铲筛式残膜回收机输膜机构参数优化与试验
2017-01-17胡志超徐弘博游兆延周新星
严 伟,胡志超,吴 努,徐弘博,游兆延,周新星
(1. 农业部南京农业机械化研究所,南京 210014;2. 南通大学机械工程学院,南通 226019)
铲筛式残膜回收机输膜机构参数优化与试验
严 伟1,2,胡志超1※,吴 努2,徐弘博1,游兆延1,周新星1,2
(1. 农业部南京农业机械化研究所,南京 210014;2. 南通大学机械工程学院,南通 226019)
垄作残膜回收对机具幅宽要求较高、地膜利用低、垄体高、垄沟残膜回收难、残膜碎片多、埋膜深等特点。铲筛式残膜回收机对土下残膜具有回收能力,在垄作残膜回收领域具有良好的应用前景。输膜机构缠膜率高和收获后残膜含土率高是制约铲筛式残膜回收机推广的主要问题,为了提高铲筛式残膜回收机输膜机构作业质量,降低输膜机构的缠膜率及收获后残膜的含土率,该文运用单因素试验方法得出最优筛面结构形式,在单因素试验基础上运用Box-Benhnken的中心组合试验方法对残膜回收机输膜机构的工作参数进行了试验研究,以振动筛振动频率、振动筛振幅、齿片间距进行三因素三水平二次回归正交试验设计。建立了响应面数学模型,分析了各因素对作业质量的影响,同时,对影响因素进行了综合优化。试验结果表明:缠膜率影响显著性顺序为振动筛振动频率>齿片间距>振动筛振幅;含土率影响显著性顺序为齿片间距>振动筛振动频率>振动筛振幅;最优工作参数组合为振动筛振动频率3.9 Hz、振动筛振幅42 mm,齿片间距15 mm,对应的缠膜率和含土率分别为1.72%、32.81%,且各评价指标与其理论优化值的相对误差均小于5%。研究结果可为铲筛式残膜回收机输膜机构的结构完善设计和作业参数优化提供参考。
农业机械;塑料薄膜;优化;输膜机构;单因素试验;响应曲面
0 引 言
近年来中国对农村农业产业结构的调整力度不断加大,地膜覆盖种植技术得到了大面积推广,地膜覆盖种植技术可以提高粮食产量,进而增加农民收入,给农民带来了一定的经济效益[1-2]。地膜覆盖栽培技术带来了显著的经济效益,地膜覆盖面积每年都在不断地扩大,覆膜的年限也在不断地增长,使用过的地膜由于破碎、埋膜深等原因有很大一部分不能彻底地回收,逐年积累,滞留在农田里的残膜对作物的根系生长、出苗和产量产生了严重影响,甚至也影响了农田机械化作业的顺利进行,残膜回收刻不容缓[3-5]。
中国对残膜回收机械的研究可追溯到20世纪80年代,研究至今,各类残膜回收机具被开发出来并得到了广泛应用[6]。但是,针对垄作地区残膜回收的机具种类并不多,仅有耙齿式残膜回收机、铲链式残膜回收机、齿链式残膜回收机与铲筛组合式残膜回收机。从机具的实际使用情况来看,有待攻克和提升完善的技术问题还很多。耙齿式残膜回收机在实际工作中存在壅土、漏膜现象;铲链式残膜回收机实际工作中缠膜、漏膜,回收的残膜含土率高;齿链式残膜回收机壅土、漏膜、缠膜现象严重;铲筛组合式残膜回收机清土效果好、残膜回收率高,但是输膜性能较差[7]。针对目前垄作地区残膜回收机存在的问题,国内对耙齿式、铲链式、齿链式残膜回收机有了一定的研究[8-10],但是针对铲筛组合式残膜回收机研究较少,且并未对其关键部件结构参数进行优化。输膜机构是铲筛式残膜回收机的核心工作部件,影响因素复杂多样且相互制约,有效提高输膜机构的输膜性能与膜土分离能力是铲筛式残膜回收设备研发中必须重点考虑的问题之一。
为了攻克输膜机构缠膜、壅土技术难题,提高机具适应性、保证机具收获质量,本研究以该残膜回收机的输膜机构为研究对象,以缠膜率、含土率为主控目标,对影响残膜回收质量的关键参数进行试验研究,筛选出作业效果最佳的振动筛,分析各参数对作业性能的影响主次关系,对输膜机构进行优化,寻求输膜机构最优参数组合,以期为残膜回收机设计与优化提供参考。
1 铲筛式残膜回收机
1.1 工作原理
铲筛式残膜回收机为铲筛组合式残膜回收机,主要由挖掘铲1、机架2、传动装置3、连杆机构4、飞轮5、限深轮6、振动筛7、集膜筐8组成,其结构简图见图1。铲筛式残膜回收机工作原理及工作过程为:残膜回收机利用拖拉机的三点悬挂装置悬挂于拖拉机的后部,由拖拉机后动力输出轴通过万向节传送到收获机,由变速箱输出轴经传动装置3带动飞轮5与连杆机构4运动,由连杆机构4带动振动筛7振动。工作中,挖掘铲将挖起的膜土向后输送至振动筛,振动筛进行膜土分离,同时振动筛将分离后的残膜向后输送至集膜筐内,完成收膜。
图1 铲筛式残膜回收机结构简图Fig.1 Structural diagram of shovel screen type plastic film residue collector
1.2 输膜机构及影响因素
输膜机构结构简图如图2所示,主要包括连杆1、飞轮2、机架3、振动筛4。评价输膜机构性能的指标有缠膜率、含土率。
图2 输膜机构结构简图Fig.2 Structural diagram of plastic film transport mechanism
试验中对各影响因素进行分析,寻求各影响因素的最优参数组合[11],使输膜机构具有良好的输膜性能。对输膜机构的优化设计须注意以下几点:①通过试验比较并确定振动筛面的最佳结构形式。②筛孔大小或筛片间隙选取要合适。筛孔尺寸或筛片间隙如果偏大,有利于降低含土率,但是容易增加残膜从筛孔或筛片间掉落的几率,同时孔间或筛片之间易挂膜缠膜;如果尺寸偏小,膜土分离效果变差,会出现拥堵、膜土难分离现象。③振动筛振动频率设计要合理,振动筛振动频率过小膜土在筛面不会被抛起[12-13],膜土分离率将会降低;振动筛振动频率过大,机具振动加大,工作可靠性降低。④振幅选取要合理[14-15],振幅选择过小,残膜通过筛面有效时间长,容易增加残膜缠绕筛面的几率;振幅选择过大,膜土通过筛面有效时间短,会出现膜土分离不彻底现象。
综上分析,确定输膜机构性能的试验因素为振动筛振幅、振动筛振动频率、筛孔大小或筛片间隙和筛面结构形式。
2 筛面结构形式单因素试验
为了确定最佳筛面结构形式,在试验条件固定的情况下,进行不同筛面结构形式输膜效果试验,根据试验结果确定最佳筛面结构形式。
2.1 试验条件
残膜回收试验在江苏农业科学院收获后的花生地进行,试验地种植模式为垄作花生单垄双行,土壤类型沙土,含水率10%(0~100 mm土深),所覆膜为厚度0.008 mm的黑膜,垄宽900 mm,覆膜宽度680 mm,垄高110 mm,机具作业速度1 m/s,振动筛振动频率3.3 Hz,振动筛振幅60 mm,筛面尺寸1 000 mm×1 100 mm。
2.2 试验仪器与设备
试验仪器设备主要有福田雷沃 254拖拉机、铲筛式残膜回收机、圆孔筛、编织筛、锯齿筛(锯齿形、齿高10 mm)、水分测定仪、电子天平、计算器、皮尺、转速表等。圆孔筛筛孔直径20 mm,筛面总镂空面积0.52 m2;编织筛采用方孔编制形式,方孔长宽均为20 mm,总镂空面积0.52 m2;锯齿筛齿片间距20 mm,总镂空面积0.52 m2。筛面结构形式如图3所示。
图3 筛面结构形式Fig.3 Screen surface structure
2.3 评价指标的测定
试验选择土壤含水率基本相同的试验地作为测区,测区长度不少于100 m[16]。每次试验结束将集膜筐内土壤称重,并将收集好的残地膜洗净晾干后称其质量,分别测定缠膜率、含土率作为评价指标,上述评价指标计算方法如下:
1)缠膜率Y1:
式中Y1为缠膜率,%;m1为测区内缠绕在机器上地膜的质量,g;m2为测区内集膜箱内残地膜的质量,g。
2)含土率Y2:
式中Y2为含土率,%;m0为测区内集膜筐内土壤的质量,g。
2.4 试验结果与分析
表1为不同筛面结构形式试验结果。由表1可知,固定其他条件不变,锯齿筛筛面结构形式缠膜率、含土率均低于其他筛面结构形式。圆孔筛筛分精度高、不易磨损、寿命长[17-19],但圆孔筛输送能力差,拥堵,膜土分离效果差,圆孔之间易缠膜。编织筛不易拥堵,有利于膜土分离,但是编织筛顺畅性差,横杆缠膜严重,有些甚至堵塞方孔,不利于膜土分离与残膜输送。锯齿筛筛分精度高,锯齿条松破土性能较好,有利于土壤从齿片间通过,同时锯齿条也可以阻止残膜向下滑移并增强抛送能力,有利于残膜向上输送。综合比较分析可知,锯齿筛各方面性能优于圆孔筛与编织筛,所以筛面结构形式选用锯齿筛。
表1 不同筛面结构形式试验结果Table 1 Test results under different screen surface structure
3 参数优化试验
试验条件、试验仪器设备、评价指标与单因素试验相同,在此不再展开叙述。
3.1 试验设计与方法
在上述单因素试验基础上,并依据Box-Benhnken中心组合设计理论[20-21],以缠膜率Y1、含土率Y2作为响应值,对振动筛振动频率、振动筛振幅、锯齿筛齿片间距开展响应面试验研究。试验过程中通过曲柄在飞轮的不同连接位置来调节振幅,通过更换传动链轮来调节振动筛振动频率。采用三因素三水平二次回归正交试验设计方案,对影响缠膜率、含土率的3个主要参数组合完成优化。试验中,振动筛振动频率<2.3 Hz,膜土分离效果差;振动筛振幅<40 mm,输膜性能较差;齿片间距<8 mm膜土分离效果差;振动筛振动频率>4.3 Hz,机器共振现象严重;振动筛振幅>80 mm,膜土分离效果差;齿片间距>20 mm,残膜现象严重;因此振动筛振动频率选取2.3~4.3 Hz;振动筛振幅选取40~80 mm;齿片间距选取8~20 mm。因素及水平设计见表2。
表2 试验因素和水平Table 2 Factors and levels of test
3.2 数据分析与处理
试验数据采用Design-Expert8.0.6.1软件对缠膜率与含土率进行二次多项式回归分析,通过对回归方程的分析来寻求最优工作参数,并利用响应面分析法对各因素相关性和交互效应的影响规律进行分析研究,寻求最佳参数组合。
3.3 结果与分析
3.3.1 试验结果
根据Box-Behnken试验原理设计三因素三水平分析试验[22-24],试验方案包括17个试验点,其中包括12个分析因子,5个零点估计误差,试验方案与响应值见表3。
表3 试验设计方案及响应值Table 3 Experiment design and response values
3.3.2 回归模型建立与显著性检验
根据表3中的数据样本,利用Design-Expert8.0.6.1软件开展多元回归拟合分析寻求最优工作参数,建立缠膜率Y1、含土率Y2对振动筛振动频率水平X1、振动筛振幅水平X2、齿片间距水平X33个自变量的二次多项式响应面回归模型,如式(3)~式(4)所示,并对回归方程进行方差分析[25],结果如表4所示。
由表4分析可知,响应面模型中的缠膜率Y1、含土率Y2模型P<0.000 1,表明回归模型高度显著;失拟项P>0.05(分别为0.100 9、0.060 7),表明回归方程拟合度高;其决定系数R2值分别为0.989 9、0.984 2,表明这2个模型可以解释98%以上的评价指标。因此,输膜机构工作参数可以用该模型来优化。
各参数对回归方程的影响作用可以通过P值大小反应,P<0.01表明参数对模型影响极显著,P<0.05表明参数对模型影响显著。缠膜率Y1模型中有3个回归项影响极显著(P<0.01),分别为,3个回归项对模型影响显著(P<0.05),分别为X2、X1X2、;含土率Y2模型中有4个回归项影响极显著(P<0.01),分别为X1、。模型Y1中有3个回归项对试验影响不显著(P>0.05)分别为;模型Y2中有5个回归项对试验影响不显著(P>0.05),分别为X2、X1X2、X1X3、X2X3、。剔除模型不显著回归项,对模型Y1、Y2进行优化,如式(5)~式(6)所示,分析优化后的模型,根据模型Y1、Y2的P值(分别为P<0.000 1、P<0.001)与模型Y1、Y2的失拟项P值(分别为0.131 、0.0557)可知优化模型可靠。
表4 回归方程方差分析Table 4 Variance analysis of regression equation
3.3.3 各因素对性能影响效应分析
贡献率K值的大小可以体现各单因素对模型Y的影响程度[26],K值越大,各单因素对模型Y的影响越大,其计算方法见式(7)~式(8),各因素对缠膜率贡献率大小顺序为:振动筛振动频率>齿片间距>振动筛振幅;各因素对含土率贡献率大小顺序为:齿片间距>振动筛振动频率>振动筛振幅,分析结果如表5所示。
式中:F为回归方程中各回归项的F值;δ为回归项对F值的考核值;KXj为各因素贡献率。
表5 各因素贡献率分析Table 5 Analysis on contribution rate of each factor
3.3.4 交互因素对性能影响规律分析
根据回归方程分析结果,利用Design-Expert8.0.6.1软件绘制响应面图,根据响应面图考察振动筛振动频率、振动筛振幅、齿片间距交互因素对响应值Y1、Y2的影响。
1)交互因素对缠膜率的影响规律分析
振动筛振动频率、振动筛振幅、齿片间距交互因素对响应值Y1影响的响应面曲线图见图4。图4a为齿片间距位于中心水平(14 mm)时,振动筛振动频率与振动筛振幅对缠膜率Y1交互作用的响应面图,从图4a可以看出,增大振动筛振动频率和振动筛振幅有助于降低缠膜率;图4b为振动筛振幅位于中心水平(60 mm)时,振动筛振动频率与齿片间距对缠膜率Y1交互作用的响应面图,从图4b可以看出,缠膜率的降低可以通过增大振动筛振动频率和减小齿片间距实现;图4c为振动筛振动频率位于中心水平(3.3 Hz)时,振动筛振幅与齿片间距对缠膜率Y1交互作用的响应面图,从图4c可以看出,缠膜率的降低可以通过增大振动筛振幅和减小齿片间距实现。
此外从各因素对响应值Y1影响的响应图中(图4)可以得知,响应面变化规律与回归方程方差分析结果(表4)及模型(5)一致,总体影响趋势为振动筛振动频率越高、振动筛振幅越大、齿片间距越小,则残膜率越低,反之则缠膜率高。其主要原因为:当振动筛振动频率加大时,残膜从筛面被抛起的能力增强;当振动筛振幅增大时,残膜通过筛面的有效时间少;当齿片间距减小时,筛面自缠绕概率低。
2)交互因素对含土率的影响规律分析
振动筛振动频率、振动筛振幅、齿片间距交互因素对含土率Y2影响的响应面曲线图见图4。图4d为齿片间距位于中心水平(14 mm)时,振动筛振动频率与振动筛振幅对含土率Y2交互作用的响应面图,从图4d可以看出,含土率的降低可以通过增大振动筛振动频率和减小振动筛振幅来实现;图4e为振动筛振幅位于中心水平(60 mm)时,振动筛振动频率与齿片间距对含土率Y2交互作用的响应面图,从图4e可以看出,增大振动筛振动频率与齿片间距有助于降低含土率;图4f为振动筛振动频率位于中心水平(3.3 Hz)时,振动筛振幅与齿片间距对含土率Y2交互作用的响应面图,从图4f可以看出,增大齿片间距和降低振动筛振幅有助于降低含土率。
此外从各因素对响应值Y2影响的响应图中(图4)可以得知,响应面变化规律与回归方程方差分析结果(表4)及模型(6)一致,总体影响趋势为振动筛振幅越小、振动筛振动频率越高、齿片间距越大含土率越低,反之则含土率越高。其主要原因为:当振动筛振动频率加大时,土壤被抛起的频率越高;当振动筛振幅减小时,土壤有效分离时间长,筛分率高;当齿片间距加大时,土壤透筛率高,含土率低。
图4 振动筛振动频率、振幅及齿片间距交互因素对缠膜率和含土率的影响Fig.4 Effects of interactive factors of vibration frequecy,amplitude and distance between jagged pieces of vibrating screen on wrap plastic film and soil content
4 参数优化与验证试验
4.1 参数优化
为了使输膜与膜土分离性能最佳,因此必须要求缠膜率较低、含土率较低,根据交互因素对缠膜率及含土率影响效应分析可知:要获得较低的残膜率,就必须要求振动筛振动频率高、振动筛振幅小、齿片间距小;要获得较低含土率,就必须要求振动筛振动频率不应过高、振动筛振幅小、齿片间距大。为了寻求满足输膜与膜土分离性能的最佳参数组合,考虑各因素对响应值的影响不尽相同,因此,必须进行多目标优化。
本研究针对输膜机构工作参数优化,要求满足缠膜率低、含土率低的输膜作业要求。其目标函数如式(9)所示。
式中Yfmin为响应值中最小值。
为了得到各因素最优工作参数,采用Design-Expert软件对各参数进行优化求解。当振动筛振动频率为3.85 Hz、振动筛振幅为42.04 mm、齿片间距为15.11 mm时,此时缠膜率为1.68%、含土率为31.69%。
4.2 试验验证
为了验证模型预测的准确性,采用上述参数在江苏农业科学院收获后的花生地进行3次重复试验。考虑试验的可行性,将振动筛振动频率设置为3.9 Hz、振动筛振幅为42 mm、齿片间距为15 mm,在此优化方案下进行试验,结果见表6。
表6 优化条件下各评价指标实测值Table 6 Experimental value of evaluation indices at optimal condition
通过分析表6结果可知,各响应值试验值与理论优化值均比较吻合,试验值与理论优化值相对误差均小于5%,因此,参数优化模型可靠。在收膜作业时,采用该优化参数组合,即振动筛振动频率3.9 Hz、振动筛振幅为42 mm、齿片间距为15 mm,此时缠膜率为1.72%,含土率为32.81%。
5 结论与讨论
1)采用 Box-Benhnken中心组合试验方法对振动筛振动频率、振动筛振幅、齿片间距对缠膜率、含土率的影响趋势进行了分析并建立了优化模型,通过试验验证了模型和优化结果进行准确性,实测值与优化值相对误差均小于5%,表明模型可靠性较高。
2)输膜机构各因素对缠膜率影响显著顺序为振动筛振动频率>齿片间距>振动筛振幅;各因素对含土率影响显著顺序为齿片间距>振动筛振动频率>振动筛振幅。
3)输膜机构最优工作参数组合为振动筛振动频率3.9 Hz、振动筛振幅42 mm、齿片间距15 mm,试验结果为缠膜率1.72%、含土率32.81%。
4)该试验对输膜机构工作参数开展多因素分析,研究各因素对缠膜率、含土率的影响。由于本试验针对锯齿条仅仅考虑了齿片间距工作参数,对土壤含水率、齿片的形状、齿片高度等因素未开展全面试验,因此在后续输膜机构研究中因综合考虑上述因素;
5)铲筛式残膜回收机虽然收膜完整,残膜回收率高,但是实际工作中作业效率还不够高,后续机具研发建议增大作业幅宽,由单垄收获改为双垄收获,提升作业效率。
[1] 毕继业,王秀芬,朱道林. 地膜覆盖对农作物产量的影响[J]. 农业工程学报,2008,24(11):172-175. Bi Jiye,Wang Xiufen,Zhu Daolin. Effect of plastic-film mulch on crop yield[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2008,24(11):172-175.(in Chinese with English abstract)
[2] 侯书林,胡三媛,孔建铭,等. 国内残膜回收机研究的现状[J]. 农业工程学报,2002,18(3):186 -190. Hou Shulin,Hu Sanyuan,Kong Jianming,et al. Present situation of research on plastic film residue collector in China[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2002,18(3):186-190.(in Chinese with English abstract)
[3] 张惠友,侯书林,那明君,等. 收膜整地多功能作业机的研究[J]. 农业工程学报,2007,23(8):130-134. Zhang Huiyou,Hou Shulin,Na Mingjun,et al. Multifunctional machine for retrieving the used plastic film after harvesting and soil preparation[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2007,23(8):130-134.(in Chinese with English abstract)
[4] 严昌荣,梅旭荣,何文清,等. 农用地膜残留污染的现状与防治[J]. 农业工程学报,2006,22(11):269-272. Yan Changrong,Mei Xurong,He Wenqing,et al. Present situation of residue pollution of mulching plastic film and controlling measures[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2006,22(11):269-272.(in Chinese with English abstract)
[5] 何文清,严昌荣,赵彩霞,等.我国地膜应用污染现状及其防治途径研究[J]. 农业环境科学学报,2009,28(3):533-538. He Wenqing,Yan Changrong,Zhao Caixia,et al. Study on the pollution by plastic mulch film and its countermeasures in China[J]. Journal of Agro-Environment Science,2009,28(3):533-538.(in Chinese with English abstract)
[6] 谢建华,侯书林,刘英超. 残膜清理回收机具的研究现状及存在的问题[J]. 中国农机化,2012(5):41-44. Xie Jianhua,Hou Shulin,Liu Yingchao. Research status and trends of plastic film residue collectors[J]. Chinese Agricultural Mechanization,2012(5):41-44.(in Chinese with English abstract)
[7] 游兆延,顾峰玮,吴峰,等. 垄作花生残膜回收技术研究[J]. 农机化研究,2016(1):207-211. You Zhaoyan,Gu Fengwei,Wu Feng,et al. Research on ridged peanut residue plastic film recycling technology[J]. Journal of Agricultural Mechanization Research,2016(1):207-211.(in Chinese with English abstract)
[8] 谢建华,侯书林,付宇,等. 残膜回收机弹齿式拾膜机构运动分析与试验[J]. 农业机械学报,2013,44(增刊1):94-99. Xie Jianhua,Hou Shulin,Fu Yu,et al. Motion analysis and experiment on spring-tooth mulching plastic film collector[J]. Transactions of the Chinese Society for Agricultural Machinery(Transactions of the CSAM),2013,44(Suppl 1):94-99.(in Chinese with English abstract)
[9] 胡凯,王吉奎,李斌,等. 棉秆粉碎还田与残膜回收联合作业机研制与试验[J]. 农业工程学报,2013,29(19):24-32. Hu Kai,Wang Jikui,Li Bin,et al. Development and experiment of combined operation machine for cotton straw chopping and plastic film collecting[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2013,29(19):24-32.(in Chinese with English abstract)
[10] 吕钊钦,张磊,张广玲,等. 链条导轨式地膜回收机的设计与试验[J]. 农业工程学报,2015,31(18):48-54. Lü Zhaoqin,Zhang Lei,Zhang Guangling,et al. Design and test of chain guide rail-type plastic film collector[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31(18):48-54.(in Chinese with English abstract)
[11] 钟挺,胡志超,顾峰玮,等. 4LZ-1.0Q型稻麦联合收获机脱粒清选部件试验与优化[J]. 农业机械学报,2012,43(10):76-81. Zhong Ting,Hu Zhichao,Gu Fengwei,et al. Optimization and experiment for threshing and cleaning parts of 4LZ-1.0Q cereal combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery(Transactions of the CSAM),2012,43(10):76-81.(in Chinese with English abstract)
[12] 胡志超,陈有庆,王海鸥,等. 振动筛式花生收获机的设计与试验[J]. 农业工程学报,2008,24(10):114-117. Hu Zhichao,Chen Youqing,Wang Haiou,et al. Design and experimental research on vibrating type peanut harvester[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2008,24(10):114-117.(in Chinese with English abstract)
[13] 张学军,吴成武,王旭东,等. 残膜分离筛机构的运动仿真与分析[J]. 农业工程学报,2007,23(7):113-116. Zhang Xuejun,Wu Chengwu,Wang Xudong,et al. Motion simulation and analysis of separating sieve mechanism for scrap plastic film[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2007,23(7):113-116.(in Chinese with English abstract)
[14] 耿瑞阳. 新编农业机械学[M]. 北京:国防工业出版社,2011.
[15] 李刚,张林海,付宇,等. 曲柄摇杆式残地膜捡拾机构研究[J]. 农业机械学报,2014,45(增刊1):63-67. Li Gang,Zhang Linhai,Fu Yu,et al. Crank-rocker mechanism for collecting plastic film[J]. Transactions of the Chinese Society for Agricultural Machinery(Transactions of the CSAM),2014,45(Suppl 1):63-67.(in Chinese with English abstract)
[16] 中国机械工业联合会:残地膜回收机标准:GB/25412-2010[S]. 北京:中国标准出版社,2011:3.
[17] 王志伟,孟玲琴,刘丹,等. 振动筛选机的优化设计[J]. 农业机械学报,2006,37(5):67-71. Wang Zhiwei,Meng Lingqin,Liu Dan,et al. Optimal design of vibrating screener[J]. Transactions of the Chinese Society for Agricultural Machinery(Transactions of the CSAM),2006,37(5):67-71.(in Chinese with English abstract)
[18] 巫宗权,周纯德,吴也成. 振动式筛选机的机理探讨[J]. 甘蔗糖业,1991(5):49-54. Wu Zongquan,Zhou Chunde,Wu Yecheng. The mechanism research of vibrating screen classifier[J]. Sugarcane and Cane Sugar,1991(5):49-54.(in Chinese with English abstract)
[19] 陈翠英,王志华,李青林. 油菜脱出物物理机械特性及振动筛参数优化[J]. 农业机械学报,2005,36(3):60-63. Chen Cuiying,Wang Zhihua,Li Qinglin. Machaon physical properties of rape extractives and parametrical optimization of vibration sieve[J]. Transactions of the Chinese Society for Agricultural Machinery(Transactions of the CSAM),2005,36(3):60-63.(in Chinese with English abstract)
[20] 于昭洋,胡志超,王海鸥,等. 大蒜果秧分离机构参数优化及试验[J]. 农业工程学报,2015,31(1):40-46. Yu Zhaoyang,Hu Zhichao,Wang Haiou,et al. Parameters optimization and experiment of garlic picking mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31(1):40-46.(in Chinese with English abstract)
[21] 于昭洋,胡志超,王海鸥,等. 大蒜果秧分离试验装置的设计与测试[J]. 农业工程学报,2013,29(16):7-15. Yu Zhaoyang,Hu Zhichao,Wang Haiou,et al. Design and testing of head-stem segregation equipment for garlic[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2013,29(16):7-15.(in Chinese with English abstract)
[22] 张敏,金诚谦,梁苏宁,等. 风筛选式油菜联合收割机清选机构参数优化与试验[J]. 农业工程学报,2015,31(24):8-15. Zhang Min,Jin Chengqian,Liang Suning,et al. Parameter optimization and experiment on air-screen cleaning device of rapeseed combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31(24):8-15.(in Chinese with English abstract)
[23] 丁素明,薛新宇,方金豹,等. 手持式风送授粉机工作参数优化与试验[J]. 农业工程学报,2015,31(8):68-75. Ding Suming,Xue Xinyu,Fang Jinbao,et al. Parameter optimization and experiment of air-assisted pollination device[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31(8):68-75.(in Chinese with English abstract)
[24] 丁素明,薛新宇,蔡晨,等. 梨树枝条切割装置刀片参数优化与试验[J]. 农业工程学报,2015,31(增刊2):75-82. Ding Suming,Xue Xinyu,Cai Chen,et al. Optimization and experiment of blade parameter for pear branches cutting device[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31(Suppl 2):75-82.(in Chinese with English abstract)
[25] 徐向宏,何明珠. 试验设计与 Design-Expert、SPSS 应用[M]. 北京:科学出版社,2010.
[26] 明道绪. 高级生物统计[M]. 北京:中国农业出版社,2006.
Parameter optimization and experiment for plastic film transport mechanism of shovel screen type plastic film residue collector
Yan Wei1,2,Hu Zhichao1※,Wu Nu2,Xu Hongbo1,You Zhaoyan1,Zhou Xinxing1,2
(1. Nanjing Research Institute of Agricultural Mechanization,Ministry of Agriculture,Nanjing 210014,China;2. School of Mechanical Engineering,Nantong University,Nantong 226019,China)
Residual film not only affects the crop emergence and yield but also causes serious soil and environmental damage and affects the smooth operation of the agricultural machinery,so residual film recovery is imperative. Ridge tillage residual film recovery has the same characteristics with the residual film recovery equipment,and it has higher requirements for ridge width of residual film recovery equipment. The plastic film has not been fully utilized and the ridge body is relatively high. Furrow residual film recovery is difficult and a lot of plastic films used can not be completely recovered. A lot of plastic films are buried very deep. As one of the key means to control plastic film residue pollution,mechanically collecting technique of plastic film residue has shown a good developing prospect. But,there are many problems in the existing residual film recycling machines,such as high rate of film wrapping,incomplete recovery of residual film,and so on. Shovel screen type plastic film residue collector has a recycling capacity to the film in soil. It has a good application prospect in the field of ridge tillage plastic film recycling. The high rate of film wrapping for plastic film transport mechanism and the high rate of soil content in residual film after harvest are the major problems in the promotion of shovel screen type plastic film residue collector. To reduce the high film wrapping rate and soil containing rate in residual film after harvest,and improve the working quality of plastic film transport mechanism,single-factor test was used to get the best form of the screen surface structure in this paper. The Box-Benhnken central composite experimental design principle was adopted on the basis of single factor experiment to research the working parameters of the plastic film transport mechanism of shovel screen type plastic film residue collector. The vibrating screen’s vibration frequency,vibrating screen amplitude,and distance between jagged pieces were taken as 3 factors which influenced the working quality,and a three-factor and three-level response surface experiment was conducted. In the experiment,when the vibration frequency of vibrating screen was less than 2.3 Hz,the separation effect was poor;when the altitude of vibrating screen was less than 40 mm,the film conveying performance was poor;when the distance between jagged pieces was less than 8 mm,the separation effect was poor;when the vibration frequency of vibrating screen was higher than 4.3 Hz,the resonance phenomenon was serious;when the altitude of vibrating screen was more than 80 mm,the effect of separation was poor;and when the distance between jagged pieces was more than 20 mm,the residual film phenomenon was serious. Therefore,the vibration frequency of vibrating screen was selected from 2.3 to 4.3 Hz,the altitude of vibrating screen from 40 to 80 mm,and the distance between jagged pieces from 8 to 20 mm. The mathematical model of the response surface was established. And the influence of each factor on the working quality was analyzed and each factor was optimized comprehensively. The results showed that the significant effects of vibration screen frequency,distance between jagged pieces and vibrating screen amplitude on reducing the rate of film wrapping were in a decreasing order,and the significant effects of distance between jagged pieces,vibrating screen amplitude and vibration screen frequency on reducing the rate of soil content were in a decreasing order. The best work parameters were as bellow:when the vibrating screen’s vibration frequency was 3.9 Hz,the vibrating screen amplitude was 42 mm and the distance between jagged pieces was 15 mm,the rate of film wrapping was 1.72%,and the rate of soil content was 32.81%. Through comparing the mathematical model and the experimental result,it turned out that the relative errors of all the property indices between the two were less than 5%,which meant that the model established was useful and could be used for prediction and optimization. The research results can provide the references for the plastic film transport mechanism of plastic film residue collector and the optimization of working parameters.
agricultural machinery;plastic films;optimization;plastic film transport mechanism;single factor experiment;response surface methodology
10.11975/j.issn.1002-6819.2017.01.003
S223.5
A
1002-6819(2017)-01-0017-08
严 伟,胡志超,吴 努,徐弘博,游兆延,周新星. 铲筛式残膜回收机输膜机构参数优化与试验[J]. 农业工程学报,2017,33(1):17-24.
10.11975/j.issn.1002-6819.2017.01.003 http://www.tcsae.org
Yan Wei,Hu Zhichao,Wu Nu,Xu Hongbo,You Zhaoyan,Zhou Xinxing. Parameter optimization and experiment for plastic film transport mechanism of shovel screen type plastic film residue collector[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(1):17-24.(in Chinese with English abstract)
doi:10.11975/j.issn.1002-6819.2017.01.003 http://www.tcsae.org
2016-04-28
2016-10-20
公益性行业(农业)科研专项“残膜污染农田综合治理技术方案”(201503105)
严 伟,男(汉),江苏宿迁人,主要从事农机化装备研发。南京 农业部南京农业机械化研究所,210014。Email:974916120@qq.com
※通信作者:胡志超,男(汉),陕西蓝田人,研究员,博士,博士生导师,主要从事农作物收获及产后加工技术与装备研究。南京 农业部南京农业机械化研究所,210014。Email:zchu369@163.com