数学建模思想在高职数学教学中的运用研究
2017-03-09李建杰王楠
李建杰++王楠
【摘要】本文主要讲述以掌握和运用所学知识解决实际问题为目标,结合机电类数学的学科特点,将建模思想融入高职机电类数学教学的实践.通过问卷形式对我院高职机电学生数学学习现状和数学素养进行调查,得出结论——将数学建模思想渗透于数学知识,着重采用“问题驱动”和“案例驱动”灵活的教学方法,加强数学与实际生活及专业知识的联系,能够强化学生应用数学的思想和解决问题的意识,提高学生的综合应用能力.
【关键词】数学建模思想;高职数学
如何提高学生学习与运用高等数学的能力,使他们成为生产服务与管理一线的实用型人才?这是高等职业教育孜孜以求的目标,需要我们在教学实践中大胆创新,探索一套全新的教学方法与理念.在教学实践中,我深刻感受到,将建模思想融入高职数学教学是一个正确的选择.
一、问题的提出
将建模思想融入高职数学教学,不是突发奇想,是一次测评与问卷调查,使我们清楚地看到了它的必要性与紧迫性.
问卷测试、个别访谈的调查对象是我院机械工程学院三年制高职学生,问题涉及“对高等数学的认识与学习状态”“新知识讲授的方式”“学习兴趣与应用性教学的关系”“接触到的数学应用情况”“对开放式作业的看法”等12项内容.在调查中,我们发现了三个问题.
一是所学数学知识缺乏应用性.调查显示,58%的学生感到学习中最大的困难是理论抽象、计算复杂,认为高等数学是一门枯燥、远离实际应用的学科,产生厌学情绪.往往是概念、定理背得滚瓜烂熟,一遇到实际问题便不知所措,为学分而学数学.64%的学生希望教师能设置实例引入概念,便于理解和掌握知识.
二是学习数学时有被动情绪.有53%的学生表示对数学不感兴趣,课堂和课后很难发现数学的应用价值.
三是用数学解决实际问题的能力严重不足.能运用知识解决实际问题的学生不到10%.68%的学生希望教师除讲授基础知识外,增加探讨用所学知识解决实际问题的案例,体现学以致用的愿望.
调查结果表明,以讲授为主的灌输式教学、理论与实际相脱节的教学模式,已经无法满足高职数学教育培养目标的需求,教学改革势在必行.
二、问题的解决
在教学中,我们以应用为目的,以必需、够用为尺度,将知识与实际问题紧密结合.以初等数学模型和微积分模型为主线进行教学.主要采用“问题驱动”和“案例驱动”教学方法.
在概念定理的教学中融入数学建模思想.数学概念是学生理解的难点.在讲授概念时,我们紧紧抓住大多数概念都是从实际应用中抽象出来的这一本质特征,采用创设情境、提出问题、提炼模型、引出概念、学习理论,再回到应用的“问题驱动”式教学方法.
例如,定积分的概念是从很多实际问题中抽象出来的,在讲授这一概念时,除了讲清曲边梯形面积、变速直线运动路程的引例外,我们还增加了机械基础中非均匀直线细棒的质量实例.引导学生用建模的思想方法分析解决问题,鼓励学生通过模仿不断地深入学习.在探究与解决问题的过程中,学生发现虽然问题来自不同的学科,但解决问题的数学模型是类同的,这种共同的数学模型就是定积分方法.在此基础上,引导学生抽象并描述出定积分的概念.学生通过实例的讨论,对定积分有了清晰的认识,体会了用不变代变化的近似数学思想,掌握了运用极限工具实现从近似向精确过渡的数学方法,更深刻地理解了定积分的定义.
概念掌握后,引导学生探究工程力学中非均匀细棒的转动惯量问题,让学生体会概念的数学思想与应用价值,提升学生用数学知识解决专业问题的能力.课后留给学生查找用定积分的思想方法解决问题的实例,以小组为单位,合作完成一个小报告.搜集实例的过程本身就是巩固和思考概念的过程,进一步加深了学生对概念及应用多样性的理解,同時也锻炼了学生查阅文献资料的能力.
实践证明,从实际生活和专业知识为背景的问题中提炼数学模型,引入数学概念是数学教学的有效措施.不仅有效地引导学生通过自己的观察、猜想、归纳,在发现中掌握知识,提升了学好数学的兴趣与自信,更重要的是使学生养成了把现实问题转化为数学问题的思维习惯.将数学建模思想融入概念教学,并不是要求所有概念都要机械地融入,只需对课程的核心概念,如极限、导数、微分、积分进行融入就行了.
在应用问题解决过程中融入数学建模思想.根据机电专业对数学应用水平及方法的要求,采用“案例驱动”教学方法,是专业知识与数学知识契合的关键.
在函数知识一章结束后,增加初等数学模型内容;在导数、积分、微分方程章节后,安排与之配套的微积分模型内容.其中与实际生活相关联的案例:如何设计百事可乐饮料罐,使其所用材料最省;探究人在雨中行走淋雨量与步速的关系;饮酒驾车问题,建立饮酒后人体血液中酒精含量与时间的变化关系;医学上传染病的传播模型.与专业知识相关联的案例:数控加工中给出车削零件曲面轴图形,建立其数学模型;探讨机械中常用的曲柄连杆机构滑块的运动规律;电路分析中实际电压源的最大功率的求法;非均匀细棒的转动惯量;整流平均值的计算方法;电容器充电及放电时,元件的端电压随时间的变化规律.
通过引入生活案例,学生在探究的过程中对建模的方法及步骤有了进一步的认识,伴随着问题的解决,学生能感受到数学与日常生活的密切关系,体验数学的应用性和趣味性.
通过专业案例的讲解,使学生知晓要建立数学模型,首先需要了解专业的一些基本规律和经验,做出合理假设,根据专业知识对问题进行分析,建立数学模型.将其完全转化为一个数学问题后,再用数学方法解决.例如,数控加工中数学模型的建立——给出车削零件曲面轴图形,建立其数学模型.数学处理是数控加工过程的一个必不可少的重要环节,它包括数值换算、坐标计算和辅助计算三个方面.其中坐标计算是核心,需要学生建立适当的坐标系,构建数学模型,求解基点和圆心坐标.教学中,先以简单零件图做铺垫,以学生为主体建立曲线方程,求解两条直线间的交点、直线与圆弧、圆弧与圆弧、圆弧与二次曲线的交点或切点.在此基础上,引导学生分析案例.通过问题的解决,使学生掌握数控加工中建立数学模型的基本方法和步骤.教学过程中,我们更注重分析模型的建立过程,揭示专业问题与数学知识间联系的方法,对计算求解部分,可让学生课下利用MATHEMATICS软件解决.
注重课后实践,强化学生运用数学建模的思想和方法.微积分知识讲完后,教师尝试性地布置一次开放性的大作业.让学生课下以组为单位,用所学的知识解决教师预留或学生自己感兴趣的实际问题,要求以论文的形式呈现,重在考查用数学建模的思想方法解决问题,包含提出问题、做出假设、建立解决问题的模型、模型分析、做出总结等内容.完成时间为一个月.教师课上预留3学时,要求学生以小组为单位选代表讲解,并用PPT展示任务成果,教师与学生共同根据问题的实用性、知识使用的正确性、用模型解决问题的能力、论文的完整性、表达是否清楚、投影的设计与使用情况进行评价,将结果计入考核成绩,占比20%.
三、将数学建模思想融入高职机电类数学教学的反思
将数学建模思想融入高职机电类数学教学,有效地提高了教学质量.在实验班数学课程结束时,我们对实验班级的学生做了与传统班级同样的问卷调查.结果显示:对数学感兴趣、喜欢学习数学的人数比重增加到64%;学习效果明显提高,能用数学知识解决实际问题的人数比重增加到68%;学习成绩也比对照班级高出很多.
将数学建模思想融入高职机电类数学教学实践,使我们得到了有益的启示:弥补了传统数学教学应用方面的不足,架起了数学知识与实际应用的桥梁,填补了数学知识与专业知识间的鸿沟,促进了教师教学方法和模式的更新.
【参考文献】
[1]姜启源.数学建模[M].北京:高教出版社,2002.
[2]朱思铭,李尚廉.数学模型[M].广州:中山大学出版社,2002.