APP下载

基于低频信号注入法的无轴承异步电机转速自检测控制

2017-02-17杨泽斌李方利孙晓东

农业工程学报 2017年2期
关键词:异步电机气隙绕组

杨泽斌,李方利,陈 正,孙晓东



基于低频信号注入法的无轴承异步电机转速自检测控制

杨泽斌1,李方利1,陈 正1,孙晓东2

(1. 江苏大学电气信息工程学院,镇江 212013; 2. 江苏大学汽车工程研究院,镇江 212013)

针对无轴承异步电机运行中悬浮转子转速检测问题,提出了一种基于低频信号注入法的无速度传感器控制新策略。该策略在无轴承异步电机基波模型基础上,通过注入低频信号引起的响应来构造转子位置偏差角,进一步通过PI控制器对偏差角进行调节,得到电机气隙磁场旋转速度,进而估计电机转速。运用该转速自检测方法,在Matlab/Simulink平台中搭建了无轴承异步电机无速度传感器矢量控制系统仿真模型,并进行了仿真研究。仿真结果表明,该方法能够在0.15 s内快速跟踪转子转速,并且具有优良的悬浮和转矩特性。试验结果同样表明,该方法不仅具有良好的转速在线自检测能力,而且能在无速度传感器方式下实现转子稳定悬浮运行,验证了所提方法的有效性和实用性。

控制;模型;计算机仿真;无轴承异步电机;低频信号;传感器;矢量控制

0 引 言

近年来,随着工业的快速发展,人们对电机的需求越来越大,要求也越来越高[1-3]。和其他传统电机相比,无轴承异步电机(bearingless induction motor,BIM)具有无摩擦、无磨损、无需润滑、耐腐蚀、寿命长、能实现高速运行等特点,被广泛应用在定期维修困难的生命科学领域,易受酸、碱腐蚀的化工领域,以及半导体工业等领域。又因其结构简单、气隙均匀、成本低等优点,使其在机械加工、中小型发电设备、人工心脏泵以及对精度要求较高的数控机床等特种电气驱动/传动领域具有潜在的应用市场[4-5]。然而,BIM速度传感器的安装,阻碍了其高速运行,除此之外,还增大了BIM的轴向尺寸。因此开展对BIM的无传感器研究,对其低成本实用化运行具有重要的理论价值和现实意义[6-9]。

为了解决机械式速度传感器带来的弊端,经过多年研究,BIM无速度传感器矢量控制取得了一定的成就[10-12]。研究人员提出了模型参考自适应法[13-16]、磁链观测法[17-18]、滑模观测器法[19]、定转子电阻在线辨识等[20-24],但这些方法都利用了BIM的非理想特性,易受电机结构及参数的影响,因此在实际控制系统中很难得到真正应用[25-26]。为了弥补以上方法的不足,又有学者提出了高频信号注入法[27-28],其基本原理是利用注入的高频电压信号估计转子位置偏差角。但是,注入的高频信号极易和其他高频谐波信号掺杂在一起,不容易分离,需要另外安装信号处理装置,使控制系统变得更加复杂,同时也增加了成本投入,故限制了BIM向实用化方向发展。

本文以BIM为研究对象,提出了一种基于BIM基波模型的低频电流信号注入法,该方法通过构造转子位置角度偏差,来实现对转速的估计。由于该方法具有不依赖电机的各种非理想特性、不易引入其他谐波信号、构造简单等优点,使其具有较强的适用性。本文在Matlab/Simulink工具箱中对其搭建了仿真模型,并在BIM数字控制系统平台上进行了试验研究。

1 BIM电机工作原理及数学模型

1.1 BIM工作原理

图1给出了BIM悬浮力产生原理。和传统异步电机相比,如果在定子槽中再加入一套悬浮力绕组,就构成了悬浮力可控的新型BIM。此时,定子槽中包含了两套绕组:转矩绕组和悬浮力绕组,两套绕组极对数分别为12,电角频率分别为12,若满足121,12,则能够生成径向可控的悬浮力[29-30]。如果单独给转矩绕组加上电流1,则会产生对称分布的两极磁链2,若单独给悬浮力绕组加上电流2,则产生对称分布的四极磁链4。若同时给两套绕组加上如图中所示方向的电流,则产生的磁场将会叠加。此时,由于2和4磁场的方向在轴正方向相同,则会使气隙上侧的磁密增加,轴负方向的磁场方向相反,使得此处的磁密减少。不对称的气隙磁密分布导致了轴正方向上悬浮力F的产生,径向悬浮力属于麦克斯韦力。同理,如果想得到沿方向的力,只需在悬浮力绕组中加上与2方向垂直的电流即可。由以上分析可知,通过改变1、2的大小和方向,可以产生任意方向的径向悬浮力。BIM电磁转矩的产生原理和普通异步电机电磁转矩产生的原理相同,都是来源于洛伦兹力,在此不再赘述。

1.2 BIM数学模型

以BIM为研究对象,本文选取转矩绕组的极对数1=1、悬浮力绕组2=2。当满足1=2±1、1=2时,由力磁关系可知,径向悬浮力在、轴上的分量F、F表示为

式中为常数,K=K+KK为麦克斯韦力常数,K为洛伦兹力常数,且,,其中,L2为径向悬浮力绕组互感,H;为铁芯有效长度,mm;为转子外径,mm;0为空气磁导率,H/m;1、2分别为转矩绕组和径向悬浮力绕组每相串联的有效匝数。文中指定下标表示定子;1表示转矩绕组参数;2表示径向悬浮力绕组参数;为磁链;为绕组电流;为在轴上的分量;为在轴上的分量。

由于BIM定子槽中又嵌入一套悬浮力绕组,使得电机的原磁场分布被迫改变。两套绕组的嵌入,也使得BIM成为了高阶非线性系统。由于悬浮力绕组对转子的转矩影响很小,为简化起见,忽略其影响。基于此假设,可得到以下BIM的基本方程:

磁链方程

转子电压方程

电磁转矩方程

式中L1,L1分别为转矩绕组的转子自感和定子自感,H;L1为转矩绕组互感,H;R1为转矩绕组转子电阻,Ω;L1l为转矩绕组转子漏感,H;为气隙磁场转速,r/min;为转子转速,r/min;是微分算子。

基于3/2变换,可得到转矩绕组气隙磁链的另一表达方式

当旋转部分选用气隙磁场定向控制时,得到

1d=1,1q=0

因此可将式(4)电磁转矩方程简化为

式中T为电磁转矩。由于洛仑兹里对转子的径向悬浮力影响很小,可以忽略不计。径向悬浮力公式简化为

由式(6)、式(7)可知,可以通过改变转矩绕组和悬浮力绕组电流的大小,分别对电磁转矩和径向悬浮力进行控制。

2 低频信号注入的BIM转速自检测

在实际运行过程中,转子的实际位置和估计位置之间会产生一个偏差角,如图2所示。若能使偏差角为0,可求得转子准确的位置,进而可估计出转子转速。

为了构造转子位置偏差角,在d轴方向施加一个低频电流i=csin(c),此电流将在轴和轴上分别产生分量ii。由式(6)可知由i引起的电磁转矩响应T

为得到,将式(8)两边都乘以电流i,可得

对式(9)进行低通滤波处理,将其中的高频项cos(2t)滤除。则有

式中l(Ti)为Ti经低通滤波器LPF处理后的值。由式(10)可得

当足够小时,可得

因为式(12)求得的偏差角依然有较大误差,本文利用PI控制器对偏差角实行进一步调节。如图3所示。

注:1为给定气隙磁链,Wb;T为电流i产生的电磁转矩,N·m;ε为给定位置偏差角,(°);LPF为低通滤波器;PI为PI控制器;为气隙磁场转速,rad·s-1。

Note:1is given air-gap flux, Wb; Tis the electromagnetic torque generated by currenti, N·m; εis given position deviation angle, (°); LPF is low pass filter; PI is PI controller;is the air gap magnetic field speed,rad·s-1.

图3 偏差角控制框图

Fig.3 Control frame of error angle

电机转速

式中为气隙磁场旋转速度,为电机转差,其中:

式中T1=L1/R为转子时间常数;T1l=L1l/R

对气隙磁场转速进行积分,可得到转子磁链角度θ,即

3 控制系统仿真及试验结果分析

3.1 控制系统的组成及仿真参数

为验证该策略在BIM转速自检测矢量控制系统中的可行性,本文在Matlab/Simulink工具箱中搭建了仿真模型,并进行了仿真。给定转速*=3 000 r/min,给定径向位移x=0m、*=0m。电机参数如表1所示。注入轴的低频电流信号幅值为0.286 A,频率为10 Hz。

图4为无速度传感器控制系统框图。如图4所示,整个控制系统由悬浮和旋转两部分组成。其中,旋转部分输入的电压、电流经过3/2变换得到1d、1q,将1d、1q和1代入式(6),可得电磁转矩T。将变形处理后的电磁转矩和1d经低通滤波后代入式(12),可得到偏差角。将得到的偏差角经PI控制器进一步调节后,可得到电机气隙磁场转速,然后经式(13),可得到转子角速度,对气隙旋转速度进行积分,可得到转子磁链角度θ。悬浮部分:将径向位移给定值*、*与电涡流传感器实际测得的、作差,其差值经过PID调节器调节后,可得F*、F*。然后将F*、F*经过力电流转换器、2/3变换、电流反馈型脉冲宽度调制后,最终得到悬浮绕组三相电流。

表1 无轴承异步电机参数

3.2 系统仿真结果及分析

图5a~图5d是转速、径向位移及转矩仿真结果。图5a给出了在=0~0.35 s时间段内电机转子自检测速度与给定转子速度的对比波形图,由图5a可知,自检测转速能够很好地跟踪转子给定转速,误差较小,0.11 s后自检测转速基本和给定转速重合,转速响应在0.15 s内达到稳定转速,控制精度高。图5b、5c为采用本文方法与采用高频电压信号注入法时转子径向位移对比图,从图中知,本文所提方法不仅能使转子最大径向偏移距离缩小,且能够使其在更短的时间内稳定悬浮在中心位置处。图5d为转矩响应,可以看出电机起动转矩较大,响应较快,稳定误差很小。仿真结果表明BIM不仅有效实现了转速自检测,且具有良好的悬浮性能和动态性能。

a. 转速响应

a. Speed response

b.轴径向位移

b. Offset in-axis

c.轴径向位移

c. Offset in-axis

3.3 试验及结果分析

为进一步验证基于低频信号注入法的转速自检测控制策略的有效性,利用一台改装的鼠笼式无轴承异步电机作为试验样机。试验中控制芯片选用美国TI公司生产的DSP TMS320F2812,样机参数与仿真参数一致。为了能够更准确对比自检测转速与实际转速的误差,在样机上安装了光电编码盘,将转速设置为3 000 r/min。图6是试验样机。图7是采用本文所提基于低频信号注入法的BIM转速自检测控制策略建立的控制系统试验框图。

图8a是光电编码盘存在时,检测到的电机转子实际转速波形图,图8b为去掉光电编码盘时,分别采用低频信号注入法与高频信号注入法时的自检测转速对比图。对比图8b中的2条波形图可以发现,虽然2种方法都能跟踪转子的实际转速,但采用低频信号注入法检测到的转速的峰-峰值小于高频信号注入法时的峰-峰值,表明本文所设计的转速自检测控制系统不仅能够有效跟踪转子转速,而且转速自检测精度比采用高频信号注入法时更高。只是电机在无速度传感器状态运行时,转子转速的峰-峰值略大,但在误差允许的范围之内,同仿真结果一致,验证了基于低频信号注入法的BIM转速自检测控制策略的合理性与有效性。

图8c和8d为分别采用高频信号注入法、低频信号注入法,转速为3 000 r/min时转子的质心运动轨迹图,从图中可以看出前者转子质心运动轨迹半径明显大于后者,表明本文所提控制策略下的转子稳定悬浮性能优于采用高频信号注入法时的悬浮性能。另外,从图8d还可以看出,转子质心在、轴方向的最大偏移距离分别为30、35m,都远小于电机的气隙值0.4 mm。该试验结果验证了本策略能够快速跟踪转子实际转速,且实现了BIM转速自检测方式下的稳定悬浮运行。

a. 光电编码盘存在时实际转速

a. Actual speed with optical encoder

b. 去掉光电编码盘时自检测转速

b. Self-detecting speedwithout optical encoder

c. 转速为3 000 r·min-1时转子质心运动轨迹(高频信号注入法)

c. Trajectory of rotor center of mass when the speed is 3 000 r·min-1(high-frequency signal injection)

4 结 论

为消除机械式速度传感器对无轴承异步电机(bearingless induction motor,BIM)高速运行时的不利影响,减小BIM的轴向尺寸,促进BIM向小型化、实用化和低成本方向发展,本文设计了一种基于低频信号注入法的BIM转速自检测矢量控制系统。通过仿真和试验可得出以下结论:

1)基于低频信号注入法的转速自检测控制系统瞬态响应好,不仅实现了BIM的稳定悬浮运行,而且转子质心在、轴方向的最大偏移距离分别为30、35m,都远小于电机的气隙值0.4 mm。除此之外,控制系统还具有很强的鲁棒性,以及优良的转矩特性。

2)通过与高频信号注入法进行比较,基于低频信号注入法的转速自检测控制系统能够快速跟踪转子转速,转速响应在0.15 s内达到稳定转速,控制精度高。

[1] Khoo W K S, Kalita K, Garvey S D. Practical implementation of the bridge configured winding for producing controllable transverse forces in electrical machines[J]. IEEE Transactions on Magnetics, 2011, 47(6):1712-1718.

[2] Warberger B, Kaelin R, Nussbaumer T. 50 N·m/2 500 W bearingless motor for high-purity pharmaceutical mixing[J]. IEEE Transactions on Industrial Electronics, 2012, 59(5):2236-2247.

[3] De Almeida A T, Ferreira F J T E, Quintino D A. Technical and economical considerations on super high-efficiency three-phase motors[J].IEEE Transactions on Industry Applications, 2014, 50(2): 1274-1285.

[4] 李辉,许艮,杨超,等. 天窗电机噪声测试及特征频率提取方法[J]. 中国电机工程学报,2011,18(29):87-92.

Li Hui, Xu Gen, Yang Chao, et al. Noise testing and characteristic frequency extraction method of sunroof motor[J]. Proceedings of the CSEE, 2011, 18(29): 87-92.(in Chinese with English abstract)

[5] 孙会来,金纯,张文明,等. 考虑驱动电机激振的电动车油气悬架系统振动分析[J]. 农业工程学报,2014,30(12):41-49.

Sun Huilai, Jin Chun, Zhang Wenming, et al. Vibration analysis of hydro-pneumatic suspension system based on drive motor excitation force[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(12): 41-49. (in Chinese with English abstract)

[6] 卜文绍,万山明,黄声华,等. 无轴承电机的通用可控磁悬浮力解析模型[J]. 中国电机工程学报,2009,29(30):84-89.

Bu Wenshao, Wan Shanming, Huang Shenghua, et al. General analytical model about controllable magnetic suspension force of bearingless motor[J]. Proceedings of the CSEE, 2009, 29(30): 84-89. (in Chinese with English abstract)

[7] 杨泽斌,汪明涛,孙晓东. 基于自适应模糊神经网络的无轴承异步电机控制[J]. 农业工程学报,2014,30(2):78-86.

Yang Zebin, Wang Mingtao, Sun Xiaodong.Control system of bearingless induction motoes based on adaptive neuro-fuzzy inference system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(2): 78-86. (in Chinese with English abstract)

[8] 戈素贞. 新型无轴承无刷直流电动机结构与模型研究[J]. 农业工程学报,2008,24(2):131-135.

Ge Suzhen. Configuration and model of innovative direct current motor without bearing and brush[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(2): 131-135. (in Chinese with English abstract)

[9] 陈波,吴政球. 基于约束因子限幅控制的双馈感应发电机有功功率平滑控制[J]. 中国电机工程学报,2011,31(27):131-137.

Chen Bo, Wu Zhengqiu. Power smoothing control strategy of doubly-fed induction generator based on constraint factor extent-limit control[J]. Proceedings of the CSEE, 2011, 31(27): 131-137. (in Chinese with English abstract)

[10] 武俊峰,王世明. 一种基于模糊控制的两步法预测控制方法[J]. 电机与控制学报,2010,14(7):75-80.

Wu Junfeng, Wang Shiming. Research method on a two-step general predictive control based on fuzzy control[J]. Electric Machines and Control, 2010, 14(7): 75-80. (in Chinese with English abstract)

[11] Hsu C F, Lee B K. FPGA-based adaptive PID control of a DC motor driver via sliding-mode approach[J]. Expert Systems with Applications, 2011, 38(9): 11866-11872.

[12] Hou B J, Gao J S, Li X Q, et al. Study on repetitive PID control of linear motor in wafer stage of lithography[J]. Procedia Engineering, 2012, 29(1): 3863-3867.

[13] 张勇军,孙寅飞,王京. 基于单维离散滑模的模型参考自适应转速辨识方法[J]. 电工技术学报,2012,27(4):54-58.

Zhang Yongjun, Sun Yinfei, Wang Jing. A speed estimation algorithm based on single-manifold discrete time sliding mode model reference adaptive system[J]. Transactions of China Electrotechnical Society, 2012, 27(4): 54-58. (in Chinese with English abstract)

[14] 尹忠刚,刘静,钟彦,等. 基于双参数模型参考自适应的感应电机无速度传感器矢量控制低速性能[J]. 电工技术学报,2012,27(7):124-130.

Yin Zhonggang, Liu Jing, Zhong Yan, et al. Low-speed performance for induction motor sensorless vector control based on two-parameter model reference adaptation[J]. Transactions of China Electrotechnical Society, 2012, 27(7): 124-130. (in Chinese with English abstract)

[15] Gadoue S M, Giaouris D, Finch J W. MRAS sensorless vector control of an induction motor using new sliding-mode and fuzzy-logic adaptation mechanisms[J]. IEEE Transactions on Energy Conversion, 2010, 25(2):394-402.

[16] 王高林,杨荣峰,张家皖,等. 一种感应电机转子时间常数MRAS的在线辨识方法[J]. 电工技术学报,2012,27(4):48-53.

Wang Gaolin, Yang Rongfeng, Zhang Jiawan, et al. Rotor time constant on-line estimation of induction motors based on MRAS[J]. Transactions of China Electrotechnical Society, 2012, 27(4): 48-53. (in Chinese with English abstract)

[17] 陈振锋,钟彦儒,李洁,等. 基于改进磁链观测器的感应电机转速辨识[J]. 电工技术学报,2012,27(4):42-47.

Chen Zhenfeng,Zhong Yanru, Li Jie, et al. Speed identification for induction motor based on improved flux observer[J]. Transactions of China Electrotechnical Society, 2012, 27(4): 42-47. (in Chinese with English abstract)

[18] 韦文祥,刘国荣. 基于扩展状态观测器模型与定子电阻自适应的磁链观测器及其无速度传感器应用[J]. 中国电机工程学报,2015,23(17):6194-6202.

Wei Wenxiang, Liu Guorong. Sensorless control with flux observer based on parallel stator resistance adaptation and extended state observer model[J]. Proceedings of the CSEE 2015, 23(17): 6194-6202. (in Chinese with English abstract)

[19] 程帅,姜海博,黄进,等. 基于滑模观测器的单绕组多相无轴承电机无位置传感器控制[J]. 电工技术学报,2012,27(7):71-77.

Chen Shuai, Jiang Haibo, Huang Jin, et al.Position sensorless control based on sliding model observer for multiphase bearingless motor with singel set of windings[J]. Transactions of China Electrotechnical Society, 2012, 27(7): 71-77. (in Chinese with English abstract)

[20] 孔武斌,黄进,曲荣海,等. 带转子参数辩识的五相感应电动机无速度传感器控制策略研究[J]. 中国电机工程学报,2016,36(2):532-539.

Kong Wubin, Huang Jin, Qu Ronghai, et al. Research on speed sensorless control strategeis for five-phasen induction motor with rotor parameter identification[J]. Proceedings of the CSEE, 2016, 36(2): 532-539. (in Chinese with English abstract)

[21] 何飚,齐智平,冯之钺. 无速度传感器矢量控制系统的电机参数测算[J]. 农业机械学报,2005,36(2):85-88.

He Biao, Qi Zhiping, Feng Zhiyue. Estimation of induction motor equivalent circuit parameters in speed sensorless vector control inverter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(2): 85-88. (in Chinese with English abstract)

[22] Chiba A, Akamatsu D, Fukao T, et al. An improved rotor resistance identification method for magnetic field regulation in bearingless induction motor drives[J]. IEEE Transaction on Industrial Electronics, 2008, 55(2): 852-860.

[23] Silber S, Amrhein W, Bosch P, et al. Design aspects of bearingless slice motors[J]. IEEE/ASME Transactions on Mechatronics, 2006, 10(6):611-617.

[24] Sinervo A, Arkkio A. Rotor radial position control and its effect on the total efficiency of a bearingless induction motor with a cage rotor[J]. IEEE Transactions on Magnetics, 2014, 50(4): 1-9.

[25] 王明渝,陈杨裕,邓威,等. 定转子电阻在线辨识的感应电机转速估计方法[J]. 电机与控制学报,2010,14(4):66-71.

Wang Mingyu, Chen Yangyu, Deng Wei , et al. Rotor speed estimation for induction motor with stator and rotor resistance online identification[J]. Electric Machines and Control, 2010, 14(4): 66-71. (in Chinese with English abstract)

[26] 杨泽斌,董大伟,樊荣,等. 无轴承异步电机无径向位置传感器控制[J]. 北京航空航天大学学报,2015,41(8):

1388-1395.

Yang Zebin, Dong Dawei, Fan Rong, et al. Radial displacement-sensorless control for bearingless induction motor[J]. Journal of Beijing University of Aeronautics and a Stronautics, 2015, 41(8): 1388-1395. (in Chinese with English abstract)

[27] 秦峰,贺益康,刘毅,等. 两种高频信号注入法的无传感器运行研究[J]. 中国电机工程学报,2005,25(5):116-121.

Qin Feng, He Yikang, Liu Yi, et al. Comparative investigation of sensorless control with two high-frequency signal injection schemes[J]. Proceedings of the CSEE, 2005, 25(5): 116-121. (in Chinese with English abstract)

[28] 朱昊,肖曦,李永东. 永磁同步电机高频信号注入法启动过程可靠性研究[J]. 清华大学学报:自然科学版,2010(10):1637-1640.

Zhu Hao, Xiao Xi, Li Yongdong. Reliable starting of high frequency injection permanent magnet synchronous motor control[J]. Journal of Tsinghua University: Science and Technology,2010(10): 1637-1640. (in Chinese with English abstract)

[29] 朱熀秋,成秋良. 基于磁链等效虚拟绕组电流分析方法的无轴承电机径向悬浮力控制[J]. 科学通报,2009,54(9):

1590-1598.

Zhu Huangqiu, Cheng Qiuliang. Bearingless motor’s radial suspension force control based on flux equivalent with virtual winding current analysis method[J]. Chinese Science Bulletin, 2009, 54(9): 1590-1598. (in Chinese with English abstract)

[30] Sun X D, Zhu H Q, Pan W. Decoupling control of bearingless permanent magnet-type synchronous motor using artificial neural networks-based inverse system method[J]. International Journal of Modelling Identification & Control, 2009, 8(2): 114-121(8).

Revolving speed self-detecting control based on low-frequency signal injection for bearingless induction motor

Yang Zebin1, Li Fangli1, Chen Zheng1, Sun Xiaodong2

(1.212013,;2.212013,)

A bearingless induction motor has the advantages of no friction, no wear, high speed, ultra-high-speed operation, and so on, so it is widely used in the field of life science with the difficulties of periodic maintenance, the field of chemical industry, the semiconductor industry and other fields. However, the installation of mechanical speed sensor not only leads to the increase of axial length of the motor and the cost issue, but also limits the high-speed, ultra-high-speed development of bearingless induction motors. In order to eliminate the adverse effect of the mechanical speed sensor on the high speed running of the bearingless induction motor, to reduce the axial dimension of the bearingless induction motor, to promote the development of bearingless induction motors towards being small, low-cost and practical, exploring a new kind of speed self-detecting strategy is particularly important. A new speed sensorless control strategy based on low-frequency signal injection method was proposed to solve the problem of rotor speed identification in the operation of bearingless induction motor. This strategy has many advantages such as non ideal characteristics of the motor, not easy to introduce other high-frequency harmonic signal and simple structure, so it has strong applicability. With the bearingless induction motor fundamental model, through the response caused by low-frequency signal injection, rotor position deviation angle was constructed, which was adjusted further through the PI (proportion integration) controller, and then the rotational speed of the motor’s air gap magnetic field was obtained. Then, the rotor speed was estimated. Using this speed self-detecting method, the simulation model of bearingless induction motor’s speed sensorless vector control system was built in MATLAB/Simulink platform. The simulation included the rotor speed response, the radial offset in x and y axis, the torque response and the self-tracking ability to detect rotor speed when the rotor speed mutated. Simulation results showed that this method could fast track the rotor speed, besides, the rotor speed curve from the self-detecting and the actual speed curve could be fully consistent in a short time. In addition, the radial displacement obtained by the low-frequency signal injection method was compared with that obtained by the high-frequency signal injection method. The comparison results showed that the proposed method not only could reduce the maximum radial deviation of the rotor, but also enabled it at the center position in a shorter time. At the same time the starting torque of the motor was large. After the speed mutation, the control system also had a good tracking ability for a given speed, and a fast response, besides, stable error was very small. Finally, in the bearingless induction motor’s control system experimental platform, the experiment was carried out using the proposed strategy. We selected the DSP TMS320F2812 as experiment control chip; a bearingless induction motor was used as a prototype, and the prototype parameters and simulation parameters were consistent. In order to more accurately compare the actual speed with the self-testing speed, the prototype was equipped with optical encoder disk. Test results showed that the self-detecting speed using the low-frequency signal injection method was more accurate than that using the high-frequency signal injection method, and the rotor center of mass offset distance using low-frequency signal injection method was smaller than that using high-frequency signal injection method. The results verify that the method has not only a good capability of speed online self-testing, but also a stable suspension operation of the rotor, and therefore the proposed method is effective and practical.

control; models; computer simulation; bearingless induction motor; low-frequency signal; sensor; vector control

10.11975/j.issn.1002-6819.2017.02.006

TM346

A

1002-6819(2017)-02-0041-07

2016-05-03

2016-12-09

国家自然科学基金(51475214、51305170)

杨泽斌,男,汉族,湖北孝感人,教授、博导,主要从事农业电气装备自动化、磁悬浮传动技术及电机非线性智能控制。镇江 江苏大学电气信息工程学院,212013。Email:zbyang@ujs.edu.cn

杨泽斌,李方利,陈 正,孙晓东. 基于低频信号注入法的无轴承异步电机转速自检测控制[J]. 农业工程学报,2017,33(2):41-47. doi:10.11975/j.issn.1002-6819.2017.02.006 http://www.tcsae.org

Yang Zebin, Li Fangli, Chen Zheng, Sun Xiaodong. Revolving speed self-detecting control based on low-frequency signal injection for bearingless induction motor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 41-47. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.02.006 http://www.tcsae.org

猜你喜欢

异步电机气隙绕组
常用定转子气隙测量工具的设计及使用
专利名称:采用四层短距分布绕组的低转动惯量永磁同步伺服电动机
非均匀气隙结构对自起动永磁同步电动机性能的影响
户外防腐蚀型防爆三相异步电机设计
大型变频调速异步电机的设计
基于Halbach阵列磁钢的PMSM气隙磁密波形优化
同步发电机理论的一个奇点与气隙中心论
基于FPGA的双绕组无刷直流电机软件设计
基于AL1676的单绕组LED驱动电源设计
第三方异步电机在MTX micro控制系统中的应用