掺混菜籽油渣减少土壤入渗改善持水特性
2017-02-17邢旭光马孝义
邢旭光,张 盼,马孝义
掺混菜籽油渣减少土壤入渗改善持水特性
邢旭光,张 盼,马孝义※
(1. 西北农林科技大学水利与建筑工程学院,杨凌 712100;2. 西北农林科技大学旱区农业水土工程教育部重点实验室,杨凌 712100)
针对目前植物油渣较少应用于农业生产的现状,为探明植物油渣对土壤水分运动和土壤持水特性的影响,采用室内一维土柱入渗试验,以耕作层土壤为研究对象,定量掺混植物油渣,对比研究3种不同掺混深度(14、24和34 cm)条件下的土壤水分入渗特性,并对掺混油渣土壤的持水能力进行分析。结果表明:1)Philip和Kostiakov入渗模型均可用于描述掺混油渣条件的土壤水分入渗特性及参数拟合(2>0.99);2)与纯土相比,掺混植物油渣可有效减小累积入渗量和入渗速率,根层掺混油渣(34 cm土层)最大可分别减少累积入渗量和入渗速率约11.0%和41.7%;3)入渗结束时基于土壤剖面水分分布特征,土壤掺混植物油渣有利于提高土壤饱和含水率和根层土壤含水率,与纯土相比分别提高约14.3%和11.3%,有效增强了土壤持水能力;4)土壤掺混植物油渣可增加黏粒和粉粒、降低砂粒含量。该研究可为农田生产中植物油渣推广奠定理论基础,同时为植物油渣的田间土壤改良及应用提供参考。
土壤;水分;入渗;持水能力;菜籽油渣
0 引 言
土壤水分是重要的土壤物理参数,明晰土壤水分在土体内的分布及运动特性对于指导灌溉、提高水分利用率和高效利用土壤储水量具有重要意义[1]。土壤耕作层水分是否充足直接关系到作物能否正常出苗和生长,土壤中混掺添加物是提高耕作层土壤持水能力和储水量的最便捷且常被采用的方法[2-6]。在水资源相对匮乏和土壤沙化较为严重的西北地区,发展节水农业和水土资源保护已成为重要议题。土壤水分入渗和土壤剖面水分分布特征决定着土壤中灌溉水的利用效率、地表径流和土壤侵蚀程度,进一步影响作物根层水分利用效率,最终影响作物产量[7];降低根层土壤水分入渗速率有利于减小养分流失和深层渗漏,从而降低地下水污染风险。因此,研究含添加物的土壤水分入渗问题具有现实意义。
谭帅等[8]研究表明,掺混纳米碳对土壤入渗能力具有显著影响,且入渗过程可以用Kostiakov和Philip模型进行描述;丁奠元等[9]和余坤等[10-11]均指出小麦秸秆经氨化处理可以改善农田土壤结构、提高土壤质量,进一步改善土壤耕性;张春强等[12]研究表明,聚丙烯酰胺(polyacrylamide,PAM)和尿素均可降低土壤入渗能力,其中PAM的作用效果更强,而Lentz[13]指出土壤入渗能力同时受PAM种类、剂量影响;Tarui等[14]和Doran等[15]研究显示,-聚谷氨酸(poly--glutamic acid,-PGA)可以调节土壤酸碱性、促进土壤团粒结构形成,对防止土壤板结具有较好效果,亦可防止土壤侵蚀。纵观目前关于土壤添加物对土壤入渗以及持水能力影响的研究,在一定程度上忽略了对作物根层的集中探索,较多是基于不同施用量而展开[2,5,16-19],施用量过多不仅造成资源浪费、成本增加,同时也存在破坏土壤结构等风险。
植物油渣是一种有机肥料,可为作物提供充足的养分,且极易获取、价格低廉;施用植物油渣可改善土壤物理性状,有利于增强土壤的保肥保墒能力,具有很强的推广潜力和很高的应用价值。然而植物油渣并未被广泛应用到田间作业中,关于植物油渣对土壤持水性能影响的研究更是鲜有报道。为推广植物油渣、降低农业生产成本,本研究拟采用一种可自制的菜籽油渣作为一种改善土壤物理性质的土壤耕层添加物,分析不同油渣掺混深度对土壤水分入渗特性及土壤持水能力的影响,以期为植物油渣在农业生产和土壤改良等领域的广泛应用提供参考。
1 材料与方法
1.1 供试材料
试验土壤取自当地玉米-小麦轮作试验田(34°17′28″N、108°04′30″E),采集深度为30 cm耕作层;土样经风干、过2 mm筛后,采用激光粒度仪(英国马尔文仪器有限公司)测定供试土壤颗粒组成,粒径<0.002、0.002~<0.02和0.02~<2 mm的土壤颗粒体积分数分别为3.75%、21.73%和74.52%,土壤质地为砂壤土(国际制)。土壤掺混物选用易于获取的菜籽油渣,即菜籽压榨出油后的残渣(未经发酵处理),将其风干后粉碎成粉末状备用。
1.2 试验设计与方法
在室内进行恒定水头一维土柱入渗试验,有机玻璃土柱高40 cm,直径15 cm;装土高度为34 cm,以更好的模拟田间耕作层,装土过程中,层间刮毛使得装填土更加均匀,初始含水率为2.47%;采用直径15 cm的马氏瓶盛放入渗水源,与土柱相连并保证持续供水,入渗积水深度控制在1.5 cm左右,试验装置如图1所示。依据不同油渣掺混深度设置3种处理,即油渣掺混深度(从土表算起)分别为14、24和34 cm(分别记作T1、T2和T3),并以纯土无掺混作为对照(CK),各掺混处理中油渣均按2%(质量分数)比例与各层土壤均匀混合。在填装土柱过程前将供试土壤与油渣粉末按比例混合后,根据实测容重并按干容重1.45 g/cm3、每5 cm均匀进行装填,以尽量避免由于油渣掺入引起土壤容重变化。
油渣掺混深度不同可导致各处理入渗时间不同,试验设定入渗过程介于30~38 h(1 800~2 280 min)之间,入渗过程采用秒表计时,并定时记录马氏瓶中水位变化以及土柱内湿润锋下移距离,从而进一步计算累积入渗量以及入渗速率。记录时间间隔(Δ)依据入渗历时()而定,即≤10 min时Δ=1 min,>10~30 min时Δ=2 min,>30~60 min时Δ=3 min,>60~120 min时Δ=5 min,>120~240 min时Δ=10 min,>240~420 min时Δ=20 min,>420~600 min时Δ=30 min,>600 min时Δ=1 h;当湿润锋到达34 cm处时视为入渗结束,此时停止供水并吸干土壤表层积水,采用土钻对0~34 cm土层进行取土(间隔2 cm),烘干法测定不同深度土壤含水率。
1.3 测定项目
1.3.1 土壤水分入渗
1)Philip模型[20]
对入渗历时求导
式中()为累积入渗量,cm;()为入渗率,cm/min;为吸渗率,cm/min0.5。
2)Kostiakov模型[20]
对入渗历时求导
式中、均为经验常数,其中值根据土壤性质和初始含水率而定,变化介于0.3~0.8之间。
1.3.2 土壤水分特征曲线及饱和导水率
分别采用离心机法和定水头法测定原始土壤和油渣掺混土壤的水分特征曲线及饱和导水率;并采用van Genuchten模型对2种土壤水分特征曲线进行拟合,获取土壤水力参数。
式中为体积含水量,cm3/cm3;θ为饱和体积含水量,cm3/cm3;θ为残余体积含水量,cm3/cm3;为吸力,cm;为进气吸力的倒数,cm-1;和均为形状系数。
式中K为土壤饱和导水率,cm/min;为时间内的出水量,cm3;为土柱截面积,cm2;为装土高度,cm;为进水端至土面的水头,cm。
2 结果与分析
2.1 油渣掺混深度对土壤入渗特性的影响
2.1.1 油渣对累积入渗量及入渗速率的影响
采用实测的累积入渗量对土壤水分入渗能力进行评价,如图2a所示。可以看出,在相同入渗历时情况下,掺混油渣处理的土壤水分累积入渗量均小于CK,且随着油渣掺混深度增加而减小。各处理的累积入渗量在入渗初期差异不大,其中T1、T2和T3处理约400 min内0~14 cm土层土壤入渗特征相似,随后T1处理累积入渗量增加幅度较T2和T3大;T2和T3处理约1 500 min内0~28 cm土层土壤入渗特征相似,随后T2处理累积入渗量增加幅度较T3大,原因在于在土壤中添加植物油渣具有减渗作用,故当湿润锋穿过油渣掺混深度时,累积入渗量逐渐拉开差距,最终导致各处理入渗结束时的入渗历时不同。以CK为标准,当其入渗结束时,T1、T2和T3处理累积入渗量分别较CK减小了3.9%、7.8%和11.0%,可见掺混植物油渣深度越大则越有利于减小土壤水分入渗,可以有效防止农田发生深层渗漏。
a. 累积入渗量
a. Cumulative infiltration
b.入渗率
b. Infiltration rate
注:CK为纯土;T1~T3掺混深度分别为14、24、34 cm,下同。
Note: CK is pure soil; T1-T3 refers to depth of dreg mixed with soil of 14, 24 and 34 cm, respectively, the same as below.
图2 油渣掺混深度对土壤累积入渗量和入渗率的影响
Fig.2 Impacts of depth of dreg mixed with soil on soil cumulative infiltration and infiltration rate
入渗率是指单位时间通过地表单位面积入渗到土壤中的水量,油渣掺混深度对土壤水分入渗速率的影响如图2b所示。油渣掺混深度对土壤水分入渗速率的影响表现为入渗速率随油渣掺混深度增加而减小,且均小于CK处理,稳渗率也呈现减小趋势。T1、T2和T3处理的入渗速率在入渗初期差异较小,表现出与累积入渗量较为相同的变化趋势,在油渣掺混和纯土层交界面的入渗特征发生明显变化,原因在于植物油渣与土壤混合可增加入渗水的黏滞性,起到阻渗效果,从而使得土壤水分在掺混土层入渗速率较慢。入渗结束时,CK处理稳渗率为0.0036 cm/min,T1、T2和T3处理稳渗率分别较CK减小了25.0%、33.3%和41.7%,可见掺混植物油渣的深度越大则越有利于减缓水分流动,降低土壤水分发生无效渗漏风险。
2.1.2 油渣对入渗参数的影响
基于MATLAB、采用最为常用的Philip和Kostiakov入渗模型对实测入渗数据进行拟合,获取掺混油渣条件下的土壤水分入渗参数(表1),从而进一步分析油渣掺混深度对土壤水分入渗的影响。基于均方根误差(root mean square of error,RMSE)和误差平方和(sum of square error,SSE)误差分析及2指标可知,Philip和Kostiakov入渗模型均适用于描述掺混植物油渣条件下的土壤水分入渗特征(2>0.99)。对于Philip入渗模型,土壤吸渗率指土壤依靠毛管力吸收或释放液体的能力[21];表1表明,随着油渣掺混深度增加,呈现减小趋势,表明毛管力对土壤水分的吸收能力减弱[2]。对于Kostiakov入渗模型,随着油渣掺混深度增加,经验系数和分别呈现减小和增大趋势。土壤水分入渗参数的大小主要取决于入渗时土壤的结构和孔隙分布状况[22]。土壤中添加植物油渣在一定程度上可增加土壤颗粒的持水容量,导致土壤颗粒膨胀,这可能改变了土壤结构和孔隙分布特征,进而对入渗参数产生影响。
表1 Philip和Kostiakov入渗模型参数拟合及误差分析
2.2 油渣掺混深度对土壤持水特性的影响
2.2.1 油渣对土壤水分分布的影响
笔者曾研究证实,向土壤中添加植物油渣可有效提高土壤含水率8.06%~13.60%[23]。在此,为进一步分析添加植物油渣对土壤水分运动及分布特征的影响,在入渗结束时(湿润锋到达34 cm处时视为入渗结束)对不同掺混深度条件下的土壤剖面水分分布特性进行研究,见图3。
从图3可以看出,各处理土壤含水量随土层深度增加而减小,减小速率也逐渐减小。T1、T2和T3处理0~14 cm土层土壤含水量接近,T2和T3处理0~24 cm土层土壤含水率接近;当湿润锋穿过油渣掺混层时,土壤水分运动特征发生变化,各处理土壤含水量差异明显,T1处理14~34 cm土层和T2处理24~34 cm土层土壤含水量分布逐渐向CK靠近。与CK相比,掺混油渣条件下,土壤饱和含水率和各土层的土壤含水率均得到显著提升(表2),本研究表明,添加油渣使得土壤饱和含水率提高约14.3%,土壤含水量提高约11.3%,有效增强了土壤持水能力。
表2 掺混土壤与纯土的水力参数值
2.2.2 油渣对土壤颗粒分布的影响
油渣掺混土壤颗粒分布见表3。掺混油渣后,土壤中<0.02 mm的颗粒占比明显增加,0.02~2 mm的土壤颗粒含量显著降低,其中黏粒质量分数由3.75%增加到9.97%,粉粒质量分数由21.73%增加到55.15%,砂粒质量分数由74.52%减少到34.88%,经测定掺混土壤质地由砂壤土变为粉壤土。由此可知,在入渗过程中向土壤中添加植物油渣可增加黏粒和粉粒含量、降低砂粒含量,即中小粒径土壤颗粒比例升高、大粒径土壤颗粒比例降低,这可能正是土壤持水能力增强的主要原因;另一方面,掺混植物油渣会使土壤质地发生变化。
表3 植物油渣对土壤颗粒分布的影响
3 讨 论
本研究以土壤耕作层作为研究对象,与纯土相比,菜籽油渣可以减小土壤水分累积入渗量和入渗速率,这对于提高根层土壤含水率和储水能力具有重要意义。土壤水分入渗速度慢一方面可以减少水分渗漏损失,有利于提高水分利用效率;另一方面也有利于减少N、P、K等营养元素流失,降低了地下水污染风险。因此,在农田播种前耕地时施用植物油渣是具有现实意义的。
研究表明,掺混油渣处理土壤剖面含水率高于纯土处理,这是由于向土壤输入油渣粉末可以提高土壤饱和含水率(表2),从而使得土壤含有更多的水分。植物油渣的减渗作用可以从以下2个方面解释:1)入渗过程中,浅层土壤中的大孔隙和部分小孔隙逐渐被油渣粉末填充堵塞,在一定程度上切断了土壤水分入渗断面,导致导水能力降低(表2);较深层的土壤中,油渣粉末使得土壤水分入渗通道减少[24],形成致密结构,导致入渗土壤表层形成水分控制层,起到阻渗效果[25-26],故掺混油渣深度越大,土壤水分累积入渗量和入渗速率越小(图2);2)菜籽油渣是一种有机物,与土壤混合会增加有机质含量,而土壤有机质是诱发土壤发生斥水性的主要原因之一[27-28],从而导致水分较难湿润土壤,降低了土壤的渗透性[29]。土壤斥水具有多方面的直接和潜在的负面影响[30],故斥水土壤改良问题则需予以关注。菜籽油渣的作用机理可能与聚谷氨酸、羧甲基纤维素、聚丙烯酰胺等有机物类似[22, 31-33],与土壤混合、吸水饱和后可能会形成水凝胶,因而实现了减缓水分入渗的目的,还需要对菜籽油渣主要成分的分子结构做进一步测试,以便分析其作用机理。
本研究表明,向土壤中输入植物油渣粉末可以有效减小水分入渗速率和累积入渗量,同时在一定程度上增强了土壤持水能力,可有效缓解土壤水分渗漏流失。一方面,对于墒情较好的土壤,降低土壤入渗能力有利于提高根区土壤储水量,并有利于植物根系吸水,从而提高土壤水利用效率;对于墒情较差的土壤,则需增强土壤入渗能力,从而实现加速灌溉水入渗的目的,进而提高灌溉水利用率。另一方面,添加油渣降低了土壤入渗能力,这在一定程度上会导致降雨聚集在土壤表面而较难进入耕层,可能会导致土表径流量增加,故在降雨强度较大的地区施用油渣对降雨的高效利用会产生不利影响。综上,本文选用的油渣适用于土壤墒情较好、降雨强度不大的地区;同时还需对合理施用量做进一步研究。
土壤沙化可导致大面积土壤失去农、林、牧生产能力,使有限的土壤资源面临更为严重的挑战;对于砂质土壤改良问题,通常可采用掺入黏土、翻淤压砂和施用腐熟有机肥等手段。本研究中,初始供试土壤类型为砂壤土,在施用油渣入渗结束后,不同粒径的土壤颗粒含量发生较大变化,且其类型变为粉壤土(表3)。由此看出向土壤中掺混菜籽油渣可用于改良沙化土壤,在一定程度上调节了耕作层的质地,实现了控制荒漠化、保护水土资源的目的。同时需指出,选用的植物油渣作为一种有机物可提高土壤保水能力,是一种有效的土壤肥料。土壤改良剂是指可改良土壤的物理、化学和生物性质,使其更适宜植物生长,而不是主要提供植物养分的物料;本研究证实,掺混油渣粉末在一定程度上改变了土壤质地,并提高了土壤饱和含水率,可知植物油渣粉末在某种意义上可以作为土壤改良剂,进而实现改良土壤结构的目的;然而还需对土壤物理、化学和生物等方面的性质进行扩展研究,进一步评价植物油渣是否可以作为土壤改良剂施用于农田。
降低农田作业的投入产出比对于农民而言是重中之重。菜籽油渣是菜籽经过压榨植物油之后剩余的残渣,极易获取;生产过程操作简单,不需要特殊机械装备,而且生产成本低,可被广泛接受;另一方面,与秸秆还田类似,施用油渣亦是“取之农田,用之农田”,很大程度上提高了利用效率,并有效降低了田间化肥用量,有利于提高土壤质量以及减少环境污染。由此看出,植物油渣在农业生产方面具有较强的应用价值和推广潜力,同时可以考虑应用植物油渣防止土壤深层渗漏和改善土壤结构。
4 结 论
1)掺混植物油渣可减小土壤累积入渗量和入渗速率,且二者均呈现出随油渣掺混深度增加而减小的趋势,根层掺混油渣(34 cm)较纯土最多可有效减少累积入渗量和入渗速率约11.0%和41.7%。
2)Philip和Kostiakov入渗模型适用于掺混油渣条件的土壤水分入渗拟合。
3)土壤中掺混植物油渣有利于提高土壤饱和含水率和根层土壤含水率,提升幅度分别约为14.3%和11.3%,有效增强土壤根层持水能力。
4)掺混植物油渣有利于增加土壤黏粒和粉粒含量、降低砂粒含量,在一定程度上对沙化土壤具有改善作用。
[1] 邢旭光,赵文刚,柳烨,等. 猕猴桃果园不同采样密度下土壤含水率空间变异性研究[J]. 农业机械学报,2015,46(8):138-145.
Xing Xuguang, Zhao Wengang, Liu Ye, et al. Spatial variability of soil moisture in kiwi field under different sampling density conditions[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(8): 138-145. (in Chinese with English abstract)
[2] 吴军虎,陶汪海,王海洋,等. 羧甲基纤维素钠对土壤团粒结构及水分运动特性的影响[J]. 农业工程学报,2015,31(2):117-123.
Wu Junhu, Tao Wanghai, Wang Haiyang, et al. Influence of sodium carboxyl methyl cellulose on soil aggregate structure and soil water movement[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(2): 117-123. (in Chinese with English abstract)
[3] 郑健,王燕,蔡焕杰,等. 植物混掺土壤水分特征曲线及拟合模型分析[J]. 农业机械学报,2014,45(5):107-112.
Zheng Jian, Wang Yan, Cai Huanjie, et al. Soil-water characteristic curves of soil with plant additive and analyses of the fitting models[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(5): 107-112. (in Chinese with English abstract)
[4] 岑睿,屈忠义,于健,等.保水剂对半干旱区砂壤土水分运动的影响试验研究[J].干旱区资源与环境,2016,30(2):122-127.
Cen Rui, Qu Zhongyi, Yu Jian, et al. Experimental research on sandy soil infiltration and evaporation effects of adding super absorbent polymers in semi-arid region[J]. Journal of Arid Land Resources and Environment, 2016, 30(2): 122-127. (in Chinese with English abstract)
[5] 徐继红,赵素梅,谭德新,等.羧甲基纤维素--2-丙烯酰胺基-2-甲基丙磺酸高吸水树脂的吸水与保水性能[J]. 石油化工,2012,41(11):1307-1311.
Xu Jihong, Zhao Sumei, Tan Dexin, et al. Water absorption and water retention of carboxymethylcellulose--2- acrylamido-2-methylpropane-sulfonic acid superabsorbent resin[J]. Petrochemical Technology, 2012, 41(11): 1307-1311. (in Chinese with English abstract)
[6] 王红兰,唐翔宇,张维,等. 施用生物炭对紫色土坡耕地耕层土壤水力学性质的影响[J]. 农业工程学报,2015,31(4):107-112.
Wang Honglan, Tang Xiangyu, Zhang Wei, et al. Effects of biochar application on tilth soil hydraulic properties of slope cropland of purple soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 107-112. (in Chinese with English abstract)
[7] 王艳阳,魏永霞,孙继鹏,等. 不同生物炭施加量的土壤水分入渗及其分布特性[J]. 农业工程学报,2016,32(8):113-119.
Wang Yanyang, Wei Yongxia, Sun Jipeng, et al. Soil water infiltration and distribution characteristics under different biochar addition amount[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(8): 113-119. (in Chinese with English abstract)
[8] 谭帅,周蓓蓓,王全九. 纳米碳对扰动黄绵土水分入渗过程的影响究[J]. 土壤学报,2014,51(2):263-269.
Tan Shuai, Zhou Beibei, Wang Quanjiu. Effect of nano-carbon on water infiltration process in disturbed loessal soil[J]. Acta Pedologica Sinica, 2014, 51(2): 263-269. (in Chinese with English abstract)
[9] 丁奠元,冯浩,赵英,等. 氨化秸秆还田对土壤孔隙结构的影响[J]. 植物营养与肥料学报,2016,22(3):650-658.
Ding Dianyuan, Feng Hao, Zhao Ying, et al. Effect of ammoniated straw returning on soil pore structure[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(3): 650-658. (in Chinese with English abstract)
[10] 余坤,冯浩,王增丽,等. 氨化秸秆还田改善土壤结构增加冬小麦产量[J]. 农业工程学报,2014,30(15):165-173.
Yu Kun, Feng Hao, Wang Zengli, et al. Ammoniated straw improving soil structure and winter wheat yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(15): 165-173. (in Chinese with English abstract)
[11] 余坤,冯浩,赵英,等. 氨化秸秆还田加快秸秆分解提高冬小麦产量和水分利用效率[J]. 农业工程学报,2015,31(19):103-111.
Yu Kun, Feng Hao, Zhao Ying, et al. Ammoniated straw incorporation promoting straw decomposition and improving winter wheat yield and water use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(19): 103-111. (in Chinese with English abstract)
[12] 张春强,冯浩. PAM和尿素混施对土壤入渗特性的影响[J].水土保持学报,2013,27(4):109-113,135.
Zhang Chunqiang, Feng Hao. Effects of PAM mixed with urea on soil infiltration[J]. Journal of Soil and Water Conservation, 2013, 27(4): 109-113, 135. (in Chinese with English abstract)
[13] Lentz R D. Inhibiting water infiltration with polyacrylamide and surfactants: Applications for irrigated agriculture[J]. Journal of Soil and Water Conservation, 2003, 58(5): 290-300.
[14] Tarui Y, Iida H, Ono E. Biosynthesis of poly--glutamic acid in plants: transient expression of poly--glutamic synthetase complex in tobacco leaves[J]. Journal of Bioscience & Bioengineering, 2005, 100(4): 443-448.
[15] Doran J W, Zeiss M R. Soil health and sustainability: Managing the biotic component of soil quality[J]. Applied Soil Ecology, 2000, 15(1): 3-11.
[16] 张春强,冯浩. PAM和尿素混施对土壤入渗特性的影响[J].水土保持学报,2013,27(4):109-113.
Zhang Chunqiang, Feng Hao. Effects of PAM mixed with urea on soil infiltration[J]. Journal of Soil and Water Conservation, 2013, 27(4): 109-113. (in Chinese with English abstract)
[17] 冉艳玲,王益权,张润霞,等. 保水剂对土壤持水特性的作用机理研究[J]. 干旱地区农业研究,2015,33(5):101-107.
Ran Yanling, Wang Yiquan, Zhang Runxia, et al. Research on the mechanism of super absorbent polymer to soil water-holding characteristic[J]. Agricultural Research in the Arid Areas, 2015, 33(5): 101-107. (in Chinese with English abstract)
[18] 王升. 膜下滴灌棉田化学与生物改良技术研究[D]. 西安:西安理工大学,2013.
Wang Sheng. Research on Chemical and Biological Amelioration Technology to Cotton Field Soil with Drip Irrigation under Film[D]. Xi’an: Xi’an University of Technology, 2013. (in Chinese with English abstract)
[19] 吕金榜,周蓓蓓,王全九,等. 纳米TiO2对土壤水分运动及离子迁移过程影响的试验研究[J]. 水土保持研究,2015,22(5):58-61,66. Lü Jinbang, Zhou Beibei, Wang Quanjiu, et al. Experimental study on effects of nano TiO2on water movement, solute transport in soil columns[J]. Research of Soil and Water Conservation, 2015, 22(5): 58-61, 66. (in Chinese with English abstract)
[20] 邵明安,王全九,黄明斌.土壤物理学[M]. 北京:高等教育出版社,2006.
[21] 李帅霖,王霞,王朔,等.生物炭施用方式及用量对土壤水分入渗与蒸发的影响[J].农业工程学报,2016,32(14):135-144.
Li Shuailin, Wang Xia, Wang Shuo, et al. Effects of application patterns and amount of biochar on water infiltration and evaporation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 135-144. (in Chinese with English abstract)
[22] 史文娟,梁嘉平,陶汪海,等. 添加-聚谷氨酸减少土壤水分深层渗漏提高持水能力[J]. 农业工程学报,2015,31(23):94-100.
Shi Wenjuan, Liang Jiaping, Tao Wanghai, et al.-PGA additive decreasing soil water infiltration and improving water holding capacity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(23): 94-100. (in Chinese with English abstract)
[23] 邢旭光,柳烨,马孝义. 土壤添加物对土-水曲线和土体收缩的影响[J]. 水科学进展,2016,27(1):40-48.
Xing Xuguang, Liu Ye, Ma Xiaoyi. Effects of soil additive on soil-water characteristic curve and soil shrinkage[J]. Advances in Water Science, 2016, 27(1): 40-48. (in Chinese with English abstract)
[24] 何利昌,樊贵盛,吉晋兰. 细颗粒物质潜入土壤对入渗的影响研究[J]. 灌溉排水学报,2015,34(2):102-104.
He Lichang, Fan Guisheng, Ji Jinlan. Influence of fine particulate matter sneaking into soil on infiltration capacity[J]. Journal of Irrigation and Drainage, 2015, 34(2): 102-104. (in Chinese with English abstract)
[25] Martin W D, Kaye N B, Putman B J. Effects of aggregate masking on soil infiltration under an aggregate bed[J]. Journal of Irrigation and Drainage Engineering, 2015, 141(9): 879-884.
[26] Ferro S. Electrokinetic barriers for preventing groundwater pollution[J]. Encyclopedia of Applied Electrochemistry, 2014, 9: 719-723.
[27] 陈俊英,张智韬,Leionid Gillerman,等. 影响土壤斥水性的污灌水质主成分分析[J]. 排灌机械工程学报,2013,
31(5):434-439.
Chen Junying, Zhang Zhitao, Leionid Gillerman, et al. Analysis of principal components of wastewater affecting soil water repellency[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(5): 434-439. (in Chinese with English abstract)
[28] 刘立超,杨昊天,李新荣,等. 土壤斥水性及其生态水文效应研究进展[J]. 地球科学进展,2011,26(9):926-932. Liu Lichao, Yang Haotian, Li Xinrong, et al. The advances in soil water repellency and its eco-hydorological effects[J]. Advances in Earth Science, 2011, 26(9): 926-932. (in Chinese with English abstract)
[29] 陈俊英,吴普特,张智韬,等. 翻耕法对土壤斥水性改良效果[J]. 排灌机械工程学报,2012,30(4):479-484.
Chen Junying, Wu Pute, Zhang Zhitao, et al. Amelioration effect of water repellency by tillage[J]. Journal of Drainage and Irrigation Machinery Engineering, 2012, 30(4): 479-484. (in Chinese with English abstract)
[30] 李毅,商艳玲,李振华,等.土壤斥水性研究进展[J].农业机械学报,2012,43(1):68-75.
Li Yi, Shang Yanling, Li Zhenhua, et al. Advance of study on soil water repellency[J]. Transactions of the Chinese Society for Agricultural Machinery (Transactions of the CSAM), 2012, 43(1): 68-75. (in Chinese with English abstract)
[31] Gonzales D, Fan K, Sevoian M. Synthesis and swelling characteristics of a poly--glutamic acid hydrogel[J]. Journal of Polymer Science Part A Poly Chemistry, 1996, 34(10): 2019-2027.
[32] Tang Juntao, Fan Chuanjie, Lin Qunfang, et al. Smooth, stable and optically transparent microcapsules prepared by one-step method using sodium carboxymethyl cellulose as protective colloid[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 459: 65-73.
[33] Busscher W J, Bjorneberg D L, Sojka R E. Field application of PAM as an amendment in deep-tilled US southeastern coastal plain soils[J]. Soil and Tillage Research, 2009, 104(2): 215-220.
Rapeseed dreg additive reducing soil infiltration and improving water retention
Xing Xuguang, Zhang Pan, Ma Xiaoyi※
(1.,,712100,;2.,,712100,)
Plant dreg is a type of organic matter and a byproduct of vegetable oil extraction. Plant dreg as a fertilizer can be added to soils and it may also improve soil physical properties. An experiment based on the indoor vertical one-dimensional infiltration soil column was conducted to investigate the impact of rapeseed dreg additive on soil-water infiltration, movement, re-distribution and water retention. The soil in the experiment was collected from the 30-cm depth in a cultivated field in the district of Yangling in Shaanxi Province on the Loess Plateau of China (34°17′28″ N, 108°04′30″ E). The particle size of selected soil was measured by Mastersizer-2000 (made in Malvern Instrument Co. Ltd., Britain), and the soil was sandy loam with a particle size distribution of 3.75% for 0-0.002 mm, 21.73% for 0.002-0.02 mm and 74.52% for 0.02-2 mm. Samples were air dried, sieved through a 2 mm mesh, and compacted into plexiglass soil columns with a height and inner-diameter of 40 and 15 cm, respectively. The total soil depth in the column was 34 cm and soil bulk density was 1.45 g/cm3. The rapeseed dreg was air dried, pulverized, and uniformly mixed with soil samples. The plant dreg accounted for 2% of soil weight. The depth of mixed layer was set at 14, 24, and 34 cm. Pure soil samples without additives were used as a control (CK) treatment. A Mariotte bottle was used to provide a free water supply with about 1.5 cm in depth on the surface. The experiment started when the Mariotte bottle opened. The filter paper was laid at the soil surface to make the water head stable. The characteristics of soil water infiltration, distribution and water holding capacity were comparatively analyzed. The results showed that both Philip and Kostiakov models could well describe the relationship between cumulative infiltration and infiltration duration (2>0.99). Compared with the CK, the soils mixed with plant dreg helped to decrease cumulative infiltration and infiltration rate, both of which decreased as the depth of mixed layer increased. The cumulative infiltration for the soils mixed with 14, 24, and 34 cm was 3.9%, 7.8%, and 11.0% lower than the CK, respectively. The infiltration rate for the soils mixed with 14, 24, and 34 cm was 25.0%, 33.3%, and 41.7% lower than the CK, respectively. From the final water distribution in soil profiles, the soils mixed with plant dreg helped to increase saturated soil moisture and soil water content in soil layers, which were increased by 14.3% and 11.3%, respectively, compared with the CK. This indicated that plant dreg additive could increase soil water retention and water storage in root zone. Plant dreg could increase clay and silt contents from 3.75% to 9.97% and from 21.73% to 55.15%, respectively, and reduce sand content from 74.52% to 34.88%, and the experimental soil changed to silt loam. This indicated that the ratio of medium and small particle-size increased, and the ratio of large particle-size decreased, demonstrating that plant dreg had the potential in improving desertification soils. From the above, mixing plant dreg powder with soils is of significant practical meaning for cultivated soils because of the enhancement of water retention and water storage. This study may provide valuable information for the promotion of plant dreg to cropland and the application and popularity of plant dreg in soil improvement and water-saving agriculture.
soils; moisture; infiltration; water retention; rapeseed dreg
10.11975/j.issn.1002-6819.2017.02.014
S152.7; S156.2
A
1002-6819(2017)-02-0102-07
2016-04-20
2016-12-10
国家自然科学基金资助项目(51279167, 51379173);公益性行业(农业)科研专项(201503124);高等学校博士学科点专项科研基金(20120204110023)。
邢旭光,男,博士生,辽宁沈阳人,主要从事农业节水理论研究。杨凌西北农林科技大学水利与建筑工程学院,712100。 Email:xingxg86@163.com
马孝义,男,陕西凤翔人,教授,主要从事农业水土及电气化研究。杨凌西北农林科技大学水利与建筑工程学院,712100。 Email:xiaoyima@vip.sina.com
邢旭光,张 盼,马孝义. 掺混菜籽油渣减少土壤入渗改善持水特性[J]. 农业工程学报,2017,33(2):102-108. doi:10.11975/j.issn.1002-6819.2017.02.014 http://www.tcsae.org
Xing Xuguang, Zhang Pan, Ma Xiaoyi. Rapeseed dreg additive reducing soil infiltration and improving water retention[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 102-108. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.02.014 http://www.tcsae.org