试析高中数学十大难点概念的调查研究
2017-01-16陈俊杰
陈俊杰
摘要:我们学生在学习的过程当中感到最难的就是数学,尤其是高中数学中,对于教学的十大难点概念的理解以及学习具有较高的困难度,难点等级比较高。高中数学十大难点概念当中有很多概念都是相结合的核心理念,这些概念的学习情况对我们后续学习数学的影响重大,难点概念的成因主要是因为数学本身问题、教材编写中的问题、教师教学问题以及我们自身的学习态度问题。
关键词:高中数学;难点概念;调查研究
高中数学概念是思维的基础形式,数学理念是数学思维的主要核心和起点,在可以掌控概念以及原理为核心目标的高中数学学习中,数学概念是我们学生时代开始认知训练以及提升的基础,它对我们的大脑思维逻辑能力和空间想象能力等均起到较好的训练作用,同时,上述两方面能力的提升均需要清晰的掌握和运用数学概念为主要前提。进入高中之后,数学学习的重要性不断上升,对我们自身提出较高的要求[1]。
一、高中数学难点概念
对高中数学进行学习我们都有相同的体会,在对高中数学几百个概念进行学习时,有些重要的数学概念,在学习时很多都是感到难以理解或是思维逻辑打不开,因为,高中数学概念成为我们学习中的困难点之处。同时老师在对这些概念的进行教学时也难以把握、难以突破,同时也成为我们在数学概念学习中的困难点,这样的一些概念我们在课堂中都称之为难点概念。高中数学中有哪些概念称之为难点,不同的学生会给出不同的答案,并且在教师的心目中难点概念与我们学生心目中的难点概念也不相同,比较遗憾的是,直到至今仍然不清楚高中数学中哪些概念被教师和学生称之为难点,而这正是我们进行调查研究的动力。因此,我们在开展高中数学十大难点概念作为研究,试图找到一致认为的高中数学难点概念。
二、分析调查对象
为了确保调查工作能够全面的进行,准确的体现出高中数学中的十大难点概念,我们对某地区的高中数学教材中所含的概念进行全面的整理,其中整理的范围包含了必修和拓展内容一共6册教材。调查对象需要填写高中数学十大难点概念问卷调查表,主要包含的内容为:(1)个人信息;(2)调查表列出的60个难点概念选出10个最难的难点概念;(3)简单说明所选的10个难点概念的理由。
三、调查研究高中数学十大难点概念分析
(1)反函数概念
该数学概念文字表达叙述太长,并且涉及到符号比较多,其抽象度较高,我们在学习过程之中对其反函数概念理解本来就不够透彻,经过逆向后,‘任意、‘唯一的对象以及相关定义领域则全部颠倒。由于反函数的部分学习时间比较少,对反函数的单调性以及图形性质等都未能得到进一步的学习,难以形成理解。
(2)球面体距离概念
由于我们目前自身大脑思维并没有曲面上距离的概念,对球面体距离的概念更是感到十分的陌生,从平面距离到球面体距离的思维跨度抽象度较高。经过立体几何数学删减后,我们的思想空间逐渐下降,球面距离的图形也难以画出,找不到基本的图像关联。经过数学教材指出,连接球面上的两点路径中,通过该两点的大圆劣弧最短,但是未能通过物体表明,而且老师在教学当中也难以叙述的更加明确,只能依靠我们自身的记忆。还有一方面是因为部分学生的地理科目交叉,很少有经纬度的概念。
(3)曲线的方程概念
由于文字表达的较长,读起来像绕口令,在方程一方程的结一点的坐标一曲线的关系链中,方程的解与点的坐标是一一对应,但是方程与曲线又不是一一对应,该概念的理解程度较高。有些符号是则是我们对于数学的学习生涯之中第一次见,其含义并不是很明确,概念是从纯粹性和准确性的两个方面进行描述,但是后期的在求曲线的方程后,数学教材中标注不要求给证明,从而导致我们较多的同学在对此进行学习时都会以为这个数学概念纯属多余。
(4)数列表的极限概念
文字表达太长,符号以及抽象理解都让我们感到陌生,在生活中极限概念与数学中的极限概念是完全不相同,对我们的学习极限概念形成很多的困扰,从而导致我们很难分清其中的区别。极限思想的形成大多都需要一个过程,但由于部分数学课程时间较少,影响了我们的思维[2]。
(5)函数概念
一次性给出了函数、自变量、定义域、函数值等一些概念,使得我们在对数学学习时感到无从理解,对每个难点概念的符号理解都不能到位,对分段函数以及相关图像表示并不熟悉。
(6)数学归纳概念
思维比较新颖,作为学生我们尚未没有做好相关的心理准备,采用有限的步骤验证对无限个自然数都成立,让我们较难接受以及理解。而且还有部分同学无法从归纳法的原理真正了解到方法,不会使用数学归纳法进行证明。
(7)二面角概念
我们缺少思想空间,作不出二面角,部分同学将两个半平面误认为两个平面,无法理解二面角的大小为什么要用其平面角的大小衡量。
(8)反正弦函数概念
我们对之前的反函数概念就并不够完全理解,对反正弦函数概念更加陌生,在同学的学习惯性里认为,反函数是实数之间的对应关系,而反正函数是实数与对角的对应关系,很多同学想不到这么透彻[3]。
(9)参数方程概念
我们对于如何取参缺少思考方法,参变量的作用、地位以及意义有时看不清。与以往普通的方程互化时的等价性问题是个难点。
(10)冲要条件概念
我们对充分条件、必要条件的相对应使两者关系容易混,涉及的数学知识方面比较广,对证明和反举例要求较高。
总结:我们所认为的大部分的难点概念,有些原因是因为自身的学习动力不足,对于数学概念理解并不深刻,固定知识点的认知淡薄,语言转换能力缺少,难以用自己的语言去表达概念中的困难之处,表示方法也比较少,缺少样例的支撑,不清楚核心概念的内在关系[4]。
参考文献:
[1]吴红宇,王华民.借数学史之力 解概念难点之疑——一堂基于数学史的“弧度制”设计及感悟[J].数学教学研究,2014,33(11):22-26.
[2]顾慧,王华民.借数学史之力,解概念难点之疑*--一堂基于数学史的“复数”概念的教学尝试与感悟[J].中学数学,2015,12(7):51-55.
[3]徐训锋.由经验到概念——以“两点的球面距离”概念建构为例[J].数学教学研究,2016,35(4):15-19,26.
[4]宋莉莉.五个版本高中数学课标教材中算法内容的比较与分析[J].数学通报,2014,49(12):5-10.