SIRT1在帕金森病中的研究进展
2017-03-08朱朝娟王倩梅刘思达梁逸飞
朱朝娟,王倩梅,梁 赫,刘思达,马 轩,梁 业,梁逸飞
SIRT1在帕金森病中的研究进展
朱朝娟,王倩梅,梁 赫,刘思达,马 轩,梁 业,梁逸飞
帕金森病;沉默信息调控因子1;治疗
沉默信息调控因子1(silence information regulator 1, SIRT1)是Sirtuins家族中的一员,在烟酰胺腺苷二核苷酸(NAD+)存在的情况下具有组蛋白脱乙酰化酶的作用。帕金森病(Parkinson's disease, PD)是一种进行性中枢神经系统退行性疾病,因脑黑质多巴胺能(dopamine, DA)神经元进行性减少,对肌肉运动的抑制减弱,出现不自主震颤、肌肉强直收缩和姿势反射障碍等症状[1-2]。流行病学调查显示,美国约有60万PD患者,且发病率呈逐渐上升趋势[3-4]。近年研究发现SIRT1具有改善PD的作用[5-6]。本文通过对SIRT1与PD相关研究的回顾,探讨SIRT1相关药物在PD治疗中的可行性。
1 SIRT1概述
SIRT1在NAD+存在的情况下发挥组蛋白脱乙酰化酶的作用,调控转录后翻译,调节正常神经元的生理功能、促进突触形成及维持重塑能力,限制能量代谢和延长寿命,故亦称为“长寿蛋白”[7]。SIRT1的NAD+依赖的脱乙酰化酶作用通过激活过氧化物酶体增殖物激活受体γ辅激活因子1α(peroxisomal proliferator-activated receptor-coactivator1α, PGC-1α),发挥抗氧化、应激防御和保护线粒体的作用[8];通过活化腺苷酸活化蛋白激酶(AMP-activated protein kinase, AMPK)发挥自噬作用以清除异常蛋白[9];通过对NF-κB脱乙酰化作用降低其转录活性,抑制诱导型氧化氮合酶(iNOS)表达,降低肿瘤坏死因子-α(TNF-α)和白细胞介素-6(IL-6)的表达从而抑制神经炎症[5]。SIRT1主要激动剂为白藜芦醇,一种化学名为3,5,4'-三羟基戊二烯的多酚类化合物,广泛存在于花生、凤梨、朝槐、决明、桑子、大黄、首乌、金雀根、葡萄、虎杖、藜芦等植物中,其中虎杖含量最高,目前临床已广泛用于心血管疾病的治疗[6]。
2 与SIRT1相关的PD发病机制
研究证实错误折叠和聚集蛋白α-突触核蛋白的累积、神经毒素或某些变异蛋白[富亮氨酸重复激酶2(leucine-rich repeatkinase 2, LRRK2)]导致的线粒体功能障碍与PD发病相关[10],其中异常蛋白通过SIRT1-AMPK相关的自噬作用清除,若自噬作用减弱,其累积可导致PD[11-12]。PD的另一重要发病机制为氧化应激[13]。PGC-1α是一种增强抗氧化应激作用的关键转录调节因子,主要调节线粒体代谢及氧化应激。相关实验通过基因工程使PGC-1α在小鼠神经元中过度表达,同时用神经毒素1-甲基-4-苯基-1,2,3,6-四氢吡啶(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, MPTP)诱发细胞退化,建立亚急性PD小鼠模型,以黑质细胞中线粒体抗氧化剂超氧化物歧化酶2(superoxide dismutase 2, SOD2)和线粒体型硫氧还蛋白(Trx2)的表达水平作为神经元生存能力指标,证明PGC-1α过度表达使神经元免于MPTP诱发的多巴胺丢失[14],推测PGC-1α相关氧化应激机制与PD发病密切相关。
3 SIRT1在PD中的保护机制
3.1SIRT1/AMPK通路 AMPK是一种极其重要的能量代谢调节因子,称为细胞的“代谢传感蛋白”或“能量监测器”,其活性主要受AMP/ATP比值调节,通过调控蛋白降解和细胞自噬作用等稳态进而调节体内的能量代谢,维持细胞能量平衡[15-16]。有研究显示热量限制时,细胞内NAD+依赖的去乙酰化酶SIRT1水平升高,通过调节转录而限制能量代谢,延长生物体衰老,推测SIRT1参与了细胞的能量代谢稳态调节[17-18]。提示AMPK与SIRT1在调节细胞内能量代谢稳态中存在内在联系[19]。有实验显示,白藜芦醇可改善鱼藤酮诱导的DA神经元线粒体损伤,抑制细胞凋亡,且在SIRT1敲除后,白藜芦醇可激活AMPK,但改善线粒体功能的作用消失,证实白藜芦醇改善DA神经元线粒体损伤主要通过激活AMPK,进而激活SIRT1发挥相应作用[20-21],说明SIRT1与AMPK之间存在相互调控的关系。
有研究显示,在MPTP建立的亚急性PD小鼠模型中,白藜芦醇处理后SIRT1和p-AMPK水平明显升高,而与细胞凋亡相关的蛋白Cleaved-caspase 3水平明显下降,同时小鼠脑黑质区酪氨酸羟化酶(tyrosine hydroxylase, TH)表达阳性的神经元丢失率降低,纹状体中TH的表达量上升;反之,经SIRT1特异性抑制剂EX527处理的小鼠,p-AMPK水平明显下降,而Cleaved-caspase 3蛋白水平明显升高,且小鼠脑黑质区TH表达阳性的神经元丢失率上升,纹状体组织中TH的表达量下降[22],证实白藜芦醇通过激活SIRT1,进而激活AMPK,从而发挥保护作用。提示SIRT1通过SIRT1/AMPK通路参与PD进程,可作为PD治疗的靶点,且白藜芦醇对PD治疗有效。
3.2SIRT1/PGC-1α通路 相对于脑组织较高的氧代谢率,其抗氧化保护机制相对缺乏。研究表明,在PD早期氧自由基增多,尚可通过机体代偿反应加强纹状体抗氧化酶系统活性从而抵抗氧自由基损伤,随着疾病的不断进展,自由基的产生不断加快,机体的代偿反应逐渐降低,进而不能抵抗氧自由基产生的损伤,纹状体内氧化和抗氧化应激系统逐渐失衡,导致神经元损伤、凋亡[23-24]。
PGC-1α是一种多功能蛋白质,可激活多细胞核受体,参与众多转录因子的激活,是抗氧化应激系统中至关重要的转录调节因子[24-25]。研究显示,氧化剂过氧化氢可使抗氧化酶基因、SOD1、SOD2、谷胱甘肽过氧化物酶1及PGC-1α的表达明显升高[26]。有实验证实,PGC-1α通过增加抗氧化酶活性和表达水平从而减少细胞凋亡,而PGC-1α敲除的小鼠过氧化氢酶、SOD1和SOD2的表达水平与正常小鼠比较显著降低[27]。推测氧化应激可激活PGC-1α,进而提高抗氧化酶活性及表达水平,增强组织的抗氧化能力。
组蛋白乙酰基转移酶复合体可直接乙酰化PGC-1α的多个赖氨酸残基,降低PGC-1α水平且抑制其转录活性,从而抑制抗氧化作用[28]。反之,SIRT1的活化可维持PGC-1α的去乙酰化状态以保持PGC-1α水平,从而增强抗氧化作用[29]。有学者发现过氧化氢可诱导PGC-1α过表达,还可诱导PGC-1α和SIRT1在细胞核共聚集,且过氧化氢处理后细胞的存活率与PGC-1α呈剂量依赖性关系[30]。有研究显示,SIRT1抑制剂烟酰胺处理后野生型细胞抗氧化应激能力减弱,而PGC-1α过表达的细胞抗氧化应激能力则不受影响,证实PGC-1α位于SIRT1下游。有实验证明,SIRT1去乙酰化PGC-1α后阻止了蛋白酶体对PGC-1α的降解,致靶基因持续激活。由此可见,在抗氧化应激中SIRT1对PGC-1α发挥调节作用,SIRT1调节氧化应激条件下PGC-1α的起始和持续反应,在氧化应激时SIRT1上调和维持PGC-1α水平进而发挥抗氧化应激作用[30]。提示SIRT1/PGC-1α通过维持PGC-1α水平进而发挥抗氧化作用,可能在预防和治疗PD中发挥积极作用。
3.3调节炎症反应 有研究证实,小胶质细胞受刺激后可从具有DA神经元保护作用的静息状态转变为病理的活化状态[31]。相关文献显示,小胶质细胞活化可通过增强氧化应激和促进促炎症细胞因子的产生以影响DA神经元[32-34]。有学者认为,神经炎症损害PD患者脑黑质DA神经元,促使其凋亡[35]。部分学者表示神经炎症对中枢神经系统具有保护作用[17]。神经炎症究竟是DA神经元死亡的主要原因还是神经元凋亡后继发反应目前尚无统一认识,但神经炎症参与PD进程是毋庸置疑的[36]。然而,SIRT1通过对NF-κB的脱乙酰化作用降低其转录活性,抑制iNOS表达,降低TNF-α和IL-6水平,抑制神经炎症已得到证实[37],由此可见SIRT1可能通过神经炎症参与PD进程。
4 展望
综上,已证实的与PD相关的三种作用机制,即SIRT1-AMPK自噬作用减弱、氧化应激和神经炎症均与SIRT1密切相关,通过SIRT1/AMPK和SIRT1/PGC-1α信号通路调节能量代谢、自噬作用、氧化应激及保护线粒体功能等多种途径减缓或预防PD进程,且SIRT1相关制剂如白藜芦醇已用于心血管疾病的治疗[6],提示临床可将SIRT1相关研究成果应用于PD治疗,早日做出重要突破,改善预后。
[1] Chahine L M, Amara A W, Videnovic A. A systematic review of the literature on disorders of sleep and wakefulness in Parkinson's disease from 2005 to 2015[J].Sleep Med Rev, 2016,2016:1-18.
[2] Maloney E M, Djamshidian A, O'Sullivan S S. Phenomenology and epidemiology of impulsive-compulsive behaviours in Parkinson's disease, atypical Parkinsonian disorders and non-Parkinsonian populations[J].J Neurol Sci, 2017,374:47-52.
[3] Kowal S L, Dall T M, Chakrabarti R,etal. The current and projected economic burden of Parkinson's disease in the United States[J].Mov Disord, 2013,28(3):311-318.
[4] Lee A, Gilbert R M. Epidemiology of Parkinson Disease[J].Neurol Clin, 2016,34(4):955-965.
[5] Gao J, Zhou R, You X,etal. Salidroside suppresses inflammation in a D-galactose-induced rat model of Alzheimer's disease via SIRT1/NF-κB pathway[J].Metab Brain Dis, 2016,31(4):771-778.
[6] Cho S, Namkoong K, Shin M,etal. Cardiovascular Protective Effects and Clinical Applications of Resveratrol[J].J Med Food, 2017,20(4):323-334.
[7] Kupis W, Palyga J, Tomal E,etal. The role of sirtuins in cellular homeostasis[J].J Physiol Biochem, 2016,72(3):371-380.
[8] Ye Q, Ye L, Xu X,etal. Epigallocatechin-3-gallate suppresses 1-methyl-4-phenyl-pyridine-induced oxidative stress in PC12 cells via the SIRT1/PGC-1α signaling pathway[J].BMC Complement Altern Med, 2012,12:82.
[9] Kou X, Li J, Liu X,etal. Ampelopsin attenuates the atrophy of skeletal muscle from d-gal-induced aging rats through activating AMPK/SIRT1/PGC-1α signaling cascade[J].Biomed Pharmacother, 2017,90:311-320.
[10] Moraitou M, Dermentzaki G, Dimitriou E,etal. α-Synuclein dimerization in erythrocytes of Gaucher disease patients: correlation with lipid abnormalities and oxidative stress[J].Neurosci Lett, 2016,613:1-5.
[11] Sun A Y, Wang Q, Simonyi A,etal. Resveratrol as a therapeutic agent for neurodegenerative diseases[J].Mol Neurobiol, 2010,41(2-3):375-383.
[12] Gonzalez-Horta A. The Interaction of Alpha-synuclein with Membranes and its Implication in Parkinson's Disease: A Literature Review[J].Nat Prod Commun, 2015,10(10):1775-1778.
[13] Niranjan R. The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson's disease: focus on astrocytes[J].Mol Neurobiol, 2014,49(1):28-38.
[14] Wu Y, Li X, Zhu J X,etal. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease[J].Neurosignals, 2011,19(3):163-174.
[15] Li S J, Liu C H, Chang C W,etal. Development of a dietary-induced metabolic syndrome model using miniature pigs involvement of AMPK and SIRT1[J].Eur J Clin Invest, 2015,45(1):70-80.
[16] Yuan Y, Shi M, Li L,etal. Mesenchymal stem cell-conditioned media ameliorate diabetic endothelial dysfunction by improving mitochondrial bioenergetics via the Sirt1/AMPK/PGC-1α pathway[J].Clin Sci (Lond), 2016,130(23):2181-2198.
[17] Wee Yong V. Inflammation in neurological disorders: a help or a hindrance[J].Neuroscientist, 2010,16(4):408-420.
[18] Zhao H, Chen S, Gao K,etal. Resveratrol protects against spinal cord injury by activating autophagy and inhibiting apoptosis mediated by the SIRT1/AMPK signaling pathway[J].Neuroscience, 2017,348:241-251.
[19] Ferretta A, Gaballo A, Tanzarella P,etal. Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson's disease[J].Biochim Biophys Acta, 2014,1842(7):902-915.
[20] Price N L, Gomes A P, Ling A J,etal. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function[J].Cell Metab, 2012,15(5):675-690.
[21] Subramaniam S R, Chesselet M F. Mitochondrial dysfunction and oxidative stress in Parkinson's disease[J].Prog Neurobiol, 2013,106-107:17-32.
[22] 郭彦杰,董素艳,赵文娟,等.白藜芦醇通过SIRT1/AMPK信号通路减轻MPTP诱导的小鼠多巴胺能神经元丢失[J].国际神经病学神经外科学杂志,2016,43(2):97-102.
[23] Zhang Y, Dawson V L, Dawson T M. Oxidative stress and genetics in the pathogenesis of Parkinson's disease[J].Neurobiol Dis, 2000,7(4):240-250.
[24] Tsai K L, Cheng Y Y, Leu H B,etal. Investigating the role of Sirt1-modulated oxidative stress in relation to benign paroxysmal positional vertigo and Parkinson's disease[J].Neurobiol Aging, 2015,36(9):2607-2616.
[25] 闫春雷,黄欣,苏乐群.PGC-1α的转录调节和翻译后修饰[J].中国生物化学与分子生物学报,2015,31(1):12-19.
[26] St-Pierre J, Drori S, Uldry M,etal. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators[J].Cell, 2006,127(2):397-408.
[27] Uldry M, Yang W, St-Pierre J,etal. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation[J].Cell Metab, 2006,3(5):333-341.
[28] Lerin C, Rodgers J T, Kalume D E,etal. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha[J].Cell Metab, 2006,3(6):429-438.
[29] Gerhart-Hines Z, Rodgers J T, Bare O,etal. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha[J].EMBO J, 2007,26(7):1913-1923.
[30] Anderson R M, Barger J L, Edwards M G,etal. Dynamic regulation of PGC-1alpha localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response[J].Aging Cell, 2008,7(1):101-111.
[31] Li J Y, Ma S S, Huang Q Y,etal. The Function of Neuroinflammation in Parkinson Disease[J].Sheng Li Ke Xue Jin Zhan, 2015,46(3):175-179.
[32] Chung Y C, Ko H W, Bok E,etal. The role of neuroinflammation on the pathogenesis of Parkinson's disease[J].BMB Rep, 2010,43(4):225-232.
[33] Lee J K, Tran T, Tansey M G. Neuroinflammation in Parkinson's disease[J].J Neuroimmune Pharmacol, 2009,4(4):419-429.
[34] Wang Q, Liu Y, Zhou J. Neuroinflammation in Parkinson's disease and its potential as therapeutic target[J].Transl Neurodegener, 2015,4:19.
[35] Holmes S, Singh M, Su C, et al. Effects of Oxidative Stress and Testosterone on Pro-Inflammatory Signaling in a Female Rat Dopaminergic Neuronal Cell Line[J].Endocrinology, 2016, 157(7):2824-2835.
[36] Leszek J, Barreto G E, Gasiorowski K,etal. Inflammatory Mechanisms and Oxidative Stress as Key Factors Responsible for Progression of Neurodegeneration: Role of Brain Innate Immune System[J].CNS Neurol Disord Drug Targets, 2016,15(3):329-336.
[37] Ye J, Liu Z, Wei J,etal. Protective effect of SIRT1 on toxicity of microglial-derived factors induced by LPS to PC12 cells via the p53-caspase-3-dependent apoptotic pathway[J].Neurosci Lett, 2013,553:72-77.
R742.5
A
1002-3429(2017)09-0110-04
10.3969/j.issn.1002-3429.2017.09.038
2017-05-09 修回时间:2017-06-16)
710032 西安,第四军医大学西京医院急诊科