hn+1[(1-θ)f(tn,un,un-m,δ2un-s2m+(1-δ2)un-(s2+1)m, …,δlun-slm+(1-δl)un-(sl+1)m)+

θf(tn+1,un+1-m,δ2un+1-s2m+(1-δ2)un+1-(s2+1)m, …,δlun+1-slm+(1-δl)un+1-(sl+1)m)]

(12)

zn+1=zn+hn+1[(1-θ)f(tn,zn,zn-m,δ2zn-s2m+(1-δ2)zn-(s2+1)m, …,δlzn-slm+(1-δl)zn-(sl+1)m)+

θf(tn+1,zn+1-m,δ2zn+1-s2m+(1-δ2)zn+1-(s2+1)m, …,δlzn+1-slm+(1-δl)zn+1-(sl+1)m)]

(13)

证明 记ωn=un-zn并且

Qn=f(tn,un,un-m,δ2un-s2m+(1-δ2)un-(s2+1)m, …,δlun-slm+(1-δl)un-(sl+1)m)-f(tn,zn,zn-m,δ2zn-s2m+

(1-δ2)zn-(s2+1)m, …,δlzn-slm+(1-δl)zn-(sl+1)m)

再由表达式(12)和(13)做差得ωn+1-θhn+1Qn+1=ωn+(1-θ)hn+1Qn

那么,上式两边分别与自身做内积得

2θhn+1Re(ωn+1,Qn+1)

递推下去有

[1] 匡蛟勋. 泛函微分方程的数值处理[M]. 北京: 科学出版社, 1999:43-66.

[2] 邱深山. 滞后微分方程渐近稳定性及θ-方法的稳定性[D]. 哈尔滨:哈尔滨工业大学, 1991:2-30.

[3] 宋明辉. 延迟微分方程数值稳定性[D] . 哈尔滨:哈尔滨工业大学, 1997:2-12.

[4] 赵景军, 徐阳, 曹婉容. 一类特殊比例方程的稳定性分析[J]. 系统仿真学报, 2005, 17(11):2598-2599.

[5] Koto T. Stability ofθ-Methods for Delay Integro-Differential Equations[J]. J. Comp. Appl. Math, 2003, 161(2):393-404.

[6] Koto T. Stability of Runge-Kutta Methods for Delay Integro-Differential Equations[J]. J. Comp. Appl. Math, 2002, 145(1):483-492.

[责任编辑 胡廷锋]

The Stability Analysis for the Nonlinear Pantograph Differential Equation with Several Delay Terms

ZHANG Ru1, LIU Xiao-gang2, TANG Xian-fang1

(1. Mingde College, Northwestern Polytechnical University, Xi’an 710124, China;2. Modern College of Northwest University, Xi’an 710124, China)

In this paper, singleq1,q2,…,ql∈(0,1)-method and 0

single branchq1,q2,…,ql∈(0,1)-method; linear 0

2016-11-14

陕西省教育厅专项科研计划项目(16JK2213)

张如(1980—), 女, 黑龙江海林人, 讲师. 研究方向: 微分方程数值稳定性分析.

O175.13

A

1009-4970(2017)02-0001-05

猜你喜欢

单支时滞步长
基于Armijo搜索步长的BFGS与DFP拟牛顿法的比较研究
带有时滞项的复Ginzburg-Landau方程的拉回吸引子
基于随机森林回归的智能手机用步长估计模型
通过气囊运动实现提升单支剔除检测精度研究
基于Armijo搜索步长的几种共轭梯度法的分析对比
单支冠状动脉-左冠状动脉缺如1例
针对输入时滞的桥式起重机鲁棒控制
不确定时滞奇异摄动系统的最优故障估计
基于动态步长的无人机三维实时航迹规划
沁水盆地煤层气单支水平井钻完井技术探讨与实践