APP下载

消隙齿轮降低柴油机怠速噪声的应用研究

2017-01-17陈烨龙庞建武杜慧勇

农业工程学报 2017年1期
关键词:声强凸轮轴声压级

李 民,陈烨龙,庞建武,杜慧勇,徐 斌

(1. 河南科技大学车辆与交通工程学院,洛阳 471003;2. 广西玉柴机器股份有限公司,玉林 537005)

消隙齿轮降低柴油机怠速噪声的应用研究

李 民1,陈烨龙1,庞建武2,杜慧勇1,徐 斌1

(1. 河南科技大学车辆与交通工程学院,洛阳 471003;2. 广西玉柴机器股份有限公司,玉林 537005)

柴油机噪声影响着农业机械操作者的身心健康,该文为了解决某型柴油机在怠速工况下的异响噪声问题,采用仿真与试验相结合的方法进行研究。首先,通过声强和声压测试确定了噪声的主要产生部位;然后,基于Hypermesh和Abaqus软件建立了曲轴及整机零部件的有限元模型,并通过模态试验验证了有限元模型的准确性,基于Excite软件建立了配气正时传动系统和整机的多体动力学模型,发动机整机振动计算时考虑了缸内燃气压力、正时系统及配气机构全阀系激励和活塞敲击激励。多体动力学仿真结果表明:齿轮的反向敲击出现时,齿轮工作面的接触力消失,进排气齿轮在背隙侧发生接触产生冲击力,进而造成发动机在怠速时产生“哒哒”的异响噪声;整机振动仿真结果表明:使用消隙齿轮可以消除进/排气凸轮轴齿轮的反向敲击,在1 000~2 500 Hz范围内,使得齿轮室盖和缸盖罩的振动速度级降低了7 dB左右。最后在半消声室的发动机台架上,对有无消隙齿轮的柴油机进行了振动加速度、噪声和声品质的对比试验,试验表明:怠速工况下,使用消隙齿轮后,前端发出的“哒哒”异响噪声消失,齿轮室盖振动降幅很大,前端1 m噪声声压级降低了5~9 dB(A),声品质也有了明显改善。因此,当内燃机其它齿轮传动部位出现齿轮反向敲击声时,可考虑使用消隙齿轮予以解决。

柴油机;振动;齿轮;怠速工况;消隙齿轮;噪声

0 引 言

怠速工况的噪声大小及声品质是柴油机的一个重要指标,如果系统设计不良,常会发出异响噪声。怠速工况下柴油机的缸内燃烧压力小,进、排气流速慢,燃烧噪声和空气动力噪声所占比例小,噪声声音一般来自于运动机件之间的相互敲击碰撞[1],比如活塞敲击、链条多边形效应、齿轮啮合碰撞、气门落座敲击等[2-5],此外空压机的进气噪声有时在怠速也十分明显[6]。

实际使用过程中,发动机敲击噪声产生的原因非常复杂,解决方案也各不相同。李帅通过优化气门弹簧与凸轮型线,解决了凸轮飞脱和气门落座力大的问题,从而降低了气门落座的敲击[7]。景国玺等通过调整配缸间隙、优化活塞型线降低了低转速下的敲击噪声[8]。褚志刚等提出了在齿轮中嵌入高内阻材料、增加拖拽阻力、以及改善齿轮的支撑方式等措施来改善齿轮的异常噪声[9]。

目前,国内外学者对齿轮的动力学特性及应用做了大量研究[10-16],关于消隙齿轮的研究主要集中于啮合刚度的计算[17-18]、高频传动特性[19]以及传动回差的计算与分析[20],消隙齿轮主要用于航天精密伺服机构[21]、精密机床[22]、雷达数据传递机构等一些伺服机电系统领域中[23],在内燃机噪声、振动与声振粗糙度(noise vibration harshness,NVH)领域的应用研究开展的还不系统与具体[24-25]。本文采用声压法和声强法,确定了噪声源的位置,并在进、排气凸轮轴的传动中采用消隙齿轮替代普通齿轮,降低了柴油机怠速噪声。

1 噪声源识别及前期研究

1.1 噪声源识别

首先采用工程9点法测量了怠速工况下柴油机不同方向的1 m声压级。测点分布示意图如图1,其中测点2代表排气侧、测点4代表前端、测点6代表进气侧、测点9代表顶面。结果见表1所示,前端的1 m声压级为75.9 dB(A),比其他测点高出5~10 dB(A),因此可判断噪声的主要来源在前端,排除了活塞敲击和气门落座敲击的可能。

然后使用声强探测仪对该柴油机进行了声源识别,发现齿轮室盖板和前端靠近曲轴位置的声强较大,如图2所示,采集频率范围为250 Hz~6.3 kHz,声强级达到87 dB(A)。进一步对前端噪声频谱进行分析,发现在1~10 kHz频率范围内,噪声声压级较大,峰值出现在2 kHz处,如图3所示。

图1 测点分布示意图Fig.1 Measured points distribution sketch

表1 柴油机各测点声压级Table 1 Diesel engine SPL(sound pressure level) of different measurement points

图2 前端原始声强云图Fig.2 Original sound intensity color map in front of engine

图3 前端噪声频谱Fig.3 Noise spectrum in front of engine

1.2 前期采取的措施

为了降低柴油机前端的噪声,前期采用以下的方法:齿轮室盖板上使用隔声罩进行局部屏蔽,对进、排气凸轮轴的传动齿轮采用磨齿,改善液压张紧器的布置以及更换新的链条等一系列措施。但异响噪声依然存在,噪声应该来自齿轮传动,原先进/排齿轮均为普通直齿轮,齿数43,模数2 mm,齿宽11 mm,压力角24.376°,由于齿轮精度、安装误差等因素的影响,齿轮副必定存在一定的齿侧间隙,加之发动机运行过程中凸轮轴受到负载扭矩波动和齿轮啮合力径向分量的影响,齿轮侧隙也在不断变化,它导致齿轮啮合过程中产生相互敲击。因此提出了在进气凸轮轴上将原设计的普通齿轮改用消隙齿轮的措施。

2 正时系统及消隙齿轮介绍

该柴油机正时系统为链传动,排气凸轮轴与进气凸轮轴之间采用齿轮传动的方式,正时系统具体结构见图4所示。

图4 正时传动系统Fig.4 Timing drive system

原设计采用普通齿轮传动,改进方案在进气凸轮轴采用消隙齿轮。消隙齿轮由2片齿组成,结构见图5。较宽的齿轮固定在凸轮轴上,称为固定轮,作用是传递动力;较窄的齿轮套在固定轮的轮毂上,称为浮动轮,作用是消除齿侧间隙。固定轮与浮动轮上各有一个销钉,两片齿轮中间通过扭簧与销钉的配合产生一个预载扭矩,齿轮安装在凸轮轴后拧下沉头螺钉与另一齿轮啮合,使固定轮的齿左侧和浮动轮的齿右侧分别紧贴在排气凸轮轴前端齿轮的齿槽左、右两侧,通过这种错齿结构能够消除齿侧间隙,避免啮合过程中的碰撞[26-27]。齿轮主要参数见表2。

图5 消隙齿轮结构示意图Fig.5 Anti-backlash gear structure sketch

表2 齿轮副主要参数Table 2 Gear pair major parameters

不同参数的扭簧对消隙齿轮的动力学特性有很大影响,降噪效果也有差异,扭转刚度大,齿轮磨损加剧;扭转刚度小,消隙作用小,降噪效果差[28]。本文采用优化的扭簧进行试验与仿真分析,扭转刚度为67.45 N·m/rad,预紧状态下扭簧压缩角度为0.146 rad。

3 仿真模型的建立

3.1 有限元模型的建立

使用Hypermesh软件对曲轴和整机表面各零部件的三维模型进行了网格划分,图6是装配后的整机有限元模型,各部分的单元及节点数如表3所示。与曲轴连接的飞轮和减震器采用六面体一阶单元,曲轴及其它零部件均采用四面体二阶单元。装配后,总单元数量为928 237。

图6 整机有限元模型Fig.6 Engine finite element modeling(FEM) model

表3 主要零部件有限元模型的单元及节点数Table 3 Main components element and node numbers of FEM model

模型建立后,使用Abaqus软件对整机模型进行模态计算,为了验证其准确性,与试验结果进行对比。表4是模态计算与模态试验前六阶模态固有频率的对比结果。从对比结果来看,误差率均小于10%,说明有限元模型的建立是比较准确的,能够满足动力学的计算要求。之后对模型进行缩减,提取子结构,保留主节点的自由度、质量、刚度等信息,为动力学的计算做好基础。

3.2 多体动力学模型的建立

使用AVL-EXCITE软件的Power Unit模块建立了整机的动力学模型,建好的模型如图7。

图7 整机多体动力学模型Fig.7 Engine multi-body dynamics model

仿真时施加的激励主要有:燃气压力、正时链条、正时齿轮对机体的激励力,配气机构阀系激励和活塞敲击缸套激励力。缸内压力通过台架试验实际测量得到;活塞敲击激励在Piston&Rings模块中计算获得;正时系统及阀系的激励则通过Timing Drive模块获得。其中,正时齿轮激励区分普通齿轮副模型和消隙齿轮副模型进行计算。将得到的齿轮激励加载到整机模型中,计算得到整机的振动数据。

4 仿真云图计算结果分析

4.1 齿轮啮合力

当进、排气凸轮轴均采用普通直齿轮进行传动时,由于齿侧间隙的存在以及凸轮轴扭矩波动的作用,齿轮啮合过程不可避免的发生相互碰撞,产生高频激励,继而发出噪声。而消隙齿轮则能够补偿齿侧间隙,对齿轮的反向冲击起到缓冲作用,避免反向敲击的情况,图8则是齿轮啮合力对比。从图8中可以看出,普通齿轮啮合时,在一个循环周期内,背隙侧啮合力出现了4次,而且在背隙侧齿轮接触的瞬间产生了敲击力,幅值将近400 N。而排气凸轮轴齿轮与消隙齿轮啮合时,背隙侧没有啮合力产生,也就不会发生齿轮相互碰撞的现象。

图8 齿轮背隙侧啮合力的对比Fig.8 Comparison of meshing force on backlash side of gear

4.2 振动速度结果分析

对于动力学的计算结果,可以通过振动速度级的大小来评价噪声的强弱[29]。图9是计算的中心频率为1 600 Hz的整机表面振动速度云图,图9a中速度分布与图2的声强云图大体一致,说明软件仿真预测的主要噪声源位置与结果声强试验测试确定的主要噪声源基本吻合,仿真结果可信。图9b中可以看出使用消隙齿轮后,柴油机齿轮室盖板、缸盖罩等表面零部件的振动速度级均有一定的降低,减振、降噪效果显著。

图9 1 600 Hz整机表面振动速度云图对比Fig.9 Comparison of vibration velocity in engine surface at 1 600 Hz

图10是进气凸轮轴前端采用消隙齿轮前后,齿轮室盖板和缸盖罩在其主振动方向上振动速度级对比。齿轮啮合激励的高频部分是激发发动机表面噪声辐射的主要原因,因此,重点关注1 000~4 000 Hz频段内的振动结果[30]。从频域内的对比可知,在中心频率为2 000 Hz的频段内,齿轮室盖板的振动速度级达到峰值,大小为82.4 dB,而缸盖罩的振动速度级峰值出现在中心频率为1 600 Hz的频段内,大小为70.3 dB。采用消隙齿轮后,在1 000~2 500 Hz频段内,齿轮室盖板和缸盖罩的振动速度级均有一定幅度的下降,1 778~2 339 Hz频段内,齿轮室盖速度级降至75.1dB;1 413~1 778 Hz频段内,缸盖罩速度级降至63.6 dB,两者降幅在7 dB左右。

图10 振动速度级对比Fig.10 Comparison of vibration velocity level

5 试验结果分析

5.1 齿轮室盖振动结果分析

在试验台架上,测量了齿轮室盖板的振动加速度。从图11中可以看出,在曲轴两转(一个工作循环)周期内,采用消隙齿轮前,加速度有8个峰值,且最大幅值达到120 m/s2;采用消隙齿轮后,加速度峰值减少为4个,且幅值也大幅下降,除1缸活塞上止点附近由于爆发压力的作用使得加速度幅值达到50 m/s2外,其它位置的振动加速度均不超过20 m/s2。进一步与图8的背隙侧齿轮啮合力对比还可以看出,消失的4个峰值的时刻正好与普通齿轮啮合力产生的位置相同,因此,齿轮的反向敲击是导致齿轮室盖振动加强的原因。

图11 齿轮室盖振动加速度对比Fig.11 Comparison of vibration acceleration of gear chamber cover

5.2 声压级与声品质结果分析

在半消声室中,分别对原机(未采用消隙齿轮)和新机(采用消隙齿轮)进行了怠速工况下的噪声测量试验,同时,使用模拟人工头对声品质进行了测量,人工头的布置位置如图1所示,测量的结果见表5和表6。

表5 声压级对比Table 5 Comparison of SPL

表6 声品质对比Table 6 Comparison of sound quality

从表5可以看出,原机的前端噪声声压级比其它几个测点高出4~6 dB(A),采用消隙齿轮后,前端、进气侧、排气侧和顶面的噪声声压级均有所降低,降幅在5~9 dB(A),且前端的降幅最大。从表6可以看出,无论在进气侧还是排气侧,采用消隙齿轮后,响度、尖锐度和粗糙度均有所下降。从人的主观评价来说,使用消隙齿轮后,发动机声音品质有极大的改善,原来强烈尖锐的敲击声已经不再存在,总体声音变得柔和舒服。

图12是采用消隙齿轮前后,发动机前端和顶面在频域下的噪声声压级对比结果。从图12中可以看出,在中频和低频范围内两者差异不是很明显,但在高频范围内,采用消隙齿轮后,噪声声压级有大幅的降低,幅值降低了10 dB(A)左右。因此,采用消隙齿轮可以避免齿轮的往复冲击,有效地降低齿轮传动中的高频噪声。

图12 噪声声压级对比Fig.12 Comparison of SPL

5.3 前端声强结果分析

采用消隙齿轮后,再次对前端进行声强探测,采集频率同样为250 Hz~6.3 kHz,得到声强云图如图13所示,通过与图2进行对比可以看出齿轮室盖板位置的声强大大减弱,已不再是主要的噪声源。

图13 前端使用消隙齿轮后声强云图Fig.13 Sound intensity color map in front of engine by using anti-backlash gear

6 结 论

1)该柴油机怠速工况下发出“哒哒”异响噪声源于进/排气凸轮轴啮合时的齿轮反向敲击力,该激励力通过进、排气凸轮轴传递到轴承座,造成前端齿轮室盖局部振动速度大,产生异常噪声。

2)采用消隙齿轮后,消除了进/排气凸轮轴之间齿轮的反向敲击,原先发动机前端“哒哒”的异响噪声也消失了,能使发动机前端1 m噪声的声压级降低5~9 dB(A),发动机的声品质有明显改善。当内燃机其它齿轮传动部位出现齿轮反向敲击声时,可考虑使用消隙齿轮予以解决。

[1] 庞剑.汽车噪声与振动-理论与应用[M].北京:北京理工大学出版社,2006:162-171.

[2] 杜灿谊,喻菲菲,曾祥坤.发动机活塞敲击故障仿真与诊断分析[J].车用发动机,2013(2):79-84.Du Canyi,Yu Feifei,Zeng Xiangkun. Simulation and diagnosis of engine piston knocking fault[J]. Vehicle Engine,2013(2):79-84.(in Chinese with English abstract)

[3] 李一民,郝志勇,张志明,等.汽油机正时链传动动力学仿真研究[J].内燃机工程,2013,34(1):81-87.Li Yimin,Hao Zhiyong,Zhang Zhiming,et al. Simulation research on dynamic characteristic of timing chain trains of gasoline engine[J]. Chinese Internal Combustion Engine Engineering,2013,34(1):81-87.(in Chinese with English abstract)

[4] George B,Douglas F. A multi-variable experimental study of diesel gear train rattle[J]. SAE Technical Paper,doi:10. 4271/2011-01-1561.

[5] 舒歌群,马维忍,梁兴雨,等.柴油机配气机构多体动力学的仿真研究[J].机械设计,2009,26(3):49-52.Shu Gequn,Ma Weiren,Liang Yuxing,et al. Simulative study on multi-bodied dynamics of valve gear of diesel engine[J]. Journal of Machine Design,2009,26(3):49-52.(in Chinese with English abstract)

[6] 褚志刚,邓兆祥,王亮,等.中型载货汽车怠速异响噪声源识别[J].振动与冲击,2009,28(3):171-173.Chu Zhigang,Deng Zhaoxiang,Wang Liang,et al. Idle abnormal noise source identification for a multi-duty truck[J]. Journal of Vibration and Shock,2009,28(3):171-173.(in Chinese with English abstract)

[7] 李帅.发动机配气机构振动噪声研究[D].长沙:湖南大学,2012.Li Shuai. Research on Vibration and Noise of Engine Valve Train[J]. Changsha:Hunan University,2012.(in Chinese with English abstract)

[8] 景国玺,郝志勇,金阳,等.发动机燃烧噪声和活塞拍击噪声的产生机理实验研究[J].振动工程学报,2010,23(6):655-659.

[9] 褚志刚,邓兆祥,胡玉梅,等.SC6350C汽车变速器噪声控制[J].中国机械工程,2005,16(16):1481-1485.Chu Zhigang,Deng Zhaoxiang,Hu Yumei,et al. Noise control for SC6350C vehicle transmission[J]. China MechanicalEngineering,2005,16(16):1481-1485.(in Chinese with English abstract)

[10] 李一民,郝志勇,叶慧飞.柴油机正时齿轮系动力学特性分析[J].浙江大学学报:工学版,2012,46(8):1472-1477.Li Yimin,Hao Zhiyong,Ye Huifei. Dynamic characteristic analysis of diesel timing gear trains[J]. Journal of Zhejiang University:Engineering Science,2012,46(8):1472-1477.(in Chinese with English a bstract)

[11] 张锁怀,沈允文,董海军,等.齿轮拍击系统的动力响应[J].振动工程学报,2003,16(1):62-66.Zhang Suohuai,Shen Yunwen,Dong Haijun,et al. Dynamic response of a gear rattling system[J]. Journal of Vibration Engineering,2003,16(1):62-66.(in Chinese with English abstract)

[12] 董海军,沈允文,刘梦军,等.齿轮系统Rattling动力学行为研究[J].机械工程学报,2004,40(1):136-141.Dong Haijun,Shen Yunwen,Liu Mengjun et al. Research on the dynamical behaviors of rattling in gear system[J]. Chinese Journal of Mechanical Engineering,2004,40(1):136-141.(in Chinese with English abstract)

[13] 杨军.齿轮系统轮齿啮合过程的动力学分析[J].机械传动,2011,35(8):29-34.Yang Jun. Dynamics analysis of tooth meshing process of gear system[J]. Journal of Mechanical,2011,35(8):29-34.(in Chinese with English abstract)

[14] 张发民.基于ANSYS/LS-DYNA的齿轮传动冲击特性仿真分析[J].机械传动,2011,35(9):9-11.Zhang Famin. Simulation analysis of gear transmission impact characteristic based on ANSYS/LS-DYNA[J]. Journal of Mechanical,2011,35(9):9-11.(in Chinese with English abstract)

[15] 李三群,贾长治,武彩岗,等.基于虚拟样机技术的齿轮啮合动力学仿真研究[J].系统仿真学报,2007,19(4):901-904.Li Sanqun,Jia Changzhi,Wu Caigang,et al. Dynamic simulation study of gear meshing based on virtual prototyping technology[J]. Journal of System Simulation,2007,19(4):901-904.(in Chinese with English abstract)

[16] Shim S B,Park Y J,Kim K U. Reduction of PTO rattle noise of an agricultural tractor using an anti-backlash gear[J]. Biosystems Engineering,2008,33(5):346-354.

[17] Yang Z,Shang J Z,Luo Z R. Effect analysis of friction and damping on anti-backlash gear based on dynamics model with time-varying mesh stiffness[J]. Journal of Central South University,2013,20(12):3461-3470.

[18] 杨政,尚建忠,罗自荣,等.扭簧加载双片齿轮消隙机构综合啮合刚度[J].机械工程学报,2013,49(1):23-30.Yang Zheng,Shang Jianzhong,Luo Zirong,et al. Research on synthesis meshing stiffness of torsional spring-loaded double-gear anti-backlash mechanism[J]. Journal of Mechanical Engineering,2013,49(1):23-30.(in Chinese with English abstract)

[19] 李雄峰,郝卫生,张兆凯,等.消隙齿轮传动建模与分析研究[J].战术导弹控制技术,2013,30(2):42-47.Li Xiongfeng,Hao Weisheng,Zhang Zhaokai,et al. Modeling and analysis of anti-backlash gear transmission [J]. Control Technology of Tactical Missile,2013,30(2):42-47.(in Chinese with English abstract)

[20] 谢锋,唐巍.消隙齿轮传动机构回差分析与计算[J].机械管理开发,2013(1):28-31.Xie Feng,Tang Wei. Analysis and calculation of spring eliminating clearances gear drive structure[J]. Mechanical Management and Development,2013(1):28-31.(in Chinese with English abstract)

[21] 廖洪波,范大鹏,范世珣.消隙齿轮伺服系统动力学建模与频率特性研究[J].航空学报,2015,36(3):987-994.Liao Hongbo,Fan Dapeng,Fan Shixun. Research on the dynamics and frequency response characteristic of the anti-backlash gear servo system[J]. Acta Aeronautica et Astronautica Sinica,2015,36(3):987-994.(in Chinese with English abstract)

[22] 钟文斌,田贵磊,肖圣龙.双齿轮消隙结构的研制与分析[J].机械设计与制造,2014(1):105-107.Zhong Wenbin,Tian Guilei,Xiao Shenglong. A research and analysis on one structure of double gear anti-backlash[J]. Machinery Design &Manufacture,2014(1):105-107.(in Chinese with English abstract)

[23] 胡超,施浒立,宁春林.齿轮消隙功能实现探索[J].机电工程,2008,25(2):11-14.Hu Chao,Shi Huli,Ning ChunLin. Research on functional implementation of gear clearance eliminating[J]. Mechanical &Electrical Engineering Magazine,2008,25(2):11-14.(in Chinese with English abstract)

[24] Jeffrey C H,Kwin R A. Cummins 4B noise reduction anti-backlash camshaft gear[J]. SAE Technical Paper,doi:10.4271/1999-01-1761.

[25] 董懿琼,杨雪春.无间隙齿轮在汽车发动机降噪中的应用尝试[J].南昌大学学报:工科版,2006,28(3):250-255.Dong Yiqiong,Yang Xuechun. Experimental application of gapless gear pairs to noise reduction of an automobile engine[J]. Journal of Nanchang University:Engineering &Technology,2006,28(3):250-255.(in Chinese with English abstract)

[26] Rodney G,Mark P,Mandar M.Gear design for low whine noise in a supercharger application[J].SAE Technical Paper,doi:10.4271/2007-01-2293.

[27] Yashodhan V J,Jordan E K. Gear train mesh efficiency study:The effects of an anti-backlash gear[J]. SAE Technical Paper,doi:10.4271/2014-01-1769.

[28] 李民,陈烨龙,庞建武,等.柴油机双顶置凸轮轴消隙齿轮动力学特性研究[J].内燃机工程,2016,37(4):247-252.Li Min,Chen Yelong,Pang Jianwu,et al. Study on dynamic characteristics of anti-backlash gear of a DHOC diesel engine[J]. Chinese Internal Combustion Engine Engineering,2016,37(4):247-252.(in Chinese with English abstract)

[29] 张俊红,郑勇.内燃机振动、噪声的多体动力学分析[J].中国机械工程,2006,17(1):25-28.Zhang Junhong,Zheng Yong. Multi-body dynamics analysis of internal combustion engine vibration and noise[J]. China Mechanical Engineering,2006,17(1):25-28.(in Chinese with English abstract)

[30] 舒歌群,马维忍,梁兴雨,等.柴油机薄壁件表面辐射噪声的研究[J].内燃机工程,2009,30(2):25-29.Shu Gequn,Ma Weiren,Liang Yuxing,et al. Radiation noise of external thin-wall components in diesel engine[J]. Chinese Internal Combustion Engine Engineering,2009,30(2):25-29.(in Chinese with English abstract)

Application on reducing idle noise of diesel engine by using anti-backlash gear

Li Min1,Chen Yelong1,Pang Jianwu2,Du Huiyong1,Xu Bin1
(1. Vehicle &Transportation Engineering School,Henan University of Science and Technology,Luoyang 471003,China;2. Guangxi Yuchai Diesel Engine Co.,LTD,Yulin 537005,China)

Dieselengine noise has a bad influence on physical and mental health of agricultural machinery operators. In this paper,we aimed at eliminating the abnormal rattling noise of a diesel engine running at idle speed condition by simulation and experiment. Firstly,on engine test bench in a semi-anechoic room,the rattling noise was identified through sound intensity and sound pressure measurement,the nine point sound pressure results showed that the rattling noise was more obvious in front of the engine,and the sound intensity of the engine front part showed that the main part of rattling noise was generated from the timing gear cover in front of intake camshaft and exhaust camshaft. In order to eliminating the abnormal rattling noise,some improvements were also attempted,such as using acoustic shield over intake camshaft and exhaust camshaft,improving the accuracy of timing gears through gear grinding,optimizing the parameters of valve-chain hydraulic tension device,replacing new timing chain,but the experiments showed all these improvements had no effect in noise reduction. Through analyzing of the previous experimental results,a hypothesis was proposed that the idle abnormal noise might be caused by the knock between the intake cam gear and exhaust cam gear,thus replacing intake cam normal gear by anti-backlash gear might eliminating the gear knock,and the diesel abnormal idle noise might be solved. Secondly,in order to identify if the gears knock really happened,multi-body dynamic simulation was performed. By using Hypermesh and Abaqus software,the FEM(finite element modeling) model of the engine including crankshaft,cylinder block,cylinder head and other engine components were built,and the model tests of each part were performed. The results showed that the frequency difference between experiment and simulation was within 10%,the accuracy of the FEM model was acceptable. By using Excite software,the multi-body dynamics model including the gear of the intake camshaft were built separately,and the multi-body dynamics model of the valve timing system and the vibration model of the engine were also built. During the vibration simulation,the exciting forces including cylinder pressure,valve timing system,valve exciting force,and piston slap force were considered. The engage force and vibration velocity with/without using anti-backlash gear were also compared. The valve timing system simulation results showed that when diesel engine with normal gear was running at idle speed,the gears reversed slap was occurred between the intake cam gear and exhaust cam gear.The moment when reversed slap of timing gear occurred,the contract force on the work side was eliminated,and the contract force on the backlash side appeared.So the idle speed abnormal rattling noise was excited by the reversed slap between intake camshaft gear and exhaust camshaft gear was validated. Anti-backlash gear can eliminate the reversed slap of valve timing gear,the vibration simulation results also showed that the vibration velocity of gear chamber cover and cylinder head cover was 7 dB lower in the frequency range of 1 000 Hz to 2 500 Hz when anti-backlash gear was used,especially at 1 600 Hz,the vibration amplitude was reduced more obviously. Finally,the diesel engine with/without anti-backlash gear was tested on bench in a semi-anechoic room. The engine bench vibration test results showed that the idling vibration acceleration of gear chamber cover was reduced from 120 m/s2to 50 m/s2and the acceleration peaks were reduced from 8 to 4,the moments of disappeared acceleration peaks while using anti-backlash gear met the disappearing moments of the engage force on the backlash side which was calculated by simulation exactly. The 1m SPL and sound quality were measured by engineering nine points method and KEMAR(knowles electronics manikin for acoustic)artificial head,and the noise test results showed:when anti-backlash gear was used,the abnormal rattling noise disappeared and the 1m SPL in front of engine was 5-9 dB(A) reduced,especially in the high frequency range. The KEMAR artificial head test results also showed that the sound quality of the diesel engine was improved obviously. In conclusion,anti-backlash gear can be used in other noisy mechanical transmission parts.

diesel engine;vibrations;gears;idle condition;anti-backlash gear;noise

10.11975/j.issn.1002-6819.2017.01.008

TK42

A

1002-6819(2017)-01-0063-07

李 民,陈烨龙,庞建武,杜慧勇,徐 斌. 消隙齿轮降低柴油机怠速噪声的应用研究[J]. 农业工程学报,2017,33(1):63-69.

10.11975/j.issn.1002-6819.2017.01.008 http://www.tcsae.org

Li Min,Chen Yelong,Pang Jianwu,Du Huiyong,Xu Bin. Application on reducing idle noise of diesel engine by using anti-backlash gear[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(1):63-69.(in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2017.01.008 http://www.tcsae.org

2016-04-23

2016-10-27

国家重点研发计划项目(2016YFD0700701)

李 民,男,河南洛阳人,博士,副教授,硕士生导师,主要从事内燃机现代设计方法及内燃机振动噪声控制技术研究。洛阳 河南科技大学车辆与交通工程学院,471003。Email:limin@haust.edu.cn

猜你喜欢

声强凸轮轴声压级
超音速声强近似测量方法
全新DXR mkll有源扬声器
2017年一汽丰田卡罗拉1ZR-FE发动机正时校对方法
声强测试技术及降噪处理
基于声强法的发动机噪声测量分析
整流罩有效负载填充效应变化规律及形成机理研究
多孔吸声型声屏障降噪效果仿真分析
拖拉机噪声控制测试方法研究
唢呐常用演奏技法与声学参量关系研究(一)
凸轮轴高速数控磨削在位测量技术