配施硫基肥对夏玉米镉铅累积的阻控效应
2017-01-17孙洪欣薛培英赵全利冯宇佳耿丽平陈苗苗刘文菊
孙洪欣,薛培英,赵全利,冯宇佳,耿丽平,陈苗苗,刘文菊※
(1. 河北农业大学资源与环境科学学院/河北省农田生态环境重点实验室,保定 071000;2. 河北农业大学教学试验场,保定071000;3. 河北农业大学科学技术研究院,保定 071001)
配施硫基肥对夏玉米镉铅累积的阻控效应
孙洪欣1,薛培英1,赵全利2,冯宇佳1,耿丽平1,陈苗苗3,刘文菊1※
(1. 河北农业大学资源与环境科学学院/河北省农田生态环境重点实验室,保定 071000;2. 河北农业大学教学试验场,保定071000;3. 河北农业大学科学技术研究院,保定 071001)
该文以府河流域污灌区农田为研究对象,通过田间小区试验研究了5种施肥措施对土壤重金属镉(Cd)、铅(Pb)有效性以及夏玉米(Zea mays L.)对Cd、Pb富集和转运能力的影响。结果表明:与农民常规施肥(CK)相比,尿素、磷酸二铵和氯化钾配施(N-P-K)以及腐殖酸复合肥、尿素和磷酸二铵配施(HA-N-P)的表层土壤Cd、Pb有效性以及夏玉米对Cd、Pb的富集和迁移能力差异均不显著(P>0.05)。然而,腐殖酸复合肥、硫酸铵和磷酸二铵配施(HA-S-P)以及硫酸铵、磷酸二铵和硫酸钾配施(S-P-K)2种施肥措施的表层土壤有效Cd含量分别比CK降低了10.60%和6.36%,表层土壤有效Pb含量分别比CK降低了11.49%和6.00%。此外,HA-S-P处理和S-P-K处理夏玉米Pb转运系数分别比CK降低了50.33%和77.10%,且夏玉米籽粒Pb含量分别比CK降低了59.75%和80.43%(P<0.05),但各处理间夏玉米对Cd的转运和富集能力差异并不显著,这说明施用硫基肥可有效抑制夏玉米对Pb的富集和转运,但并未影响其对Cd的富集和转运。综上所述,该污灌区轻度Cd、Pb复合污染农田土壤种植夏玉米建议硫酸铵、磷酸二铵和硫酸钾配施,或者腐殖酸复合肥、硫酸铵和磷酸二铵配施。
重金属;肥料;污染;污灌农田;夏玉米;镉;铅
0 引 言
由于农用水匮乏,1957年中国农业开始规模化引污灌溉,2004年全国污灌面积达3.61×106hm2,占灌溉总面积的7.33%,主要分布在黄淮海及辽河流域[1-3]。其中,64.80%污灌农田土壤遭受重金属污染,46.70%为轻度污染,9.70%为中度污染,8.40%为严重污染[4-5]。研究表明:长期污水灌溉可造成土壤中重金属富集,导致农田土壤重金属污染[6-7]。保定周边地区污灌始于1960年初,是河北省发展最早的污灌区,主要分布在城市近郊等周边地区及排污河沿岸[8]。由于长期污灌,农田土壤中镉(Cd)、铅(Pb)已存在明显积累现象[9],累积在农田土壤中的重金属等污染物质会降低农作物产量和品质,并通过食物链最终进入人体,危害人类健康[10-12]。因此,修复污灌导致的重金属污染农田土壤成为保障中国粮食安全的重要举措之一。
对于重金属高污染农田,常采用造价相对较高且工艺较复杂的物理修复(如工程措施和固化技术等)、化学修复(如电动修复和土壤 E DTA淋洗等)[13-14]以及应用重金属超富集植物的生物修复技术等[15-16]。对于重金属轻度污染农田,农业措施因其经济、环保、易推广等特点日益受到人们关注,施肥作为农业生产中的常规措施,一方面能够改善土壤性质和土壤养分状况,另一方面可通过引入外源离子起到钝化土壤重金属作用。一些研究表明,硫是植物生长的必需营养元素,硫肥的施用不仅可以提高作物产量和品质,还可以通过影响土壤pH值或与重金属离子发生沉淀、络合而影响重金属离子的生物有效性[17-18],或者可通过促进植物体内谷胱甘肽和植物螯合肽等巯基物质的合成来提高植物对重金属的抗性,影响植物对重金属的富集能力[19-21]。然而,随着作物产量提高,复种指数增加,农作物带走的硫素大幅增加,而有机肥和含硫化肥的施用量却不断下降,甚至一些地区出现作物缺硫现象,可见适当施用硫肥是必要的[22]。此外,腐殖酸类有机物质为两性胶体,一方面可以提高土壤肥力,另一方面因其具有较高的阳离子代换量以及很好的络合性能,也可以通过与重金属离子发生沉淀、络合等反应降低土壤重金属有效性,使铅、镉、铜、锌、铊等重金属由可交换态向Fe/Mn氧化物结合态和有机质结合态转化[23-26]。以往研究大多集中于天然或人工合成钝化剂在重金属污染土壤中的应用研究[27-31],存在造价高,不易推广,容易造成二次污染等问题,并且大多局限于室内模拟试验,与实际大田环境相差甚远。因此,该研究以河北保定典型污灌区—府河污灌区Cd、Pb复合污染农田土壤为研究对象,在不增加农民种植成本前提下,于夏玉米季通过田间小区试验研究5种施肥措施(每种施肥处理保证施入同等量的氮、磷、钾,在此基础上分别选用硫基肥或腐殖酸复合肥)对土壤中Cd、Pb有效性以及夏玉米对Cd、Pb富集和转运能力的影响,以期筛选出能有效降低重金属向食物链传递的最佳施肥措施,为污灌区夏玉米的安全生产提供技术指导。
1 材料与方法
1.1 试验区概况
试验地位于河北省保定市府河污灌区(38°49'31.5"N,115°39'20.4"E),位于保定清苑县境内。全年试验区平均气温12.5 ℃,平均湿度67%,平均风速1.8 m/s,平均降水量488.2 mm,年日照时数2 629.5 h,年无霜期209 d,其种植制度为冬小麦—夏玉米轮作,一年两熟。保定府河污灌区是保定主要的污灌区之一,自1949年开始污灌。府河是污染最严重的大清河南分支之一,流经保定市西北郊区及清苑县,主要接纳工业废水和生活污水,其沿岸地区农灌废水量为9.18×106m3/a,灌溉面积约0.79×104hm2。本研究小组前期调查研究表明,试验区因常年污灌已造成农田土壤、作物籽粒存在不同程度的Cd、Pb超标现象。
1.2 供试材料
1.2.1 供试土壤
供试土壤为壤质潮褐土,其基本理化性质为pH值8.01,有机质 2 5.53 g/kg;速效磷 2 8.18 mg/kg;速效钾0.35 g/kg;全量硫250 mg/kg。供试土壤(0~20 cm)重金属含量见表1。
表1 供试土壤(0~20cm)重金属质量分数Table 1 Content of heavy metals in soil(0-20 cm) mg·kg-1
由表1可知,与河北省土壤背景值相比,长期污灌造成供试表层土壤中重金属(Cu、Zn、Pb、Cr、As、Hg、Cd)已经存在不同程度富集现象,富集程度表现为:Cd>Pb>Cu>Zn>Hg>As>Cr。其中Cd污染程度最高,约为河北省土壤背景值的10倍,超过土壤环境质量标准[32]安全限值约1.67倍;其次,土壤中富集程度较高的重金属为Pb,达到安全限值的69.9%,为河北省土壤背景值的2.6倍,因此主要针对Cd、Pb两种重金属开展夏玉米季污灌区农田的适宜施肥方式筛选研究。
1.2.2 供试肥料
尿素(含N量为46.4%)、硫酸钾(含K2O量为51%)、氯化钾(含K2O量为54%)、磷酸二铵(N-P2O5-K2O:18-64-0)、硫酸铵(含N量为20.5%)、腐殖酸复合肥(N-P2O5-K2O:16-8-16,其中腐殖酸质量分数为8%,有机质质量分数为20%),玉米专用复合肥(N-P2O5-K2O:24-11-10)。供试肥料中Cd、Pb含量如表2所示,均远低于中国无机—有机复混肥料标准(GB18877-2002,Cd≤0.001%;Pb≤0.015%;即Cd≤10 mg/kg;Pb≤150 mg/kg)。
表2 供试肥料重金属铅和镉质量分数Table 2 Content of Pb and Cd in fertilizers mg·kg-1
1.2.3 供试作物
郑单 9 58,该地区广泛种植的高产稳产夏玉米(Zea mays L.)品种。
1.3 试验设计
2013年6月收获小麦后开始进行夏玉米季田间试验,筛选适宜污灌区农田夏玉米种植的施肥措施。共设5个施肥处理(表3),其中对照(CK)为当地农民常规施肥方式(玉米专用复合肥与磷酸二铵配施),各施肥处理保证施入的 N 、P2O5和 K2O量一致,分别为 2 25、83和90 kg/hm2,氮素在夏玉米大喇叭口时期追施,磷、钾全部基施。每个处理4个重复,共20个小区,所有小区随机排列,小区面积为160 m2。播种时带小麦茬翻耕地,以30 cm×60 cm株行距进行播种,使用府河水以大水漫灌形式进行灌溉,于种植期灌溉1次,灌溉量为1 200 m3/hm2,灌溉水中各重金属含量见表4,均符合灌溉水环境质量标准[32]。其他田间管理以当地农民管理习惯为准。
表3 施肥处理Table 3 Fertilization treatments
表4 府河灌溉水的重金属质量浓度Table 4 Concentrations of heavy metasl in irrigation water from Fu Rivermg·L-1
2013年9月收获夏玉米,测定各处理产量,同时采用平均样品混合法采集各处理表层土样(0~20 cm)、夏玉米秸秆及籽粒样品,测定其Cd、Pb含量。并根据第1季施肥措施筛选结果,选取添加硫基肥的S-P-K和HA-S-P处理于2014年6—9月对筛选出的施肥模式进行第2季验证试验,试验方法与第1季相同。
1.4 样品采集与分析
1.4.1 土壤样品的采集与测定
夏玉米收获后的土壤样品中土壤pH值、速效磷、速效钾、全量硫及有机质的样品处理与测定均按《土壤农化分析》进行[33],土壤重金属全量及Cd、Pb有效态含量测定分别采用四酸消解法消解[34]和DTPA浸提法浸提[35],其中Hg、As采用原子荧光(AFS2202E;北京海光仪器有限公司)进行测定,Cd、Pb、Cu、Zn、Ni、Cr采用ICP-MS(Agilent 7500a,安捷伦科技公司)进行测定,同时进行相关精密度控制及质量监控[36]。
1.4.2 植物样品采集与测定
夏玉米收获时测定产量,每小区随机采集3株植株(秸秆和籽粒),带回实验室洗净,烘干粉碎后备用。采用硝酸-双氧水微波消解法测定植物样品中Cd、Pb含量,测定方法同1.4.1。
1.4.3 富集系数
籽粒富集系数=籽粒中重金属含量/土壤中重金属含量[36]。
秸秆富集系数=秸秆中重金属含量/土壤中重金属含量[36]。
富集系数越大说明对土壤中重金属吸收积累的越多。
1.4.4 转运系数
转运系数=籽粒中重金属含量/秸秆中重金属含量[36]。转运系数越小,说明植物吸收的重金属从秸秆转移至可食部位籽粒的含量就越少,从而进入食物链比例也就越少,进而保证农产品的安全。
1.5 数据统计分析
采用Microsoft Excel 2007和SPSS 19.0进行数据统计分析,使用Excel作图。
2 结果与分析
2.1 5种施肥措施对夏玉米产量的影响
由图1可见,CK、N-P-K、S-P-K、HA-N-P和HA-S-P处理夏玉米产量差异不显著(P>0.05),其产量范围为9 319~10 999 kg/hm2。
图1 5种施肥措施对夏玉米产量的影响Fig.1 Summer maize yields under 5 fertilization treatments
2.2 5种施肥措施对夏玉米籽粒和秸秆中镉、铅含量的影响
不同施肥处理夏玉米籽粒中的Cd、Pb质量分数分别为0.004 6~0.005 3和0.027~0.14 mg/kg(表5),均未超过食品安全标准[37](Cd≤0.1 mg/kg,Pb≤0.2 mg/kg)。2013年HA-N-P和HA-S-P处理夏玉米籽粒中Cd质量分数最低,均为0.004 6 mg/kg,比CK降低11.54%(P>0.05);2014年试验结果表明,S-P-K和HA-S-P处理夏玉米籽粒中Cd含量分别比CK降低4.92%和8.20%(P>0.05)。2013年S-P-K和HA-S-P处理中夏玉米籽粒Pb含量比CK显著降低80.43%和59.75%(P<0.05);2014年试验结果表明,S-P-K和HA-S-P处理夏玉米籽粒Pb质量分数分别为0.041和0.043 mg/kg,分别比CK降低32.69%和28.57%(P>0.05)。
2013年,不同施肥处理夏玉米秸秆中 C d、Pb质量分数分别为0.35~0.44和12.50~16.73 mg/kg(表5)。5种施肥处理夏玉米秸秆中Cd含量均未超过饲料卫生标准[38](Cd≤0.5 mg/kg)和有机肥料限量标准[39](Cd≤3 mg/kg);Pb含量虽然符合有机肥料限量标准[39](Pb≤50 mg/kg),却超过饲料卫生标准[38]Pb≤8 mg/kg)56.25%~109.13%,超标率100%。其中,2013年,S-P-K和HA-S-P处理夏玉米秸秆中Cd含量分别比CK降低了14.29%和17.26%,Pb含量分别降低了12.07%和 1 2.59%,但各处理间差异并不显著(P>0.05);2014年试验结果表明,S-P-K处理的夏玉米秸秆中Cd、Pb质量分数分别为0.24和4.99 mg/kg,分别比CK显著降低22.58%和32.57%(P<0.05)。
表5 5种施肥措施对夏玉米籽粒和秸秆中镉和铅含量的影响Table 5 Contents of Cd and Pb in grain and straw of summer maize under 5 fertilization treatments mg·kg-1
2.3 5种施肥措施对夏玉米籽粒和秸秆镉、铅富集能力的影响
富集系数表示植物各部分对重金属的吸收和累积能力。不同施肥处理夏玉米籽粒和秸秆对Cd、Pb富集系数的影响见表6。其中,夏玉米秸秆对Cd、Pb的富集系数远高于籽粒;此外,籽粒和秸秆对Cd的富集系数分别为Pb的6.89~35.00倍和5.13~6.17倍,这说明夏玉米籽粒和秸秆对Cd的富集能力远高于Pb。从不同施肥处理对夏玉米籽粒和秸秆Cd、Pb富集系数的影响来看,仅有籽粒对Pb的富集系数在部分处理间存在显著差异,其中,S-P-K和HA-S-P处理中籽粒对Pb的富集系数显著低于CK(P<0.05),分别比CK低77.78%和44.44%。
表6 5种施肥措施对夏玉米籽粒和秸秆中镉和铅富集系数的影响Table 6 Bioaccumulation factors of Cd and Pb in grain and straw of summer maize under 5 fertilization treatments
2.4 5种施肥措施对夏玉米镉、铅转运能力的影响
转运系数表示植物秸秆向籽粒中转运 Cd、Pb的能力。不同施肥处理夏玉米秸秆向籽粒转运Cd、Pb的转运系数见图2。其中,夏玉米Cd转运系数(0.012~0.015)为Pb转运系数(0.002~0.011)的1.09~6.63倍,这说明Cd由秸秆向籽粒转运的能力高于Pb的转运能力。此外,不同施肥处理对夏玉米 Cd转运系数影响均不显著(P>0.05),但S-P-K和HA-S-P处理的Pb转运系数分别比CK显著降低了77.10%和50.33%(P<0.05)。
2.5 5种施肥措施对土壤镉、铅全量和有效态含量的影响
不同施肥处理对表层土壤中Cd、Pb全量影响均不显著(表7)。5种施肥处理表层土壤Cd全量均超过土壤环境质量标准[32](Cd≤0.6 mg/kg),为安全限值的1.20~1.30倍;而5种施肥处理表层土壤Pb全量均未超过土壤环境质量标准[32]Pb≤80 mg/kg),为安全限值的66.13%~ 68.63%。其中,HA-S-P和S-P-K处理表层土壤有效态Cd、Pb含量均相对较低,Cd质量分数分别为0.253和0.265 mg/kg,比CK降低了10.60%和6.36%,Pb质量分数分别为8.55和9.08 mg/kg,比CK降低了11.49%和6.00%,但差异不显著。
表7 5种施肥措施对土壤镉和铅全量和有效态含量的影响Table 7 Contents of total and available Cd and Pb in soil under 5 fertilization treatments mg·kg-1
3 讨 论
本研究表明,5种施肥处理表层土壤Cd全量均超过土壤环境质量标准[32](表7),各施肥处理表层土壤Pb全量均未超标,但夏玉米籽粒中Cd质量分数(0.004 6~ 0.005 3 mg/kg)和Pb质量分数(0.027~0.14 mg/kg)均符合食品安全标准[37]。值得注意的是,夏玉米秸秆中Pb含量超过国家饲料卫生标准56.25%~109.13%(表5),可见该地区种植的夏玉米秸秆不适宜用作青贮饲料。这也表明中国现行土壤环境质量标准(GB15618-1995)可能存在Cd阈值过低,Pb阈值偏高的问题,迫切需要根据土壤类型和作物特性等方面制定新的土壤环境质量标准[40]。另外,该研究中夏玉米富集系数及转运系数的结果与他人研究结果一致[41-42],夏玉米对Cd的富集能力和转运能力均高于Pb,是由于土壤中Cd的移动性要高于Pb,因此更容易被植物吸收,而且该研究中土壤有效态Cd含量占土壤全量Cd含量的33.97%~39.74%,高于土壤有效态Pb含量(占土壤全量Pb含量的15.80%~19.00%),这也同样表明Pb在土壤中更容易被固定,从而使其有效性较低。
不同施肥处理相比,施用硫基肥的HA-S-P处理和S-P-K处理中土壤有效态Cd含量分别比CK降低约10.60%和 6 .36%,Pb含量分别比 C K降低约 1 1.49%和6.00%,说明外加硫基肥可以在一定程度上降低土壤重金属Cd、Pb的有效性。薛培英等[43]和Chen等[44]研究均表明外源添加K2SO4可降低土壤中有效态Cd、Pb含量,从而抑制小麦(Triticum aestivum L.)对Cd、Pb的吸收。同时,对于低浓度Cd污染土壤(或EDTA-Cd含量为38.80 μg/kg[45]),外源添加S可有效降低土壤Cd有效性最终降低水稻对Cd的富集,这是由于硫酸根离子的施入一方面可与土壤中Cd、Pb形成难溶性复合物,另一方面可以增加土壤负电荷,促进土壤胶体对Cd、Pb阳离子的吸附进而降低Cd、Pb的生物有效性。另外,硫基肥如硫酸铵的施入会导致土壤pH值降低从而会增加土壤重金属的有效性和迁移性[46-48],但本试验中硫酸铵添加量很低,且受试土壤为石灰质土壤,连续2季试验结果表明施加一定量硫基肥并未显著降低土壤pH值(2013年pH值为7.55,2014年pH值为7.50),因此硫基肥(硫酸铵和硫酸钾)的施入主要起到了钝化土壤Cd、Pb的作用。适量外源S的添加,还可以提高植物体巯基物质的含量,进而促进植物体内重金属和巯基物质的络合,减缓重金属对植物的毒害,抑制重金属在地上部的积累[49-51]。该研究中对 P b而言,施用硫基肥显著抑制了夏玉米对 P b的富集和转运,2014年2种施肥处理(HA-S-P和S-P-K)的夏玉米籽粒中Pb含量同样比CK分别降低28.57%和32.69%。可见,硫基肥的施入可通过降低土壤中Pb的生物有效性及抑制Pb向籽粒转运来达到修复土壤-农作物Pb污染的目的。
以往研究表明,腐殖酸由于富含多种官能团,如羧基、酚羟基、羰基等可以与重金属发生络合(螯合)作用,从而降低重金属的生物有效性[24-26],进而降低植物对重金属的富集[52-53]。一般随着腐殖酸投入比例的增加,土壤可溶态重金属含量逐渐降低[54],王晶等[24]的研究中,腐殖酸材料(含腐殖酸43.7%)与草甸棕壤混合比例由0∶1逐渐增加到1∶0,土壤可溶态Cd分配比例由73%降至19%;高跃等[55]研究腐殖酸对Pb的赋存形态影响结果表明,添加10%~50%(腐殖酸与土壤质量比)的风化煤(含腐殖酸量为56%)可使土壤中交换态Pb含量降低57%~73.6%。但是该研究中单独施用腐殖酸复合肥施肥处理的土壤中有效态Cd、Pb含量以及夏玉米籽粒中Cd、Pb含量与CK相比差异并不显著,一方面可能是由于该试验中施用的腐殖酸复合肥的腐殖酸含量与上述试验相比相对较少(20%),另一方面可能是上述室内盆栽试验中重金属均为人为添加,土壤有效态Cd、Pb含量(土壤有效态Cd、Pb含量占土壤全量Cd、Pb含量的百分比分别约73%和37%)均远高于该试验中的田间土壤(土壤有效态Cd、Pb含量百分比约为36%和15.74%),这些都可能会导致本试验中腐殖酸复合肥的施入对重金属离子的钝化效果不明显。有研究发现,腐殖质作为两性胶体,其醌、酚等官能团能起到电子传递作用,从而促进重金属离子由氧化态向还原态转化并提高其生物有效性[56],这也可能是本研究中腐殖酸施用对土壤Cd、Pb有效性影响不显著的原因之一,因此腐殖质对土壤重金属有效性影响作用机制还有待进一步研究。但是腐殖酸复合肥的施入有利于改善土壤结构、提高土壤肥力,仍建议该地区农田土壤配合施用一定量的腐殖酸复合肥。
4 结 论
1)污灌区5种不同施肥措施夏玉米产量差异不显著。对于污灌导致的轻度Cd、Pb污染农田而言,施用硫基肥一定程度上可降低土壤中Cd、Pb活性,有效降低夏玉米籽粒中Pb含量,但未显著影响夏玉米籽粒对Cd的富集。
2)污灌区轻度Cd、Pb复合污染农田土壤种植夏玉米建议硫酸铵、磷酸二铵和硫酸钾配施,或者腐殖酸复合肥、硫酸铵和磷酸二铵配施,既可以保证夏玉米的产量又能降低其可食部位Cd和Pb的累积。
[1] 宰松梅,王朝辉,庞鸿宾.污水灌溉的现状与展望[J].土壤,2006,38(6):805-813. Zai Songmei,Wang Zhaohui,Pang Hongbin. Situation and prospect of sewage irrigation in agriculture[J]. Soils,2006,38(6):805-813.(in Chinese with English abstract)
[2] 方玉东.我国农田污水灌溉现状、危害及防治对策研究[J].农业环境与发展,2011,28(5):1-6. Fang Yudong. Research on the present situation,harm and countermeasures of farmland sewage irrigation in China[J]. Agriculture Environment and Development,2011,28(5):1-6.(in Chinese with English abstract)
[3] 王贵玲,蔺文静.污水灌溉对土壤的污染及其整治[J].农业环境科学学报,2003,22(2):163-166. Wang Guiling,Lin Wenjing. Contamination of soil from sewage irrigation and its remediation[J]. Journal of Agriculture Environment Science,2003,22(2):163-166.(in Chinese with English abstract)
[4] 王凯荣,张玉烛.25年引灌含Cd污水对酸性农田土壤的污染及其危害评价[J].农业环境科学学报,2007,26(2):658-661. Wang Kairong,Zhang Yuzhu. Investigation and evaluation on Cd pollution of the acidic farmland soils irrigated with Cd-polluted wastewater for 25 years[J]. Journal of Agriculture Environment Science,2007,26(2):658-661.(in Chinese with English abstract)
[5] 辛术贞,李花粉,苏德纯.我国污灌污水中重金属含量特征及年代变化规律[J].农业环境科学学报,2011,30(11):2271-2278. Xin Shuzhen,Li Huafen,Su Dechun. Concentration characteristics and historical changes of heavy metals in irrigation sewage in China[J]. Journal of Agriculture Environment Science,2011,30(11):2271-2278.(in Chinese with English abstract)
[6] 吴文勇,尹世洋,刘洪禄,等.污灌区土壤重金属空间结构与分布特征[J].农业工程学报,2013,29(4):165-173. Wu Wenyong,Yin Shiyang,Liu Honglu,et al. Spatial structure and distribution characteristics of soil heavy metals in wastewater irrigation district[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2013,29(4):165-173.(in Chinese with English abstract)
[7] 李法虎,黄冠华,邓健.污水灌溉对土壤浸提液元素浓度变化影响的田间实验研究[J].农业工程学报,2005,21(11):124-129. Li Fahu,Huang Guanhua,Deng Jian. Effects of effluent irrigation on the variation of chemical element concentrations of soil extractions under field conditions[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2005,21(11):124-129.(in Chinese with English abstract)
[8] 孙洪欣,杨阳,王倩倩,等.府河流域污灌状况及农户对污灌与人体健康关系的认知调查分析[J].中国农学通报,2015,31(2):197-200. Sun Hongxin,Yang Yang,Wang Qianqian,et al. An investigation of the situation of sewage irrigation and localfarmers concern the relationship between sewage irrigation and human health along the Fu River[J]. Chinese Agricultural Science Bulletin,2015,31(2):197-200.(in Chinese with English abstract)
[9] 张丽红,徐慧珍,于青春,等.河北清苑县及周边农田土壤及农作物中重金属污染状况与分析评价[J].农业环境科学报,2010,29(11):2139-2146. Zhang Lihong,Xu Huizhen,Yu Qingchun,et al. The investigation and evaluation of the heavy metal pollution in farmland soil and crop in the Qingyuan of Hebei,China[J]. Journal of Agriculture Environment Science,2010,29(11):2139-2146.(in Chinese with English abstract)
[10] Al-Lahham O,Asi N J,Fayyad M K. Impact of treated wastewater irrigation on quality attributes and contamination of tomato fruit[J]. Agricultural Water Management,2003,61(1):51-62.
[11] 朱宇恩,赵烨,李强,等.北京城郊污灌土壤-小麦(Triticum aestivum)体系重金属潜在健康风险评价[J].农业环境科学学报,2011,30(2):263-270. Zhu Yuen,Zhao Ye,Li Qiang,et al. Potential influences of heavy metal in “soil-wheat(Triticum aestivum) ”system on human health:A case study of sewage irrigation area in Beijing,China[J]. Journal of Agro-Environment Science,2011,30(2):263-270.(in Chinese with English abstract)
[12] 郑顺安,唐杰伟,郑宏艳,等.污灌区稻田汞污染特征及健康风险评价[J].中国环境科学,2015,35(9):2729-2736. Zheng Shun’an,Tang Jiewei,Zheng Hongyan,et al. Pollution characteristics and risk assessments of mercury in wastewater-irrigated paddy fields[J]. China Environmental Science,2015,35(9):2729-2736.(in Chinese with English abstract)
[13] 樊霆,叶文玲,陈海燕,等.农田土壤重金属污染状况及修复技术研究[J].生态环境学报,2013,22(10):1727-1736. Fan Ting,Ye Wenling,Chen Haiyan,et al. Review on contamination and remediation technology of heavy metal in agricultural soil[J]. Ecology and Environmental Sciences,2013,22(10):1727-1736.(in Chinese with English abstract)
[14] 郭晓方,卫泽斌,吴启堂.乙二胺四乙酸在重金属污染土壤修复过程的降解及残留[J].农业工程学报,2015,31(7):272-278. Guo Xiaofang,Wei Zebin,Wu Qitang. Degradation and residue of EDTA used for soil repair in heavy metalcontaminated soil[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31(7):272-278.(in Chinese with English abstract)
[15] 居述云,汪洁,宓彦彦,等.重金属污染土壤的伴矿景天/小麦-茄子间作和轮作修复[J].生态学杂志,2015,34(8):2181-2186. Ju Shuyun,Wang Jie,Mi Yanyan,et al. Phytoremediation of heavy metal contaminated soils by intercropping with Sedum plumbizincicola and Triticum aestivum and rotation with Solanum melongena[J]. Chinese Journal of Ecology,2015,34(8):2181-2186.(in Chinese with English abstract)
[16] 聂亚平,王晓维,万进荣,等.几种重金属(Pb、Zn、Cd、Cu)的超富集植物种类及增强植物修复措施研究进展[J].生态科学,2016,35(2):174-182. Nie Yaping,Wang Xiaowei,Wan Jinrong,et al. Research progress on heavy metal(Pb,Zn,Cd,Cu) hyper accumulating plants and strengthening measures of phytoremediation[J]. Ecologic Science,2016,35(2):174-182.(in Chinese with English abstract)
[17] 孙丽娟,段德超,彭程何,等.硫对土壤重金属形态转化及植物有效性的影响研究进展[J].应用生态学报,2014,25(7):2141-2148. Sun Lijuan,Duan Dechao,Peng Chenghe,et al. Influence of sulfur on the speciation transformation and phyto-availability of heavy metals in soil:A review[J]. Chinese Journal of Applied Ecology,2014,25(7):2141-2148.(in Chinese with English abstract)
[18] 郑诗樟,刘志良.硫肥对土壤质量和生物有效性的研究进展[J].山东农业大学学报:自然科学版,2015,46(5):688-693. Zheng Shizhang,Liu Zhiliang. Advances on the availability of Sulphur fertilizers for soil quality and biology[J]. Journal of Shandong Agricultural University:Natural Science Edition,2015,46(5):688-693.(in Chinese with English abstract)
[19] 安志装,王校常,严蔚东,等.镉硫交互处理对水稻吸收累积镉及其蛋白巯基含量的影响[J].土壤学报,2004,41(5):728-734. An Zhizhuang,Wang Xiaochang,Yan Weidong,et al. Effects of sulfate and cadmium interaction on cadmium accumulation and content of nonprotein thiols in rice seedling[J]. Acta Pedologica Sinica,2004,41(5):728-734.(in Chinese with English abstract)
[20] 翁南燕,周东美,汪鹏,等.铜镉复合胁迫下硫素对小麦幼苗铜镉吸收、亚细胞分布及毒性的影响[J].生态毒理学报,2011,6(1):87-93. Weng Nanyan,Zhou Dongmei,Wang Peng,et al. Influence of sulfur on subcellular distribution,uptake and toxicity of Cu and Cd to wheat seedlings[J]. Asian Journal of Ecotoxicology,2011,6(1):87-93.(in Chinese with English abstract)
[21] 孔祥瑞,曲东,周莉娜.硫营养对重金属胁迫下玉米和小麦根系导水率的影响[J].西北植物学报,2007,27(11):2257-2262. Kong Xiangrui,Qu Dong,Zhou Lina. Effects of sulfur nutrition on root hydraulic conductivity of maize and wheat under heavy metals stress[J]. Acta Botanica Boreali-Occidentalia Sinica,2007,27(11):2257-2262.(in Chinese with English abstract)
[22] 李惠民,王保莉.玉米硫素营养状况及应用研究进展[J].中国农业科技导报,2008,10(4):16-21. Li Huimin,Wang Baoli. Research progress on maize sulfur nutrition status and its utilization[J]. Journal of Agricultural Science and Technology,2008,10(4):16-21.(in Chinese with English abstract)
[23] 蒋煜峰,袁建梅,卢子扬,等.腐殖酸对污灌土壤中Cu、Cd、Pb、Zn形态影响的研究[J].西北师范大学学报:自然科学版,2005,4(6):42-46. Jiang Yufeng,Yuan Jianmei,Lu Ziyang,et al. The effect of humic acid on species of Cu,Cd,Pb,Zn in sewage farm[J]. Journal of Northwest Normal University:Natural Science,2005,4(6):42-46.(in Chinese with English abstract)
[24] 王晶,张旭东,李彬,等.腐植酸对土壤中Cd形态的影响及利用研究[J].土壤通报,2002,33(3):185-187. Wang Jing,Zhang Xudong,Li Bin,et al. The effect of humid acid on the cadmium transformation and the mechanism[J]. Chinese Journal of Soil Science,2002,33(3):185-187.(in Chinese with English abstract)
[25] 陈静,黄占斌.腐殖酸在土壤修复中的作用[J].腐殖酸,2014(4):30-34,67. Chen Jing,Huang Zhanbin. Effect of humic acid on soil restoration[J]. Humic Acid,2014(4):30—34,67.
[26] 邓红梅,陈永亨.腐殖酸对污染土壤中铊赋存形态的影响[J].环境化学,2010,29(1):35-38. Deng Hongmei,Chen Yongheng. Effect of humic acid on speciation transformation of thallium in polluted soils[J]. Environmental Chemistry,2010,29(1):35-38.(in Chinese with English abstract)
[27] 陈炳睿,徐超,吕高明.6种固化剂对土壤Pb、Cd、Cu、Zn的固化效果[J].农业环境科学学报,2012,31(7):1330-1336. Chen Bingrui,Xu Chao,Lü Gaoming. Effects of six kinds of curing agents on lead,cadmium,copper,zinc stabilization in the tested soil[J]. Journal of Agriculture Environment Science,2012,31(7):1330-1336.(in Chinese with English abstract)
[28] 赵国静,李胜男,沈喆,等.不同修复剂对重金属污染土壤修复的研究[J].环境科学与管理,2015,40(11):88-91. Zhao Guojing,Li Shengnan,Shen Zhe,et al. Study on remediation of heavy metal contaminated soil by different restorative agents[J]. Environmental Science and Management,2015,40(11):88-91.(in Chinese with English abstract)
[29] 曾卉,徐超,周航,等.几种固化剂组配修复重金属污染土壤[J].环境化学,2012,31(9):1368-1374. Zeng Hui,Xu Chao,Zhou Hang,et al. Effects of mixed curing agents on the remediation of soils with heavy metal pollution[J]. Environmental Chemistry,2012,31(9):1368-1374.(in Chinese with English abstract)
[30] 朱维,周航,吴玉俊,等.组配改良剂对稻田土壤中镉铅形态及糙米中镉铅累积的影响[J].环境科学学报,2015,35(11):3688-3694. Zhu Wei,Zhou Hang,Wu Yujun,et al. Effects of combined amendment on forms of cadmium/lead in paddy soil and accumulation of cadmium/lead in brown rice[J]. Acta Scientiae Circumstantiae,2015,35(11):3688-3694.(in Chinese with English abstract)
[31] 李剑睿,徐应明,林大松,等.农田重金属污染原位钝化修复研究进展[J].生态环境学报,2014,23(4):721-728. Li Jianrui,Xu Yingming,Lin Dasong,et al. In situ immobilization remediation of heavy metals in contaminated soils:A review[J]. Ecology and Environment Sciences,2014,23(4):721-728.(in Chinese with English abstract)
[32] 食用农产品产地环境质量评价标准:HJ/T 332-2006[S]. 北京:中国环境科学出版社,2007.
[33] 鲍士旦.土壤农化分析[M].第三版.北京:中国农业出版社,2007(3):14-114.
[34] 土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法:GB/T17141-1997[S]. 1997.
[35] 土壤质量有效态铅和镉的测定 原子吸收法:GB/T23739-2009[S].北京:中国标准出版社,2009.
[36] 孙洪欣,薛培英,赵全利,等.镉、铅积累与转运在冬小麦品种间的差异[J].麦类作物学报,2015,35(8):1161-1167. Sun Hongxin,Xue Peiying,Zhao Quanli,et al. Differences of cadmium and lead accumulation and translocation among winter wheat varieties[J]. Journal of Triticeae Crops,2015,35(8):1161-1167.(in Chinese with English abstract)
[37] 食品安全国家标准 食品中污染物限量:GB 2762-2012[S]. 北京:中国标准出版社,2012.
[38] 饲料卫生标准:GB 13078-2001[S]. 北京:中国标准出版社,2001.
[39] 有机肥料:NY 525-2012 [S].北京:中国农业出版社,2012.
[40] 曾希柏,徐建明,黄巧云,等.中国农田重金属问题的若干思考[J].土壤学报,2013,5(1):186-193. Zeng Xibai,Xu Jianming,Huang Qiaoyun,et al. Some deliberations on the issues of heavy metals in farmlands of China[J]. Acta Pedologica Sinica,2013,5(1):186-193.(in Chinese with English abstract)
[41] Cui Y S,Dong Y T,Li H F,et al. Effect of elemental sulphur on solubility of soil heavy metals and their uptake by maize[J]. Environment International,2004,30:325-328.
[42] 李媛,崔岩山,陈晓晨,等.几种含硫肥料对油菜和三叶鬼针草吸收铅镉的影响[J].中国科学院研究生院学报,2009,26(5):621-626. Li Yuan,Cui Yanshan,Chen Xiaochen,et al. Effect of different types of sulphur fertilizer on oilseed rape and railway beggarticks herb uptake of lead and cadmium in lead-cadmium contaminated soil[J]. Journal of the Graduate School of the Chinese Academy of Sciences,2009,26(5):621-626.(in Chinese with English abstract)
[43] 薛培英,张桂银,褚卓栋,等.钾肥对小麦根际土壤镉的吸收及其植物毒性的影响[J].生态环境,2007,16(5):1424-1428. Xue Peiying,Zhang Guiyin,Chu Zhuodong,et al. Effect of potassium fertilizers on the absorption of cadmium in rhizosphere soils and its phytotoxicity[J]. Ecology and Environment,2007,16(5):1424-1428.(in Chinese with English abstract)
[44] Chen S,Sun L N,Sun T H,et al. Interaction between cadmium,lead,and potassium fertilizer(K2SO4) in a soil–plant system[J]. Environmental Geochemistry and Health. 2007,29(5):435-446.
[45] Gao M X,Hu Z Y,Wang G D,et al. Effect of elemental sulfur supply on cadmium uptake into rice seedlings when cultivated in low and excess cadmium soils[J]. Communication in Soil Science and Plant Analysis,2010,41(8):990-1003
[46] Wang Y,Li Q,Hui W,et al. Effect of sulphur on soil Cu/Zn availability and microbial community composition[J]. Journal of Hazardous Materials,2008,159(2/3):385-389.
[47] Shi J Y,Lin H R,Yuan X F,et al. Enhancement of copper availability and microbial community changes in rice rhizospheres affected by sulfur[J]. Molecules,2011,16(2):1409-1417.
[48] 崔岩山,王庆仁.不同种类硫肥对油菜吸锌的影响[J].中国农业生态学报,2008,16(1):113-116. Cui Yanshan,Wang Qingren. Effect of different types of sulphur fertilizer on oilseed rape zinc uptake[J]. Chinese Journal of Eco-Agriculture,2008,16(1):113-116.(in Chinese with English abstract)
[49] Fan J L,Hu Z Y,Noura Z D,et al. Excessive sulfur supply reduces cadmium accumulation in brown rice(Oryza sativa L.)[J]. Environmental Pollution,2010,158:409-415.
[50] 梁程,林匡飞,张雯,等.不同浓度硫处理下硒镉交互胁迫对水稻幼苗的生理特性影响[J].农业环境科学学报,2012,31(5):857-866. Liang Cheng,Lin Kuangfei,Zhang Wen,et al. Effects of sulfur and selenium treatment on plant growth and some physiological characteristics of rice under cadmium stress[J]. Journal of Agro-Environment Science,2012,31(5):857—866.(in Chinese with English abstract)
[51] 孙惠莉,吕金印.硫对镉胁迫下小白菜叶片AsA-GSH循环和植物络合素含量的影响[J].农业环境科学学报,2013,32(7):1294-1301. Sun Huili,Lü Jinyin. Effects of sulfur on ascorbate-glutathione cycle and the content of phytochelatins in the leaves of pakchoi(Brassica chinensis L.) under cadmium stress[J]. Journal of Agro-Environment Science,2013,32(7):1294-1301.(in Chinese with English abstract)
[52] 李奔,谢文娟,胡敏予.施用复合肥和腐植酸液肥对苋菜重金属富集与转运的影响[J].西北农林科技大学学报:自然科学版,2013,41(9):105-111. Li Ben,Xie Wenjuan,Hu Minyu. Effects of compound fertilizer and humic acid liquid fertilizer amendments on heavy metal accumulation and translocation in Amaranthus mangostanus L.[J]. Journal of Northwest A&F University:Natural Science Edition,2013,41(9):105-111.(in Chinese with English abstract)
[53] Wang Y J,Xiao H L,Wang J X. Using humic acid for remediation of sandy soils contaminated by heavy metal[J]. Sciences in Cold &Arid Regions,2009,1(3):267-276.
[54] 李文蔚,张沁怡,罗亚成,等.腐殖酸和水旱轮作对镉污染土壤种植的稻糙米品质的影响[J].湖南农业科学,2014,22:31-33,36. Li Wenwei,Zhang Qinyi,Luo Yacheng,et al. Effects of humic acid and paddy-upland rotation on rice quality in cadmium contaminated soil[J]. Hunan Agricultural Sciences,2014,22:31-33,36.(in Chinese with English abstract)
[55] 高跃,韩晓凯,李艳辉,等.腐殖酸对土壤铅赋存形态的影响[J].生态环境,2008,17(3):1053-1057. Gao Yue,Han Xiaokai,Li Yanhui,et al. Effects of humic acid on lead fractions in soil[J]. Ecology and Environment,2008,17(3):1053-1057.(in Chinese with English abstract)
[56] 李丽,檀文炳,王国安,等.腐殖质电子传递机制及其环境效应研究进展[J].环境化学,2016,35(2):254-266. Li Li,Tan Wenbing,Wang Guoan,et al. Electron transfer mechanisms of humic substances and their environmental implications:A review[J]. Environmental Chemistry,2016,35(2):254-266.(in Chinese with English abstract)
Inhibiting Cd and Pb accumulation in summer maize by sulphate-based fertilizers application
Sun Hongxin1,Xue Peiying1,Zhao Quanli2,Feng Yujia1,Geng Liping1,Chen Miaomiao3,Liu Wenju1※
(1. College of Resources and Environmental Sciences,Hebei Agricultural University/Key Laboratory of Ecological Environment of Farmland in Hebei,Baoding 071000,China;2. The Teaching Experiment Field,Hebei Agricultural University,Baoding 071000,China;3. College of Science and Technology,Hebei Agricultural University,Baoding 071001,China)
With the development of industry and agriculture,farmland soils irrigated with wastewater in China have been suffering heavy metal damages for many years,which have harmful impact on crops by adsorption and translocation. Therefore,it is urgent to remediate farmland soils contaminated with heavy metals as they will pose risk to human via food crop production and consumption. Agricultural measures such as fertilization have become promising methods because they are cost-effective and eco-friendly to remediate heavy metal contaminated soils. In this study,the field experiments were conducted in Fu River region to explore the effects of five different fertilization treatments on availability of cadmium(Cd) and lead(Pb) in soil as well as Cd and Pb translocation and accumulation in summer maize. The results showed that there were no significant difference in soil Cd and Pb availability and the translocation and accumulation in summer maize between CK(conventional fertilization:corn special compound fertilize,potassium chloride,urea) and the other two treatments,which were N-P-K(urea,diammonium phosphate and potassium chloride) and HA-N-P(humic acid combined fertilizer,urea and diammonium phosphate) treatments. In addition,compared with CK,the soil available Cd levels in the treatments of HA-S-P(humic acid combined fertilizer,ammonium sulfate and diammonium phosphate) and S-P-K(ammonium sulfate,diammonium phosphate and potassium sulfate supplied) reduced by 10.60% and 6.36%,and the soil available Pb concentrations in the treatments of HA-S-P and S-P-K decreased by 11.49% and 6.00%,respectively. Cd and Pb concentrations in maize grains of these five treatments were less than the safety limitation of contaminants in food or food products(GB 2762-2012),but Pb concentrations in maize straws of these five treatments were higher than hygienical standard for feeds(GB13078-2001),accounting for 56.25%-109.13%. Therefore,summer maize straws were suitable for silage which planted on the farmland soils contaminated lightly with Cd and Pb. Furthermore,Cd and Pb bioaccumulation factors of grains were about 100 times less than those of straws. Cd bioaccumulation factors in grains and straws were 6.89-35.00 times higher and 5.13-6.17 times more than those of Pb,respectively. Pb transportation and accumulation in maize could be effectively restrained by sulfur fertilizer for Pb bioaccumulation factors of maize grains and Pb translocation factors of maize in HA-S-P and S-P-K treatments decreased by 44.44%,77.78% and 50.33%,77.10%,compared with that in CK,respectively. Pb concentrations in maize grains of these two treatments significantly(P<0.05) declined by 59.75% and 80.43% compared with that in CK,respectively. However,there were no significant(P>0.05) in Cd bioaccumulation factors and translocation factors of maize among five fertilization treatments. Different fertilization treatments had no significant effect on Cd accumulation and translocation in maize. In conclusion,it was the most suitable fertilization measure to apply fertilizers of ammonium sulfate,diammonium phosphate and potassium sulfate in farmland soils contaminated lightly with Cd and Pb when summer maize planted,followed by application of humic acid combined fertilizer,ammonium sulfate and diammonium phosphate.
heavy metals;fertilizers;pollution;wastewater irrigated farmland;summer maize;cadmium;lead
10.11975/j.issn.1002-6819.2017.01.025
X131.3
A
1002-6819(2017)-01-0182-08
孙洪欣,薛培英,赵全利,冯宇佳,耿丽平,陈苗苗,刘文菊. 配施硫基肥对夏玉米镉铅累积的阻控效应[J]. 农业工程学报,2017,33(1):182-189.
10.11975/j.issn.1002-6819.2017.01.025 http://www.tcsae.org
Sun Hongxin,Xue Peiying,Zhao Quanli,Feng Yujia,Geng Liping,Chen Miaomiao,Liu Wenju. Inhibiting Cd and Pb accumulation in summer maize by sulphate-based fertilizers application[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(1):182-189.(in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2017.01.025 http://www.tcsae.org
2016-05-12
2016-10-17
河北省高等学校创新团队领军人才培育计划(LJRC016);国家自然科学基金(41471398)
孙洪欣,博士生,主要从事土壤环境质量研究。保定 河北农业大学资源与环境科学学院,071000。Email:sunhongxin0303@163.com
※通信作者:刘文菊,教授,博士,博士生导师,主要从事土壤环境质量研究。保定 河北农业大学资源与环境科学学院,071000。Email:liuwj@hebau.edu.cn