非编码RNA对哺乳动物精子发生过程的调控
2017-02-07陈瑞于帅陈晓旭杜健朱振东潘传英曾文先
陈瑞,于帅,陈晓旭,杜健,朱振东,潘传英,曾文先
(1西北农林科技大学创新实验学院,陕西杨凌 712100;2西北农林科技大学动物科技学院,陕西杨凌 712100)
非编码RNA对哺乳动物精子发生过程的调控
陈瑞1,2,于帅2,陈晓旭2,杜健2,朱振东2,潘传英2,曾文先2
(1西北农林科技大学创新实验学院,陕西杨凌 712100;2西北农林科技大学动物科技学院,陕西杨凌 712100)
精子发生始于精原干细胞(spermatogonial stem cells, SSCs),SSCs一部分自我更新,另一部分首先分裂形成Asingle(As)型精原细胞,进而形成Aparied(Apr)型精原细胞和Aaligned(Aal)型精原细胞;随后,Aal型精原细胞再发育为A1-A4型精原细胞、中间型精原细胞以及B型精原细胞;B型精原细胞有丝分裂可形成初级精母细胞,经历前细线期、细线期、偶线期、粗线期,再经减数分裂形成次级精母细胞;当圆形精子细胞形成之后,则经细胞核浓缩等过程形成晚期的细长型成熟精子,随之最终变形成为精子。这一复杂的生理过程需要相关基因的适时表达,并受到转录和转录后水平的调控。研究表明,多种类型的非编码RNA (ncRNAs)在精子发生过程中发挥着重要作用。ncRNAs包括微小RNAs (miRNAs)、与Piwi蛋白相互作用的RNAs (piRNAs)、长链非编码RNAs (lncRNAs)、环状RNAs(circRNAs)以及内源性小干扰RNAs (endo-siRNAs)等。这些ncRNAs的表达具有细胞组织特异性和发育阶段特异性,可从时间和空间上精确调控精子发生的整个过程。miRNAs是一类长约 21—25 nt的内源性非编码单链RNA分子,广泛存在于各种生物中,其形成至少需要Drosha和Dicer等两种RNA酶的参与,可降解靶mRNA或抑制靶mRNA翻译,对SSCs干性的维持、自我更新和分化的调控以及生殖细胞减数分裂和精子发生过程具有重要的调控作用。此外,精子发生过程中,在生殖细胞不同阶段所表达的基因也可调控miRNAs的生成加工过程。piRNAs是2006年发现的一种新的小RNA,长度约24—32nt,其作用与Dicer酶无关,能够与生殖细胞特异性蛋白Piwi蛋白家族成员结合,进而行使生物学功能,其主要表现为:在表观遗传水平和转录后水平沉默转座子、反转座子等基因组移动遗传元件,维持生殖细胞自身基因组稳定性和完整性,调控生殖细胞增殖、减数分裂及精子发生过程。LncRNAs是一类长度大于200 nt的ncRNAs,其生成加工过程与mRNA类似,并且与mRNA有着相似的结构。不同来源的lncRNAs可通过转录前与转录后多种机制进而调控SSCs的干性及分化,并且调控生殖细胞凋亡。有些lncRNAs还可调控miRNAs的表达,进而调控精子发生过程。circRNAs是区别于传统线性RNA的一类新型 RNA,在不同物种中具有保守性,在组织及不同发育阶段呈特异性表达。其生成加工方式与其序列相关,同一基因位点可通过选择性环化产生多种circRNAs进而发挥功能。研究表明,circRNAs可结合miRNAs从而调控生精过程。相对于其他ncRNAs,endo-siRNAs的生成加工方式更为简单,并有着与miRNAs相同的作用方式,在精子发生和雄性生殖中扮演着重要角色。文中结合最新的研究进展,综述了几种ncRNAs的生成及其在精子发生过程中的调控作用,旨在为精子发生过程中ncRNAs的进一步研究提供参考。
精子发生;非编码RNA (ncRNAs);调控作用
精子发生是一个复杂的生理过程,包括有丝分裂、减数分裂、精子的形成与成熟[1]。该过程需要相关基因的适时表达,并受到转录和转录后水平的调控[2]。研究发现,超过1 000种编码蛋白的基因在精子发生中发挥作用[3-7]。然而,这些基因转录和翻译调控的分子机制尚不清楚。研究表明,多种类型的非编码RNA(ncRNAs)在睾丸发育和精子发生过程中发挥着重要作用。这些ncRNAs的表达具有细胞组织特异性和发育阶段特异性,可参与精子发生过程中生殖细胞分化的调控。ncRNAs包括微小RNAs(miRNAs),与Piwi蛋白相互作用的RNAs(piRNAs),长链非编码RNAs(lncRNAs),环状RNAs(circRNAs)和内源性小干扰RNAs (endo-siRNAs)等。目前,关于ncRNAs 在精子发生过程中的研究主要集中在miRNAs和piRNAs,新近有文献报道lncRNAs,circRNAs和endo-siRNAs也参与精子发生的调控。本文结合最新的研究进展,对 miRNAs、piRNAs、lncRNAs、circRNAs、endo-siRNAs的生成及其对精子发生的调控作用进行综述,以期为ncRNAs对大家畜精子发生的调控研究积累科学资料。
1 精子发生
精子发生是繁衍后代的基础,不同物种的精子发生周期不尽相同,猪的精子发生周期一般为40 d,绵羊为50 d,山羊为60 d,牛为54—60 d,小鼠为35 d,而人则需要72 d[8]。精子的发生位于成年雄性动物睾丸的曲细精管中,是一个精确、复杂、高效的过程,主要包括3个阶段[1]:第一阶段为精原细胞的增殖阶段,该阶段中精原干细胞(spermatogonial stem cells,SSCs)经多次有丝分裂形成大量的精原细胞。小鼠SSCs 约 经 历 A-single(As), A-paired(Apr),A-aligned(Aal),A1型,A2型,A3型,A4型,中间型及B型精原细胞这8次有丝分裂,最终形成前细线期的精母细胞。随后,初级精母细胞开始DNA合成过程。第二阶段为精母细胞的减数分裂阶段,在该阶段,前细线期精母细胞穿过血睾屏障并向近腔室方向移动,同时起始减数分裂,产生单倍体生精细胞(又称精子细胞)。第三阶段为精子细胞的变形阶段,圆形精子细胞经过复杂的变化转变为具有细长尾巴及运动能力的精子。
精子发生的每一个阶段都受到多种因素的精密调控,在这些调控因素中,表观遗传修饰发挥着至关重要的作用。精子中的表观遗传修饰包括 ncRNAs,组蛋白修饰,DNA甲基化,基因组印记,X染色体失活,表观隔代遗传与其他涉及染色质重塑的调节机制。在雄性动物精子发生过程中存在着大量的表观调控因子,其中一部分调控因子的功能及机制已被阐明。例如,精子DNA的异常组装会导致雄性小鼠不育,这可能是由于参与DNA重构的相关蛋白调控异常所导致的[9]。YAN等研究发现,H1LS(spermatid-specific linker histone H1-like protein)是精子细胞中特异存在的组蛋白H1的相似蛋白,其参与精子发生过程中染色质的重塑[10]。MARTIANOV 等在圆形精子细胞中发现了H1T2(histone H1 variant)的存在,其在染色质浓缩过程中发挥作用[11]。研究表明,鱼精蛋白的不正常表达会降低雄性动物的精液质量,从而引发生殖能力的减弱[12]。基因组印记则保证了父本和母本一方的基因在印迹位点的正确表达,这个过程主要是由DNA甲基化修饰调节的。除此之外,ncRNAs对精子发生也起着关键作用。
2 ncRNAs与精子发生
ncRNAs在雄性生殖发育过程中发挥着重要作用,从时间和空间上精确调控着精子发生的整个过程。研究表明,其在性别分化、雄性性行为以及生殖细胞发育过程中不可或缺,此外,ncRNAs对生殖干细胞干性维持、精原细胞分化及精母细胞减数分裂过程发挥着重要的调控作用。
2.1 miRNAs与精子发生
2.1.1 miRNAs的形成和作用机制 miRNAs是一类长约 21—25 nt的内源性非编码单链RNA分子,具有高度保守性、时序性和组织特异性,对转录和转录后的基因表达调控起关键作用。miRNAs的形成至少需要Drosha和Dicer等两种RNA酶的参与。绝大多数miRNA可在RNA聚合酶Ⅱ的作用下形成长的茎环结构,即初级miRNA(primary miRNA,pri-miRNA),随后被定位于细胞核中的Drosha-DGCR8复合体所剪切,释放出长度约 70 nt的发夹状 RNA,成为前体miRNA(precursor miRNA,pre-miRNA)[13-15]。 pre-miRNA在输出蛋白 Exportin-5(Exp5)的作用下从细胞核转运至细胞质中[16-17],并在胞质中被 Dicer剪切产生约为22 nt的miRNA双链,最终miRNA的双链解链形成成熟的miRNA[18]。成熟的miRNA与沉默复合体(RNA-induced silencing comlex,RISC)结合,形成miRNP识别靶基因从而发挥作用。
大量研究证明, miRNA可降解靶mRNA或抑制靶mRNA翻译。进入RISC复合体的miRNA,如果miRNA与靶mRNA匹配完全,RISC则降解mRNA;若miRNA与靶基因mRNA 的3’UTR序列不完全配对, 则抑制靶基因mRNA的翻译来沉默特定基因[19-20]。
2.1.2 miRNAs在真核模式动物精子发生中的作用1993年,LEE等在线虫中发现了第一个 miRNA—Lin-4基因[21]。2000年,REINHART等在果蝇中发现了另一个miRNA—Let7基因及其靶基因lin-4[22]。此后,人们便广泛关注这一 RNA分子。在果蝇中,miR-124作用可产生异常激素,并导致miR-124缺失突变体的雄性果蝇减少与雌性果蝇的交配率,甚至出现了雄-雄求偶的现象。与此同时,雌性果蝇与野生型雄果蝇交配表现出的渴望远远超过与miR-124缺失突变体的交配[23]。尽管miR-124突变体表现出更少的交配,但当只有miR-124突变体存在时仍可成功交配,表明其在自然竞争环境中处于劣势地位。最新研究表明,如果在成年果蝇体内去除miRNA,则会导致不育,同时,这些果蝇开始产生雄性和雌性两种性别决定因子。从某种意义上说,一旦它们失去了这种miR-124,果蝇就变成了雌雄双性体,提示,即使在动物长大成熟以后,miRNAs对于性别决定也必不可少,它们可以发送信号让卵子和精子发育,从而保证动物的生育能力[24]。这些研究表明,miRNAs对雄性的性分化和性行为具有重要的调控作用。
2.1.3 miRNAs在哺乳动物精子发生中的作用miRNAs对SSCs干性的维持发挥着重要作用。已有文献报道,哺乳动物 SSCs可表达 miR-20,miR-21,miR-34c,miR-135a,miR-182,miR-183,miR-146a,miR-204和miR-544[25-28]。在小鼠中,miR-20,miR-21和 miR-106a可参与 SSCs动态平衡的调控[25,29]。miR-34在山羊SSCs中表达并促进p53依赖性的细胞凋亡[27]。miR-544可通过调节早幼粒细胞白血病锌指基因(promyelocytic leukemia zinc finger,PLZF)进而调节山羊SSCs的自我更新[30]。此外,有些miRNAs参与精原细胞分化的调节。在维甲酸(retinoic acid,RA)诱导精原细胞分化时发现 miR-146[31],let 7miRNAs家族[32],miR-17-92和 miR-106b-25[33]表达的下调。在细胞水平上,研究人员比对了小鼠干细胞和已分化细胞的 miRNA的差异表达,发现了一些干细胞特有的miRNA,推测它们参与细胞分化过程,同时也是维持细胞干性所必需的。有些miRNAs的表达具有组织细胞特异性,表明它们可能参与了分化细胞的维持[4]。
miRNAs在生殖细胞减数分裂和精子发生过程中发挥着重要作用。YAN等[34]利用芯片技术比较了未成熟与成熟小鼠睾丸中miRNAs的表达情况,发现有19种miRNAs在这两种睾丸中存在显著的差异表达,表明这些miRNAs可能对睾丸的发育产生影响。研究表明,miRNA-122a主要在雄性生殖细胞晚期阶段表达,可抑制圆形精子标志物的转换蛋白 2(Transition protein 2, TP2)的转录[35]。miRNA微阵列、RT-PCR或小RNA序列研究证实,miRNAs高度、广泛、优先的在睾丸和雄性生殖细胞分化的各阶段表达。YADAV等研究发现,SSCs、精原细胞、精母细胞和精子中会表达几种相同的miRNAs,如miR-34c既存在于 SSCs中,调控其状态,又在精母细胞和圆形精子细胞中表达,在精子发生后期发挥重要作用[36];但有一些 miRNAs只在特定的细胞类型中表达。miR-17-92簇通过下调E2f1防止生殖细胞在减数分裂期发生凋亡[37]。miR-18在精母细胞中高表达,并作用于雄性小鼠生殖细胞发育的调控因子Hsf2,从而调控精子的发生过程[38]。最新研究表明,miR-449在睾丸发育和成年小鼠精子发生减数分裂起始时期高表达,其表达模式与miR-34b/c在精子发生过程中类似。WU等发现miR-449或miR-34位点的突变不会引起雄性小鼠生殖表型的改变,然而miR-449和miR-34的失活会导致不育[39]。此外,miR-34c还高表达于小鼠粗线期精母细胞和精子细胞中,并通过Atf1调节生殖细胞的活力[40]。Tp和Prm的适时表达是精子发生过程中染色质凝缩的先决条件。miR-469可以靶向抑制粗线期精母细胞和圆形精子细胞中Tp和Prm的mRNAs的翻译[41],而miR-122a则可介导Tp2的mRNA的降解[35]。
综上所述,miRNAs在精子发生中呈差异性表达,与 SSCs干性的维持、精子生成及生殖细胞减数分裂中基因转录后的调控关系密切,在生殖系统中起到重要的调节作用。
2.2 piRNAs与精子发生
2.2.1 piRNAs的形成和作用机制 piRNAs是指与生殖细胞特异性 Piwi蛋白家族成员相结合才能发挥作用的RNA[42],具有调控基因沉默和维持基因组稳定的功能。piRNAs在抑制转座子活性和维持基因组稳定性方面起重要作用,但其发生和调控的分子机制仍不清楚。果蝇生殖细胞为研究这一机制提供了良好的模型。果蝇生殖细胞中piRNAs的发生包括两种途径:初级加工途径(primary processing pathway)和“乒乓循环”扩增途径(Ping-Pong amplification loop)。大多数piRNA序列都对应于范围较小的基因组区域,这些区域被称为piRNA簇。这些piRNA 簇经转录可得到长单链piRNA前体,随后经过不依赖于Dicer酶的加工机制,生成初级piRNA。在成熟之后,piRNAs与Piwi蛋白相互作用形成piRNA沉默诱导复合物(piRISCs),介导piRISCs通过RNA-RNA碱基互补配对靶向结合转录本。已有的假说表明,在乒乓循环的过程中,Piwi家族成员Aub和Ago3通过piRNAs识别的靶RNA进行靶向剪切,使得piRNAs得到次级循环扩增[43]。
2.2.2 piRNAs在真核模式动物精子发生中的作用Piwi蛋白是Argonautue(Ago)蛋白家族的一个分支,首次在果蝇中发现,对生殖干细胞干性的维持起着重要作用[44]。果蝇中,已经鉴定出5种Ago蛋白:Ago1,Ago2,Ago3,Piwi和Aubergine(Aub)[45]。Ago3,Piwi和Aub与非编码小RNA的另一个成员:重复相关小RNA(repeat associated small interfering RNAs,rasiRNAs)也存在相互作用关系[46]。rasiRNA最初发现于胚胎期的果蝇和斑马鱼中[47-48],之后,又在果蝇的生殖细胞中检测到了rasiRNA的存在。rasiRNA与Piwi蛋白相结合可能在生殖细胞中沉默逆转录转座子和重复元件来调节果蝇生殖系的发育,它的沉默机制可能与piRNA的调节方式存在一定的关系[49]。
Piwi亚家族主要有3个成员:Miwi,Mili和Miwi2。果蝇Piwi在生殖细胞和支持细胞的细胞核中表达,而Miwi和Mili却存在于胞质中。此外,果蝇Piwi突变不但导致精子发生障碍,同时也对生殖细胞的维持产生影响。Piwi突变的果蝇在小RNA依赖性的转基因和逆转座子沉默上存在缺陷,同时丧失了异染色质蛋白[50]。表明,piRNA能够沉默转座子,并能防止DNA受损。随后,研究人员通过功能缺失突变试验发现,Piwi的缺失也会导致线虫生殖细胞发育受阻[51]。果蝇的Aub可能与Miwi和Mili更具同源性,因为Aub存在于精原细胞和精母细胞的细胞质中,Aub功能的缺失会导致精母细胞和圆形精子细胞的不正常发育。最新研究表明,piRNA可调控性别决定基因Bmdsx的表达,在家蚕性别决定过程中发挥关键作用[52]。斑马鱼中两个已知的Piwi蛋白是Ziwi和Zili,其中Ziwi在雄性和雌性个体中都有表达。Ziwi在斑马鱼中作为一个胞内蛋白,可能兼有Ago3和Aub的功能。Ziwi水平的降低会导致生殖细胞发生凋亡[53]。有趣的是,Ziwi在斑马鱼中也可决定性别发展方向,这表明piRNA可能是性别决定调控的重要因素。
2.2.3 piRNAs在哺乳动物精子发生中的作用piRNA 与 Piwi亚家族蛋白结合可形成 piRISCs, piRISCs通过抑制基因转录后的调节及基因在精子发生过程中的异常表达, 从而调控精子发生。Piwi亚家族蛋白Miwi、Mili和Miwi2等在哺乳动物干细胞自我更新及雄性生殖细胞发育过程中发挥重要作用[54-55]。哺乳动物Miwi、Miwi2、Mili蛋白表达于生殖细胞中后期,是小鼠精子发生所必需的。敲除Miwi、Mili或 Miwi2基因,都会使精子产生明显缺陷,导致雄性不育。Mili蛋白存在于精母细胞胞质、圆形精子细胞拟染色质小体和胞质中,在翻译和维持mRNA的稳定性方面发挥作用。在敲除Mili的小鼠中,精子发生会停止在粗线期精母细胞阶段[56]。Miwi表达于粗线期至圆形精子时期,敲除 Miwi时,会使精子发生停止在圆形精子阶段,不能形成长形精子。Miwi蛋白的失活会导致精子细胞时期 L1转座子的调节异常和生精功能障碍[57]。Miwi与piRISCs结合可形成有脱腺苷作用的复合体,也称染色质组装因子1(Caf1),它可以促进脱腺苷化和长形精子中mRNAs的衰退[58]。敲除Miwi2的小鼠在减数分裂早期产生缺陷,并且生殖细胞会随着年龄的增长而产生缺失。Miwi2突变体中生殖细胞表型的损失,证明了小鼠中的Miwi2和果蝇中的 Piwi在维持生殖系和干细胞时起着相似的作用[55]。
小鼠基因组中的 Piwi蛋白在雄性生殖细胞的分化过程中受时间和空间上的调控,可调控精子发生。在小鼠雄性生殖细胞发育过程中,在两个不同阶段表达的 piRNAs被分别命名为粗线期前期 piRNAs(pre-pachytene piRNAs)和粗线期piRNAs(pachytene piRNAs)[58]。粗线期前期piRNAs富含转座子序列,在精子发生早期与Miwi2或Mili共表达,主要参与胎儿及围产期雄性生殖细胞DNA的从头甲基化。而粗线期piRNAs主要由粗线期精母细胞和减数分裂后精细胞的非转座子基因间区诱导生成,同Miwi结合,但其在精子分化过程中逐渐消失,提示,其可能对减数分裂时相顺序的精确进行具有调控作用,进而确保具有正常功能的精子生成[59]。最新的研究表明,E3泛素化连接酶和后期促进复合物(APC)能使 Miwi蛋白在精子发生过程中发生泛素化修饰,并通过泛素蛋白酶体途径降解。此外,这些能够激活Miwi蛋白降解的 piRNA也能使自身降解,这表明 Miwi与piRNAs在精子发生中完成了相应作用以后,二者之间也存在着一个正反馈调控[60]。
由此可见,piRNAs主要参与雄性生殖细胞基因组稳定性的维持,调节生殖细胞自我更新以及减数分裂过程,在精子发生中起沉默转录元件的作用。
2.3 lncRNAs与精子发生
2.3.1 lncRNAs的形成和作用机制 lncRNAs是一组内源性、长度超过200 nt、缺乏蛋白质编码能力的RNA分子,包括增强子RNA、基因间转录本以及与其他转录本同向或反向重叠的转录本。与mRNA类似,大多数lncRNAs由RNA聚合酶Ⅱ转录,经可变剪切形成,并通常被多聚腺苷酸化[61]。近年来的研究发现lncRNAs可能具有以下几方面功能:(1)通过在蛋白编码基因上游启动子区发生转录,干扰下游基因的表达。(2)通过抑制RNA聚合酶II或者介导染色质重构以及组蛋白修饰,影响下游基因表达。(3)通过与蛋白编码基因的转录本形成互补双链,进而干扰mRNA的剪切,从而产生不同的剪切形式。(4)通过与蛋白编码基因的转录本形成互补双链,进一步在Dicer酶作用下产生内源性的 siRNA,调控基因的表达。(5)通过结合到特定蛋白质上,调节相应蛋白的活性。(6)作为结构组分与蛋白质形成核酸蛋白质复合体。(7)通过结合到特定蛋白上,改变该蛋白的胞质定位。(8)作为小分子RNA,如miRNA,piRNA的前体分子转录[62]。
2.3.2 lncRNAs在精子发生中的作用 lncRNAs在睾丸发育过程中发挥着重要作用。SUN等利用基因芯片技术分析小鼠出生后睾丸组织的发育情况,共检测到8 265种lncRNAs,其中3 025种lncRNAs存在差异表达[63]。2013年,LAIHO等在研究7,14,17,21和28 d小鼠睾丸基因表达量时发现,精子发生阶段共有947种lncRNAs的表达上调,这些lncRNAs特定的出现在生殖细胞发育的不同阶段[64]。同年,BAO等利用基因芯片技术比较了雄性生殖细胞发育关键时期(12.5 dpc 、15.5 dpc、7 dpp、14 dpp、21 dpp、成年)lncRNAs的表达情况,结果表明,有数千种lncRNAs的表达被上调或下调。此外,大多数lncRNAs与编码蛋白的基因有关,这些编码蛋白的基因表达水平与lncRNAs相关联,其在基因组中的位置通常靠近lncRNAs[65]。另有一些研究人员发现小鼠中含有3 639种在 A型精原细胞特定表达的 lncRNAs,其中,98种表达于粗线期精母细胞,166种表达于圆形精子细胞[66]。2014年,CHALMEL等发现lncRNAs会在鼠类减数分裂和精子发生时期富集[67]。
尽管在睾丸组织和雄性生殖细胞中鉴定出了数千种lncRNAs,但只有少数的几种知晓功能。笔者将已知功能的 lncRNAs分为位于常染色体上的 lncRNAs和位于性染色体上的lncRNAs两类:
(1)位于常染色体上的lncRNAs Mrhl(减数分裂重组热点位点)RNA是一个核富集的lncRNAs,位于小鼠第8号染色体上,长度为2.4kb。在小鼠精原细胞的GC-1 Spg细胞系中沉默Mrhl RNA,会导致与细胞粘附、细胞信号转导和细胞发育及分化相关基因的表达发生紊乱,这些基因大多在Wnt信号通路中发挥重要作用。Mrhl RNA通过与p68的互作在Wnt信号通路中发挥负调控作用[68]。
HongrES2是位于小鼠5号和19号染色体上,长度为1.6kb的转录嵌合物,在附睾尾部的特定区域表达。它是类似于miRNA的lncRNA,也是mil-HongrES2的前体。mil-HongrES2能够抑制啮齿动物Ces7的表达和固醇酯酶的活性。当mil-HongrES2过表达时,会导致精子获能迟缓。提示,lncRNAs在小鼠的附睾中发挥着重要作用[69]。
NLC1-C也称为基因间RNA162(LINC00162),位于人类21号染色体上。与正常人相比,在不育男性睾丸组织中,精原细胞和精母细胞胞质中的 NLC1-C含量较低,而细胞核中含量较高。NLC1-C在细胞核中抑制miR-320a和miR-383的转录。同时,通过与核仁蛋白的结合促进体外培养的睾丸胚胎癌细胞增殖。这些结论表明NLC1-C通过与RNA结合蛋白结合,进而在转录水平上调节 miRNA的表达,从而调节人类精子发生过程[70]。
spga-lncRNAs是精子发生过程中特定表达的lncRNA,包括spga-lncRNA1和spga-lncRNA2。它们是从一组lncRNAs(109个,都只含一个外显子)中被鉴定出来的,这些lncRNAs在A型精原细胞、粗线期精母细胞和圆形精子细胞中表达[71]。这两种 spgalncRNAs被认为是A型精原细胞分化的抑制因子,暗示了它们在SSCs干性维持方面发挥着重要作用。
(2)位于性染色体上的lncRNAs Tsx(核苷特异通道形成蛋白)曾被认为是蛋白编码基因,直至2011年,Anguera等人证实其为lncRNAs的一种。Tsx在粗线期精母细胞中特异性表达,在精原细胞和圆形精子细胞中不表达。在小鼠中敲除Tsx基因,会促进更多的粗线期精母细胞发生凋亡,这证实了其在减数分裂过程中发挥着重要功能[72]。
Dmrt1(doublesex and mab-3 related transcription factor 1)蛋白作为一种重要的转录因子,可促进精子和卵子发生过程中特异碱性螺旋-环-螺旋蛋白 1(Sohlh1)的表达,同时抑制Stra8(retinoic acid gene 8)的表达,进而促进精子发生。Dmr(Dmrt1-related gene)的转录产物是lncRNA的一种,它可破坏Dmrt1的编码区,并置换Dmrt1的3′UTR区域,导致Dmrt1蛋白表达量的降低,进而影响精子发生[73-74]。
lncRNAs虽然很久以前就被发现,但直到近年才逐渐被关注。与生殖相关的lncRNAs主要参与SSCs干性及分化、生殖细胞减数分裂的调控;有些lncRNAs还可调节miRNAs的表达,从而调控精子发生过程。
2.4 circRNAs与精子发生
2.4.1 circRNAs的形成和作用机制 环状 RNA(circular RNAs,circRNAs),是区别于传统线性RNA的一类新型RNA,它不具有5′末端帽子和3′末端poly(A)尾巴,但以共价键形成闭合环状结构。circRNAs在不同物种中具有保守性,在组织及不同发育阶段呈特异性表达。研究表明,circRNAs在多种生物细胞中广泛表达,同一基因位点或许可通过选择性环化产生多种circRNAs,其在转录或转录后水平对基因表达调控具有重要作用。假设产生 circRNAs的基因含有 4个外显子,分别命名为exon1、exon2、exon3和exon4,则circRNAs可能产生的4种模型为:(1)内含子配对(intron pairing)驱动的环化:位于外显子侧翼的内含子之间存在互补序列,其可直接通过碱基配对来诱导环化,最终产生Exonic circRNA 或ElciRNA。(2)RNA结合蛋白(RBP)配对(RBP pairing)驱动的环化:结合到外显子侧翼内含子上的 RBP之间相互作用,最终驱动exon2 与exon3首尾连接进而环化。(3)外显子跳跃(exon skipping)与套索(intra-lariat)驱动的环化:前体 RNA部分折叠而发生外显子跳跃,使exon1的3′端剪接配体与exon4的5′端剪接受体共价结合,形成一个包含exon2及exon3的套索结构,进一步环化产生circRNA。(4)ciRNA的环化:内含子自身环化,形成ciRNA[75-78]。
2.4.2 circRNAs在精子发生中的作用 自circRNAs被发现来,一些来源于真核生物基因组的 circRNAs被鉴定出来。例如,Y染色体性别决定基因(SRY基因),由一个外显子组成,在小鼠睾丸组织中高表达。在发育早期,其转录物可作为蛋白质合成的模板,并以线性 RNA的形式存在。但在成年睾丸中,它的RNA主要以环状的形式存在于细胞质中,且不具翻译功能。进一步研究发现,基因组序列两侧的SRY基因外显子的反向重复序列可直接转录成circRNA。HANSEN等研究发现,SRY基因的环状转录物含有16个miR-138的结合位点,其可抑制 miR-138的活性,从而调控miR-138靶基因的表达水平[79]。提示,circRNAs可以调控miRNA进而对精子发生产生作用。但目前关于circRNAs的研究还不深入,有待进一步研究。
2.5 Endo-siRNAs与精子发生
Endo-siRNAs首次报道于模式生物中,例如果蝇[80]和小鼠[81]。与miRNAs不同,endo-siRNAs的生成不需要Drosha-DGCR8复合物,它们可以由前体细胞中正义或反义RNA,或者长发夹结构的长双链RNA(dsRNA)加工而成[82]。
2009年,HAN等在秀丽隐杆线虫中发现了长为26 nt的endo-siRNAs,称为26G endo-siRNAs。26 G RNA基因可以调节精子发生和合子发育过程。值得关注的是,试验中发现了两个26G RNAs 亚类,其中,第一类26G RNAs的靶基因在精子发生过程中表达,第二类26G RNAs来源于母系遗传,其可在合子发育过程中沉默相关基因的表达[83]。
2015年,WU等在小鼠细胞系中条件性敲除Drosha或Dicer,发现睾丸中endo-siRNAs的合成需要 Dicer的参与,但与 Drosha无关[84]。在果蝇中,hpRNAs(hairpin RNA)被认为是endo-siRNAs的一种,其在睾丸中高表达[85]。在小鼠中,endo-siRNAs在胚胎干细胞中丰富表达,其次是SSCs,在成熟生殖细胞中表达最低[86]。对原始生殖细胞、卵母细胞和受精卵中的短链非编码 RNA(sncRNAs)的功能分析指出,小RNA和小核仁RNA(snoRNAs)都可在原始生殖细胞中广泛表达,但仅持续片刻便会被精子中的干扰RNA和卵母细胞与受精卵中的endo-siRNAs所替代[87]。在小鼠和其他哺乳动物中,生殖细胞特异性蛋白 Dicer可以影响减数分裂进而导致雄性不育、精母细胞凋亡的增加和缺陷精子的产生。Drosha敲除小鼠会产生有缺陷的miRNA途径,但存在完整的 endo-siRNAs途径。虽然这些研究揭示了 endosiRNAs在哺乳动物精子发生和雄性生殖中的扮演着重要角色[88],但其在SSCs干性维持、精子变形等过程是如何发挥调控作用的还有待进一步研究。
3 展望
睾丸的发育决定着种群繁殖的质量和优良种公畜的利用价值,对睾丸发育的研究也从最初的睾丸形态组织学观察,到编码基因功能的调控,再到新近的表观遗传调控因子。随着基因组计划的完成,人们对非编码RNA认识的不断深入,这些非编码RNA可作为重要的表观遗传调控因子,调控精子发生过程,对精原干细胞干性维持、生殖细胞减数分裂、精原细胞分化及精母细胞减数分裂等过程发挥着重要的调控作用。然而,其研究多数集中在微小RNAs、与Piwi蛋白相互作用的RNAs和长链非编码RNAs上,在环状RNAs和内源性小干扰RNAs上的研究还处于初级阶段。非编码RNA在精子发生中的作用多集中在线虫、果蝇、小鼠和人上,在大家畜上的研究较少。相信,随着组学时代的到来,对非编码RNA研究的不断深入,将有助于大家畜精子发生的研究,会为大家畜生精障碍和精子发生异常治疗方法的选择提供理论依据。
[1] SCHULZ R W, MIURA T. Spermatogenesis and its endocrine regulation. Fish Physiology and Biochemistry, 2003, 26: 43-56.
[2] KIMMINS S, SASSONE-CORSI P. Chromatin remodelling and epigenetic features of germ cells. Nature, 2005, 434(7033): 583-589.
[3] HERMO L, PELLETIER R M, CYR D G, SMITH C E. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: background to spermatogenesis, spermatogonia, and spermatocytes. Microscopy Research Technique, 2010, 73(4): 241-278.
[4] HERMO L, PELLETIER R M, CYR D G, SMITH C E. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 2: changes in spermatid organelles associated with development of spermatozoa. Microscopy Research Technique, 2010, 73(4): 279-319.
[5] HERMO L, PELLETIER R M, CYR D G, SMITH C E. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 3: developmental changes in spermatid flagellum and cytoplasmic droplet and interaction of sperm with the zona pellucida and egg plasma membrane. Microscopy Research Technique, 2010, 73(4): 320-363.
[6] HERMO L, PELLETIER R M, CYR D G, SMITH C E. Surfing thewave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 4: intercellular bridges, mitochondria, nuclear envelope, apoptosis, ubiquitination, membrane/voltage-gated channels, methylation/acetylation, and transcription factors. Microscopy Research Technique, 2010, 73(4): 364-408.
[7] HERMO L, PELLETIER R M, CYR D G, SMITH C E. Surfing the wave, cycle, life History, and genes/proteins expressed by testicular germ cells. Part 5: intercellular junctions and contacts between germs cells and Sertoli cells and their regulatory interactions, testicular cholesterol, and genes/proteins associated with more than one germ cell generation. Microscopy Research Technique, 2010, 73(4): 409-494.
[8] FRANCA L R, AVELAR G F, ALMEIDA F F L. Spermatogenesis and sperm transit through the epididymis in mammals with emphasis on pigs. Theriogenology, 2005, 63(2): 300-318.
[9] MILLER D, BRINKWORTH M, ILES D. Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction, 2010, 139(2): 287-301.
[10] YAN W, MA L, BURNS K H. HILS1 is a spermatidspecific linker histone H1 like protein implicated in chromatin remodeling during mammalian spermiogenesis. Proceeding of the National Academy Sciences of the United States of American, 2003, 100(7): 10546-10551.
[11] MARTIANOV I, BRANCORSINI S, CATENA R. Polar nuclear localization of H1T2, a histone H1 variant, required for spermatid elongation and DNA condensation during spermiogenesis. Proceeding of the National Academy Sciences of the United States of American, 2005, 102(8): 2808-2813.
[12] CARRELL D T. Epigenetics of the male gamete. Fertility and Sterility, 2012, 97(2): 267-274.
[13] DENLI A M, TOPS B B, PLAATERK R H, KETTING R F, Hannon G J. Processing of primary microRNAs by the microprocessor complex. Nature, 2004, 432(7014): 231-235.
[14] GREGORY R I, YAN K P, AMUTHAN G, CHENDRIMADA T, DORATOTAJ B, COOCH N, SHIEKHATTAR R. The microprocessor complex mediates the genesis of microRNAs. Nature, 2004, 432(7014): 235-240.
[15] LEE Y, AHN C, HAN J J, CHOI H, KIM J, YIM J, LEE J, PROVOST P, RADMARK O, KIM S. The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003, 425(6956): 415-419.
[16] LUND E, GUTTINGER S, CALADO A, DAHLBERG J E, KUTAY U. Nuclear export of microRNA precursors. Science, 2004, 303(5654): 95-98.
[17] YI R, QIN Y, MACARA I G, CULLEN B R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes and Development, 2003, 17(24): 3011-3016.
[18] MEISTER G, TUSCHL T. Mechanisms of gene silencing by double-stranded RNA. Nature, 2004, 431(7006): 343-349.
[19] ZENG Y, YI R, CULLEN B R. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proceeding of the National Academy Sciences of the United States of American, 2003, 100(17):9779-9784.
[20] 朱文奇, 陈宽维, 李慧芳, 宋卫涛, 张静. 动物miRNA的最新研究进展. 中国畜牧兽医, 2009, 36(11): 66-69. ZHU W Q, CHEN K W, LI H F, SONG W T, ZHANG J. The latest research progress of animal miRNA. China Animal Husbandry and Veterinary Medicine, 2009, 36(11): 66-69. (in Chinese)
[21] LEE R C, FEINBAUM R L, AMBROS V. The C. elegansheterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5): 843-854.
[22] REINHART B J, SLACK F J, BASSON M, PASQUINELLI A E, BETTINGER J C, ROUGVIE A E, HORVITZ H R, RUVKUN G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403(6772): 901-906.
[23] WENG R, CHIN J S, YEW J Y. miR-124 controls male reproductive success in Drosophila. Elife, 2013, 2: e00640.
[24] FAGEGALTIER D, KöNIG A, GORDON A, LAI E C, GINGERAS T R, HANNON G J, SHCHERBATA H R. A genome-wide survey of sexually dimorphic expression of Drosophila miRNAs identifies the steroid hormone-induced miRNA let-7 as a regulator of sexual identity. Genetics, 2014, 198(2): 647-668.
[25] HE Z P, JIANG J J, KOKKINAKI M, TANG L, ZENG W X, GALLICANO I, DOBRINSKI I, DYM M. MiRNA-20 and miRNA-106a regulate spermatogonial stem cell renewal at the post-transcriptional level via targeting STAT3 and Ccnd1. Stem Cells, 2013, 31(10): 2205-2217.
[26] NIU B, WU J, MU H, LI B, WU C, HE X, BAI C, LI G, HUA J. miR-204 regulated the proliferation of dairy goat spermatogonial stem cells via targeting to Sirt1. Rejuvenation Research, 2016, 19(2): 120-130.
[27] LI M, YU M, LIU C, ZHU H, HE X, PENG S, HUA J. miR-34c works downstream of p53 leading to dairy goat male germline stem-cell (mGSCs) apoptosis. Cell Proliferation, 2013, 46(2): 223-231.
[28] MORITOKI Y, HAYASHI Y, MIZUNO K, KAMISAWA H, NISHIO H, KUROKAWA S, UGAWA S, KOJIMA Y, KOHRI K. Expressionprofiling of microRNA in cryptorchid testes: miR-135a contributes to the maintenance of spermatogonial stem cells by regulating FoxO1. Journal of Urology, 2014, 191(4): 1174-1180.
[29] NIU Z Y, GOODYEAR S M, RAO S, WU X, TOBIAS J W, AVARBOCK M R, BRINSTER R L. MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. Proceeding of the National Academy Sciences of the United States of American, 2011, 108(31): 12740-12745.
[30] SONG W C, MU H L, WU J, LIAO M Z, ZHU H J, ZHENG L M, HE X, NIU B W, ZHAI Y X, BAI C L. miR-544 regulates dairy goat male germline stem cell self-renewal via targeting PLZF. Journal of Cellular Biochemistry, 2015, 116(10): 2155-2165.
[31] HUSZAR J M, PAYNE C J. MicroRNA 146 (Mir146) modulates spermatogonial differentiation by retinoic acid in mice. Biology of Reproduction, 2013, 88(1): 15.
[32] TONG M H, MITCHELL D, EVANOFF R, GRISWOLD M D. Expression of Mirlet7 family microRNAs in response to retinoic acid-induced spermatogonial differentiation in mice. Biology of Reproduction, 2011, 85(1): 189-197.
[33] TONG M H, MITCHELL D A, MCGOWAN S D, EVANOFF R, GRISWOLD M D. Two miRNA clusters, Mir-17-92 (Mirc1) and Mir-106b-25 (Mirc3), are involved in the regulation of spermatogonial differentiation in mice. Biology of Reproduction, 2012, 86(3): 72.
[34] YAN N H, LU Y L, SUN H Q, TAO D C, ZHANG S Z, LIU W Y, MA Y X. A microarray for microRNA profiling in mouse testis tissues. Reproduction, 2007, 134(1): 73-79.
[35] YU Z R, RAABE T, HECHT N B. MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biology of Reproduction, 2005, 73(3): 427-433.
[36] YU M, MU H, NIU Z, CHU Z, ZHU H, HUA J. miR-34c enhances mouse spermatogonial stem cells differentiation by targeting Nanos2. Journal of Cellular Biochemistry, 2014, 115(2): 232-242.
[37] NOVOTNY G W, SONNE S B, NIELSEN J E, JONSRUP S P, HANSEN M A, SKAKKEBAEK N E, RAJPERT-DE M E, KJEMS J, LEFFERS H. Translational repression of E2F1 mRNA in carcinoma in situ and normal testis correlates with expression of the miR-17-92 cluster. Cell Death and Differentiation, 2007, 14(4): 879-882.
[38] BJORK J K, SANDQVIST A, ELSING A N, KOTAJA N, SISTONEN L. miR-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis. Development, 2010, 137(19): 3177-3184.
[39] WU J W, BAO J Q, KIM M, YUAN S Q, TANG C, ZHENG H L, MASTICK G S, XU C, YAN W. Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis. Proceeding of the National Academy Sciences of the United States of American, 2014, 111(28): 2851-2857.
[40] LIANG M, LI W Q, TIAN H, HU T, WANG L, LIN Y, LI Y L, HUANG H F, SUN F. Sequential expression of long noncoding RNA as mRNA gene expression in specific stages of mouse spermatogenesis. Scientific Reports, 2014, 4: 5966.
[41] DAI L S, TSAI-MORRIS C H, SATO H, VILLAR J, KANG J H, ZHANG J B, DUFAU M L. Testis-specific miRNA-469 up-regulated in gonadotropin-regulated testicular RNA helicase (GRTH/DDX25)-null mice silences transition protein 2 and protamine 2 messages at sites within coding region: implications of its role in germ cell development. Journal of Biological Chemistry, 2011, 286(52): 44306-44318.
[42] LIN H. piRNAs in the germ line. Science, 2007, 316(5823): 397.
[43] ARAVIN A A, LAGOS-QUINTANA M, YALCIN A, ZAVOLAN M, MARKS D, SNYDER B, GAASTERLAND T, MEYER J, TUSCHL T. The small RNA profile during Drosophila melanogaster development. Developmental Cell, 2003, 5(2): 337-350.
[44] COX D N, CHAO A, BAKER J. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes and Development, 1998, 12(23): 3715-3727.
[45] CARMELL M A, XUAN Z, ZHANG M Q. The Argonaute family: tentacles that reach in to RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes and Development, 2002, 16(21): 2733-2742.
[46] SAITO K, NISHIDA K M, MORI T. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes and Development, 2006, 20(16): 2214-2222.
[47] ARAVIN A A, LAGOS Q M, YALCIN A. The small RNA profile during Drosophila melanogaster development. Developmental Cell, 2003, 5(2): 337-350.
[48] CHEN P Y, MANNINGA H, SLANCHEV K. The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes and Development, 2005, 19(11): 1288-1293.
[49] GUNAWARDANE L S, SAITO K, NISHIDA K M. A slicer mediated mechanism for repeat associated siRNA5’end formation in Drosophila. Science, 2007, 315(5818): 1587-1590.
[50] COX D N, CHAO A, LIN H. Piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development, 2000, 127(3): 503-514.
[51] KLATTENHOFF C, THEURKAUF W. Biogenesis and germline functions of piRNAs. Development, 2008, 135: 3-9.
[52] KIUCHI T, KOGA H, KAWAMOTO M. A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature, 2014, 509(7502): 633-636.
[53] TOMARI Y, DU T, HALEY B, ET A L. RISC assembly defects in the Drosophila RNAi mutant armitage. Cell, 2004, 116(6): 831-841.
[54] KURAMOCHI M S, KIMURA T, YOMOGIDA K. Two mouse piwi related genes: miwi and mili. Mechanisms and Development, 2001, 108(12): 121-133.
[55] CARMELL M A, GIRARD A, VANDEKANT H J. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Developmental Cell, 2007, 12(4): 503-514.
[56] KURAMOCHI-MIYAGAWA S, KIMURA T, IJIRI T W, ISOBE T, ASADA N, FUJITA Y, IKAWA M, IWAI N, OKABE M, DENG W, LIN H F, MATSUDA Y, NAKANO T. Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development, 2004, 131(4): 839-849.
[57] REUTER M, BERNINGER P, CHUMA S, SHAH H, HOSOKAWA M, FUNAYA C, ANTONY C, SACHIDANANDAM R, PILLAI R S. Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature, 2011, 480(7376): 264-267.
[58] GOU L T, DAI P, YANG J H, XUE Y, HU Y P, ZHOU Y, KANG J Y, WANG X, LI H, HUA M M. Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Research, 2014, 24(6): 680-700.
[59] GIRARD A, SACHIDANANDAM R, HANNON G J, CARMELL M A. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature, 2006, 442(7099): 199-202.
[60] Zhao S, Gou L T, Zhang M, Zu L D, Hua M M, Hua Y, Shi H J, Li Y, Li J, Li D. piRNA-triggered MIWI ubiquitination and removal by APC/C in late spermatogenesis. Developmental Cell, 2013, 24(1): 13-25.
[61] RINN J L, CHANG H Y. Genome regulation by long noncoding RNAs. Annual Review of Biochemistry, 2012, 81: 145-166.
[62] WILUSZ J E, SUNWOO H, SPECTOR D L. Long noncoding RNAs: functional surprises from the RNA world. Genes and Development, 2009, 23(13): 1494-1504.
[63] SUN J, WU J. Expression profiling of long noncoding RNAs in neonatal and adult mouse testis. Data in Brief, 2015, 4: 322-327.
[64] LAIHO A, KOTAJA N, GYENESEI A, SIRONEN A. Transcriptome profiling of the murine testis during the first wave of spermatogenesis. PLoS One, 2013, 8(4): e61558.
[65] BAO J, WU J, SCHUSTER A S, HENNIG G W, YAN W. Expression profiling reveals developmentally regulated lncRNA repertoire in the mouse male germline. Biology of Reproduction, 2013, 89(5): 107.
[66] LIANG M, LI W Q, TIAN H, HU T, WANG L, LIN Y, LI Y L, HUANG H F, SUN F. Sequential expression of long noncoding RNA as mRNA gene expression in specific stages of mouse spermatogenesis, Scientific Reports, 2014, 4: 5966.
[67] CHALMEL F, LARDENOIS A, EVRARD B, ROLLAND A D, SALLOU O, DUMARGNE M C, COIFFEC I, COLLIN O, PRIMIG M, JEGOU B. High-resolution profiling of novel transcribed regions during rat spermatogenesis, Biology of Reproduction, 2014, 91(1): 5.
[68] Arun G, Akhade V S, Donakonda S, Rao M R S. mrhl RNA, a long noncoding RNA, negatively regulates Wnt signaling through its protein partner Ddx5/p68 in mouse spermatogonial cells. Molecular and Cellular Biology, 2012, 32(15): 3140-3152.
[69] Ni M J, Hu Z H, Liu Q, Liu M F, Lu M H, Zhang J S, Zhang L, Zhang Y L. Identification and characterization of a novel non-coding RNA involved in sperm maturation. PLoS One, 2011, 6(10): e26053.
[70] LU M, TIAN H, CAO Y X, HE X, CHEN L, SONG X, PING P, HUANG H, SUN F. Downregulation of miR-320a/383-sponge-like long non-coding RNA NLC1-C (narcolepsy candidate-region 1 genes) is associated with male infertility and promotes testicular embryonal carcinoma cell proliferation. Cell Death and Disease, 2015, 6: e1960.
[71] LEE T L, XIAO A, RENNERT O M. Identification of novel long noncoding RNA transcripts in male germ cells. Methods in Molecular Biology, 2012, 825: 105-114.
[72] ANGUERA M C, MA W Y, CLIFT D, NAMEKAWA S, KELLEHER R J, LEE J T. Tsx produces a long noncoding RNA and has general functions in the germline, stem cells, and brain. PLoS Genetics, 2011, 7(9): e1002248.
[73] AGBOR V A, TAO S X, LEI N, HECKERT L L. A Wt1-Dmrt1 transgene restores DMRT1 to sertoli cells of Dmrt1(-/-) testes: a novel model of DMRT1-Deficient germ cells. Biology Reproduction, 2013, 88(2): 51.
[74] Ottolenghi C, Veitia R, Barbieri M, Fellous M, McElreavey K. The human doublesex-related gene, DMRT2 is homologous to a gene involved in somitogenesis and encodes a potential bicistronic transcript. Genomics, 2000, 64(2): 179-186.
[75] EBBESEN K K, KJEMS J, HANSEN T B. Circular RNAs: identification, biogenesis and function. Biochimica et Biophysica Acta, 2016, 1859(1): 163-168.
[76] JECK W R, SORRENTINO J A, WANG K, SLEVIN M K, BURD C E, LIU J, MARZLUFF W F, SHARPLESS N E. Circular RNAs areabundant, conserved, and associated with ALU repeats. RNA, 2013, 19(2): 141-157.
[77] ZHANG Y, ZHANG X O, CHEN T, XIANG J F, YIN Q F, XING Y H, ZHU S, YANG L, CHENL L. Circular intronic long noncoding RNAs. Molecular Cell, 2013, 51(6): 792-806.
[78] 李培飞, 陈声灿, 邵永富, 蒋孝明, 肖丙秀, 郭俊明. 环状RNA的生物学功能及其在疾病发生中的作用. 生物物理学报, 2014, 30(1): 15-23. LI P F, CHEN S C, SHAO Y F, JIANG X M, XIAO B X, GUO J M. Biology function of circular RNA and its effect on disease. Biophysics Reports, 201, 30(1): 15-23. (in Chinese)
[79] HANSEN T B, JENSEN T I, CLAUSEN B H, BRAMSEN J B, FINSEN B, DAMGAARD C K, KJEMS J. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441): 384-388.
[80] CZECH B, MALONE C D, ZHOU R, STARK A, SCHLINGEHEYDE C, DUS M, PERRIMON N, KELLIS M, WOHLSCHLEGEL J A, SACHIDANANDAM R, HANNON G J, BRENNECKE J. An endogenous small interfering RNA pathway in Drosophila. Nature, 2008, 453(7196): 798-802.
[81] GARCIA-LOPEZ J, HOURCADEJDE D, ALONSO L, CARDENAS D B, DEL MAZO J. Global characterization and target identification of piRNAs and endo-siRNAs in mouse gametes and zygotes. Biochimica et Biophysica Acta, 2014, 1839(6): 463-475.
[82] SUH N, BLELLOCH R. Small RNAs in early mammalian development: from gametes to gastrulation. Development, 2011, 138(9): 1653-1661.
[83] HAN T, MANOHARAN A P, HARKINS T T, BOUFFARD P, FITZPATRICK C, CHU D S, THIERRY-MIEG D, THIERRY-MIEG J, KIM J K. 26G endo-siRNAs regulate spermatogenic and zygotic gene expression in Caenorhabditis elegans. Proceeding of the National Academy Sciences of the United States of American, 2009, 106: 18674-18679.
[84] WU Q, SONG R, ORTOGERO N, ZHENG H, EVANOFF R, SMALL C L, GRISWOLD M D, NAMEKAWA S H, ROYO H, TURNER J M. The RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis. Journal of Biology Chemistry, 2012, 287(30): 25173-25290.
[85] WEN J, DUAN H, BEJARANO F, OKAMURA K, FABIAN L, BRILL J A, BORTOLAMIOL-BECET D, MARTIN R, RUBY J G, LAI E C. Adaptive regulation of testis gene expression and control of male fertility by the Drosophila hairpin RNA pathway. Molecular Cell, 2015, 57(1): 165-178.
[86] TAN T, ZHANG Y, JI W, ZHENG P. miRNA signature in mouse spermatogonial stem cells revealed by high-throughput sequencing. Biomed Research International, 2014, 2014: 154251.
[87] GARCIA-LOPEZ J, ALONSO L, CARDENAS D B, ARTAZAALVAREZ H, HOURCADEJDE D, MARTINEZ S, BRIENOENRIQUEZ M A, DEL MAZO J. Diversity and functional convergence of small noncoding RNAs in male germ cell differentiation and fertilization. RNA, 2015, 21(5): 946-962.
[88] ZIMMERMANN C, ROMERO Y, WARNEFORS M, BILICAN A, BOREL C, SMITH L B, KOTAJA N, KAESSMANN H, NEF S. Germ cell-specific targeting of DICER or DGCR8 reveals a novel role for endo-siRNAs in the progression of mammalian spermatogenesis and male fertility. PLoS One, 2014, 9(9): e107023.
(责任编辑 林鉴非)
Regulatory Role of Noncoding RNAs During Spermatogenesis
CHEN Rui1,2, YU Shuai2, CHEN XiaoXu2, DU Jian2, ZHU ZhenDong2, PAN ChuanYing2, ZENG WenXian2
(1Innovation Experimental College, Northwest A&F University, Yangling 712100, Shaanxi;2College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi)
Spermatogenesis starts with spermatogonial stem cells (SSCs), which possess the ability of self-renewal anddifferentiation. SSCs are capable of differentiation to form Asingle (As) spermatogonia, Apaired (Apr) spermatogonia, Aaligned (Aal) spermatogonia, A1-A4 spermatogonia, intermediate spermatogonia, and B spermatogonia. Type B spermatogonia divide forming the primary spermatocytes, which undergo a long meiosis time to form secondary spermatocytes. Then secondary spermatocytes go through meiosis II to produce round spermatids, which will undergo a series of processes called spermiogenesis containing morphological changes, replacement histone by protamine, nuclear condensation and formation of flagellum. Finally, the mature spermatozoa are released into the lumen. This process requires precise and highly ordered regulation of gene expression at both the transcriptional and posttranscriptional levels. Recent advances in research have revealed that several types of noncoding RNAs (ncRNAs), including microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs) and endogenous small-interfering RNAs (endo-siRNAs), are essential for spermatogenesis. These ncRNAs are expressed in a cell-specific and step-specific manner to participate in the control of spermatogenesis. MiRNAs are a class of endogenous non coding single stranded RNA molecules of about 21-25 nt that widely exist in various kinds of organisms, its formation needs at least two RNA enzymes such as Drosha and Dicer, which can also degrade target mRNA or inhibit target mRNA translation, have an important regulatory role in maintaining the stemness, self-renewal of SSCs, regulating differentiation, and involved germ cell meiosis and spermatogenesis. piRNAs are a large class of small RNAs that are 24-32 nt in length found in 2006, which could execute the biological function through interactions with Piwi proteins without Dicer enzyme, also silence transposons and retroposons at the epigenetic and posttranscriptional levels, maintain the genomic stability and integrity of germ cell, regulate cell proliferation, meiosis and spermatogenesis. LncRNAs are one of ncRNAs longer than 200 nt, their production process and structure are similar to the mRNA. Different sources of lncRNAs could regulate the stemness, differentiation of SSCs, and modulate germ cell apoptosis in a transcriptional and posttranscriptional manner. Some lncRNAs could also regulate the expression of miRNAs thus regulate the process of spermatogenesis. CircRNAs, differs from the traditional linear RNA, is a new type of RNA, which is conserved in different species, and specifically expressed in different tissues and developmental stages. Its formation processing mode is related to its sequence, the same gene locus could produce a variety of circRNAs through selective cyclization. Studies indicated that circRNAs can be combined with miRNAs to regulate spermatogenesis. Compared with other ncRNAs, the biogenesis of endo-siRNAs is simple, and has the same effect as miRNAs, which plays an important role in spermatogenesis and male reproduction. Therefore, this review summarized the regulatory role of ncRNAs during spermatogenesis, which provided insight into the further research on ncRNAs during spermatogenesis.
spermatogenesis; noncoding RNAs; regulatory role
2016-05-25;接受日期:2016-11-23
国家自然科学基金(31572401, 31272439)、中国博士后科学基金第56批面上资助项目(2014M560809)和陕西省博士后科研项目
联系方式:陈瑞,E-mail:chenrui950122@126.com。通信作者潘传英,E-mail:chuanyingpan@126.com,panyu1980@126.com