APP下载

氢气对脑损伤保护机制的研究进展

2017-01-12詹纪春赵明一IdrisAhmedSheikh赵玲玲

转化医学电子杂志 2017年3期
关键词:脑损伤脑缺血氢气

詹纪春,赵明一,李 柳,Idris Ahmed Sheikh,赵玲玲

(1新疆医科大学,新疆乌鲁木齐830000;2中南大学湘雅三医院,湖南长沙410013)

·专家述评·

氢气对脑损伤保护机制的研究进展

詹纪春1,2,赵明一2,李 柳2,Idris Ahmed Sheikh2,赵玲玲2

(1新疆医科大学,新疆乌鲁木齐830000;2中南大学湘雅三医院,湖南长沙410013)

氢气是一种治疗脑损伤的医用气体,因其具有易制备、成本低、起效快、强渗透力、无毒、无残留等特点,在临床应用中有很大的前景.脑损伤是指由自身脑血管因素、外部力量直接或间接作用所造成的颅内组织结构、功能被破坏的一类疾病的总称,其发病机制与许多因素有关.本文综述了氢气对脑损伤保护机制的研究进展,主要包括了氢气对炎症、凋亡、自噬、线粒体能量变化、氧化应激、内质网应激的调节作用.

氢气;脑损伤;保护机制

0 引言

Ohsawa等[1]指出,吸入2%氢气(hydrogen,H2)可以显著改善急性大鼠模型中局灶性脑缺血再灌注损伤诱导的氧化应激,这与其选择性清除羟自由基(⁃OH)和过氧亚硝基阴离子(ONOO⁃)作用有关.氢气的医学价值自此即引起了广泛关注.在我国,脑损伤疾病已成为继心血管疾病、恶性肿瘤之后的第三位死亡原因.由于氢气具有易制备、成本低、起效快、强渗透力、无毒、无残留等特点,因此在脑损伤的临床应用中具有很大的前景[2].

1 氢气

氢气在空气中的浓度为0.00006%,是最小的气体分子,易扩散,4%~75%浓度的氢气还具有易燃性.人类和大多数哺乳动物没有产生氢气的内源性细胞,而大肠中大量的厌氧细菌可以通过分解植物纤维和碳水化合物从多糖片段产生氢气.目前,氢气的应用主要包括以下几种方式:氢气吸入、口服富氢盐、氢气浴、富氢盐注射等.

氢气作为一种治疗脑损伤的医用气体,其抗氧化作用与NO和CO等气体及其他药物相比,起效较快,可转化为水(H2+·OH→H2O+·H);其产物对机体无毒副作用;且可以通过其他多种保护机制发挥作用.由于氢气是电中性的小分子,因此可以很容易地进入细胞和细胞内膜,而水溶性抗氧化剂进入细胞和细胞器则通常会被阻止,如活性氧的主要来源线粒体[3].Cai等[4]首次提出含有0.2~1.0 mmol/L氢气的含氢注射液是一种新型的治疗脑损伤的抗氧化剂.氢气通过选择性抗氧化作用治疗脑缺血再灌注损伤的效果较依达拉奉和他克莫司(FK506)更为明显[1].

2 脑损伤

脑损伤(brain injury,BI)是指由于自身脑血管因素、外部力量直接或间接作用所造成的颅内组织结构、功能被破坏的一类疾病的总称.

外伤性脑损伤的病理改变为脑水肿等,这些病理改变的关键因素是氧化应激[5].神经膜与血管富含不饱和脂肪酸,脑损伤后产生的大量自由基会广泛攻击这些结构,引发脂质过氧化瀑布效应(oxygenburst),使蛋白质变性,多核苷酸链断裂,碱基重新修饰,破坏细胞结构的完整性、膜通透性、离子转运及膜屏障功能,进而导致细胞死亡[6].可见,氧化应激在脑损伤过程中发挥了重要的作用[7-8].

脑损伤与炎症的发生有关.有研究[9]指出,星形胶质细胞(astrocyte cells,AC)及小胶质细胞(microglia cells,MC)在急性脑出血数分钟内即可被激活,激活后的AC及MC分泌大量IL⁃6.IL⁃6可直接诱导神经细胞凋亡,加重脑组织损伤程度.同时,IL⁃6可增加白细胞与内皮细胞的黏附性,使血管内皮细胞受损,血脑屏障通透性增加,并且释放大量氧自由基,加重脑水肿形成及神经细胞的凋亡[10-11].

急性一氧化碳中毒(acute carbon monoxide poisoning,ACMP)主要表现为中枢神经系统损伤,且可经过“假愈期”再次出现严重的迟发性脑病.3%~30%的患者可发生这种情况.ACMP及迟发性脑病与免疫损伤、氧化应激及细胞凋亡等密切相关[12].

3 氢气对脑损伤的保护作用及机制

氢气可以降低海马区神经胶质酸性蛋白(glial fibrillary acidic protein,GFAP)及人嗜中性粒细胞弹性蛋白酶(human neutrophil elastase,HNE)水平,抑制氧化应激水平及胶质细胞的活化[13],还可以使过氧化脂质水平降低,超氧化物歧化酶活性增加,促炎因子水平降低[14].氢气可减少神经元死亡,抑制氧化应激反应[15].氢气还能改善多巴胺能细胞功能,防止黑质纹状体变性[16].可见,氢气对脑损伤的保护机制涉及多个方面,主要包括氢气对炎症、凋亡、自噬、线粒体能量变化、氧化应激、内质网应激的调节作用.

3.1 抗炎作用氢气具有抗炎作用[17].氢气可减少促炎性细胞因子的mRNA的表达,包括脂多糖(lipopolysaccharide,LPS)诱导成年小鼠炎症因子IL⁃6 mRNA的增加[18].氢气还可通过在大鼠阿尔茨海默病模型脑组织中IL⁃6表达的抑制作用提高记忆力[19].

炎性细胞因子包括早期炎性细胞因子如促炎细胞因子TNF⁃a、IL⁃6和抗炎细胞因子IL⁃10,以及晚期炎性细胞因子如高迁移率族蛋白1(high mobility group box⁃1 protein,HMGB1).缺血细胞释放的HMGB1可以激活炎症通路[20-21].早期和晚期促炎细胞因子还可相互作用加重脑损伤.在脑卒中早期,肥大细胞的浸润和激活促进了炎症反应.脑出血(intracerebral hemorrhage,ICH)促进了肥大细胞(如肥大细胞脱颗粒、类胰蛋白酶等)激活,而氢气可以抑制肥大细胞激活,减轻炎症反应,从而保护血脑屏障,减轻脑水肿[22].

在大鼠一过性大脑中动脉阻塞模型中,氢气可使炎性介质肿瘤坏死因子α活性降低,说明氢气可以通过缓解炎性反应而减少细胞凋亡[23].

核转录因子⁃κB(nuclear factor⁃κB,NF⁃κB)可通过诱导多种细胞因子表达促进炎症反应,进而促进脑缺血后细胞死亡.研究[24]表明,氢气可抑制c⁃Jun氨基末端蛋白激酶及NF⁃κB而发挥抗炎症作用.

T淋巴细胞是缺血性脑损伤的重要介质,但不同的T细胞亚群的贡献尚不明确,Li等[25]证实富氢盐可能是通过上调调节性T细胞(regulatory T cells,Tregs)影响脑复苏.

3.2 抗凋亡作用PI3K/Akt信号通路参与了脑缺血再灌注损伤后的损伤过程,脑损伤后神经细胞凋亡,氢气可通过激活PI3K/Akt信号通路使Akt活化,p⁃Akt水平增加,抑制下游caspase⁃3蛋白的表达,从而减轻神经细胞凋亡,保护缺血脑组织[26].

Wang C等[24]研究发现在β⁃淀粉样蛋白诱导的大鼠神经炎症和氧化应激模型中,腹腔注射氢盐水后可明显降低脑组织中IL⁃1β、8⁃OHdG水平,减少细胞凋亡.

miRNA与细胞低氧应答以及缺血、低氧预适应的发生发展过程有关,如miR⁃21和miR⁃210.miR⁃210是低氧应答的主要miRNA,可降低缺血性细胞死亡[27].目前发现在所有细胞和组织中,低氧均会使miR⁃210上调.在缺氧情况下,HIF⁃1α降解受阻,表达水平上升,转录活性增强,miR⁃210同样会上调.Lei等[28]发现HIF⁃1α在外伤性脑损伤中可发生反应性上调.HIF⁃1α活化后可诱导miR⁃210表达,miR⁃210通过靶向作用于Bcl⁃2,介导低氧诱导的神经元调亡[29].脑缺血再灌注损伤后低氧相关的miR⁃210和凋亡相关的miR⁃21的表达上调,富氢液可使miR⁃210和miR⁃21表达下调,说明富氢液可能对脑缺血再灌注损伤的治疗具有抗凋亡作用.

3.3 调节自噬很多神经退行性疾病的发病过程中均会出现变性蛋白质的聚集.自噬可以在蛋白质聚集体发挥毒性作用前将其清除而发挥有利的作用,同时也可因自噬⁃溶酶体的过度激活而损伤正常的细胞器,导致神经元的功能异常或最终导致神经元细胞的死亡.Bai等[30]证实氢气可以通过增加LC3B和Bec⁃lin⁃1的表达,降低mTOR、STAT3及ERK的磷酸化水平诱导自噬.Nagatani等[31]证实氢气可以通过阻断细胞自噬减少细胞凋亡.

富氢盐可减少神经元坏死[32].研究[33]表明,在早期阶段,一氧化碳中毒可增加自噬而保护神经元.但随着自噬程度的逐渐加重,其对神经元则有相反的影响.而在后期,富氢盐可降低一氧化碳中毒后期阶段的自噬水平,从而维持体内平衡、提高神经元的存活率.

3.4 线粒体能量变化活性氧是线粒体渗透性转换孔的主要激活物[34],该通道开放引起线粒体膜电位的损失、线粒体肿胀及膜破裂、细胞色素C的释放和凋亡细胞死亡.线粒体电子传递链缺血性损伤后可激活超氧化物酶,如黄嘌呤氧化酶和NADPH氧化酶,使缺血再灌注损伤后产生更高水平的过氧化物.活性氧在再灌注损伤的核心作用表明,线粒呼吸配合物Ⅰ和Ⅲ的抑制剂可阻止缺血再灌注损伤后活性氧的生成、提高细胞生存能力.

Ohta[35]开始观察氢气是否可以通过线粒体抗氧化改善缺血再灌注损伤后的氧化应激,发现氧化损伤后,细胞发生病理线粒体去极化、ATP耗竭、DNA氧化、脂质过氧化和细胞坏死及细胞凋亡.在媒介中溶解时,氢气剂量依赖性阻止这些事件和提高细胞的生存能力.

miR⁃210可影响电子转移链、铁硫簇装配蛋白(iron⁃sulfur cluster assembly protein,ISCU)的活性及三羧酸循环(tricarboxylic acid cycle,TCA cycle)过程,从而有效抑制线粒体代谢和线粒体能量生成,减少氧耗量,改变线粒体膜电位及破坏线粒体结构.而富氢液可使miR⁃210表达下调,改善氧化应激从而保护细胞.

3.5 选择性抗氧化作用氢气可以有效地中和羟自由基.富氢盐能抑制膜脂质过氧化反应终产物丙二醛(MDA)的生成.蛋白质羰基是蛋白质氧化的指标,富氢盐水可降低蛋白质羰基水平[36].在深低温停循环(deep hypothermia circulatory arrest,DHCA)模型中,富氢盐可显著降低IL⁃1β,TNF⁃α,8⁃OHdG和MDA产物水平抑制NOS活性,同时增加了最重要的抗氧化酶之一——超氧化物歧化酶(superoxide dis⁃mutase,SOD)的活性.说明富氢盐可以通过改善氧化应激减轻脑损伤[37].还有研究[38]表明,水电解产生的高浓度(66.7%)氢气吸入在大鼠大脑中动脉闭塞模型中可通过抑制氧化应激和炎症反应改善脑缺血再灌注损伤.

核因子NF⁃E2相关因子(nuclear factor erythroid 2⁃related factor 2,Nrf2)是近年来发现的一种基因转录因子,对氧化应激非常敏感.Nrf2通路主要通过调节血红素氧合酶⁃1(heme oxygenase⁃1,HO⁃1)在内的一系列抗氧化酶基因的表达,从而发挥抗氧化作用.氢盐水和氢气吸入可能是通过激活Nrf2/ARE信号,使HO⁃1的抗氧化酶基因表达上调,从而发挥抗氧化作用,减轻脑缺血再灌注损伤.

3.6 抗内质网应激作用Bai等[30]研究富氢盐是否可以减轻新生小鼠缺血缺氧性脑损伤以及观察到的保护作用是否和减轻内质网应激有关时发现,富氢盐治疗可显著改善脑水肿,降低梗死体积.此外,富氢盐可以通过减少葡萄糖调节蛋白78和C/EBP同源蛋白表达水平以及下调转录因子,明显减轻缺氧诱导的内质网应激反应.

4 展望

氢气作为一种医用气体在预防和治疗中的应用研究很有前景[39].氢气对脑损伤的保护机制包括抗炎、抗凋亡、调节自噬、调控线粒体能量变化、选择性抗氧化、抗内质网应激等,在脑损伤保护中起重要作用.目前,国际上在氢气对脑损伤保护机制的研究方面已开展了临床实验,但临床效果尚不确切,并且氢气分子机制及最佳应用浓度尚不十分清楚.虽然氢气作为一种易燃易爆的气体,在储存和运输方面有一定的困难,且其安全性也在一定程度上限制了临床应用,但已有学者应用66.7%的氢气吸入成功改善了大鼠脑缺血再灌注损伤[38].这为氢气的深入研究和临床应用提供了进一步的可能.

[1]Ohsawa I,Ishikawa M,Takahashi K,et al.Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals[J].Nat Med,2007,13(6):688-694.

[2]Ichihara M,Sobue S,Ito M,et al.Beneficial biological effects and the underlyingmechanismsofmolecularhydrogen⁃comprehensive review of 321 original articles[J].Med Gas Res,2015,5:12.

[3]Zhao L,Wang YB,Qin SR,et al.Protective effect of hydrogen⁃rich saline on ischemia/reperfusion injury in rat skin flap[J].J Zhejiang Univ⁃Sci B,2013,14(5):382-391.

[4]Cai J,Kang Z,Liu K,et al.Neuroprotective effects of hydrogen saline in neonatal hypoxia⁃ischemia rat model[J].Brain Res,2009,1256:129-137.

[5]Weaver J,Liu KJ.Does normobaric hyperoxia increase oxidative stress in acute ischemic stroke?A critical review of the literature[J].Med Gas Res,2015,5:11.

[6]Kiirika LM,Schmitz U,Colditz F.The alternative Medicago truncatula defense proteome of ROS⁃defective transgenic roots during early microbial infection[J].Front Plant Sci,2014,5:341.

[7]Eghwrudjakpor PO,Allison AB.Oxidative stress following traumatic brain injury:enhancement of endogenous antioxidant defense systems and the promise of improved outcome[J].Niger J Med,2010,19(1):14-21.

[8]von Bernhardi R,Tichauer JE,Eugenín J.Aging⁃dependent changes of microglial cells and their relevance for neurodegenerative disorders[J].J Neurochem,2010,112(5):1099-1114.

[9]Algra SO,Groeneveld KM,Schadenberg AW,et al.Cerebral ischemia initiates an immediate innate immune response in neonates during cardiac surgery[J].J Neuroinflammation,2013,10:24.

[10]Muroi C,Bellut D,Coluccia D,et al.Systemic interleukin⁃6 concentrations in patients with perimesencephalic non⁃aneurysmal subarachnoid hemorrhage[J].J Clin Neurosci,2011,18(12):1626-1629.

[11]Mellergård P,Åneman O,Sjögren F,et al.Differences in cerebral extracellular response of interleukin⁃1β,interleukin⁃6,and interleukin⁃10 after subarachnoid hemorrhage or severe head trauma in humans[J].Neurosurgery,2011,68(1):12-19.

[12]Wang P,Zeng T,Zhang CL,et al.Lipid peroxidation was involved in the memory impairment of carbon monoxide⁃induced delayed neuron damage[J].Neurochem Res,2009,34(7):1293-1298.

[13]Hugyecz M,Mracskó E,Hertelendy P,et al.Hydrogen supplemen⁃ted air inhalation reduces changes of prooxidant enzyme and gap junc⁃tion protein levels after transient global cerebral ischemia in the rat hippocampus[J].Brain Res,2011,1404:31-38.

[14]Hong Y,Guo S,Chen S,et al.Beneficial effect of hydrogen⁃rich saline on cerebral vasospasm after experimental subarachnoid hemor⁃rhage in rats[J].J Neurosci Res,2012,90(8):1670-1680.

[15]Ge P,Zhao J,Li S,et al.Inhalation of hydrogen gas attenuates cognitive impairment in transient cerebral ischemia via inhibition of oxidative stress[J].Neurol Res,2012,34(2):187-194.

[16]Ono H,Nishijima Y,Adachi N,et al.A basic study on molecular hydrogen(H2)inhalation in acute cerebral ischemia patients for safety check with physiological parameters and measurement of blood H2 level[J].Med Gas Res,2012,2(1):21.

[17]Ohta S.Molecular hydrogen as a novel antioxidant:overview of the advantages of hydrogen for medical applications[J].Methods Enzymol,2015,555:289-317.

[18]Spulber S,Edoff K,Hong L,et al.Molecular hydrogen reduces LPS⁃induced neuroinflammation and promotes recovery from sickness behaviour in mice[J].PLoS One,2012,7(7):e42078.

[19]Li J,Wang C,Zhang JH,et al.Hydrogen⁃rich saline improves memory function in a rat model of amyloid⁃beta⁃induced Alzheimer's disease by reduction of oxidative stress[J].Brain Res,2010,1328:152-161.

[20]Qiu J,Xu J,Zheng Y,et al.High⁃mobility group box 1 promotes metalloproteinase⁃9 upregulation through Toll⁃like receptor 4 after cerebral ischemia[J].Stroke,2010,41(9):2077-2082.

[21]Zhang J,Takahashi HK,Liu K,et al.Anti⁃high mobility group box⁃1 monoclonal antibody protects the blood⁃brain barrier from ischemia⁃induced disruption in rats[J].Stroke,2011,42(5):1420-1428.

[22]Manaenko A,Lekic T,Ma Q,et al.Hydrogen inhalation ameliorated mast cell⁃mediated brain injury after intracerebral hemorrhage in mice[J].Crit Care Med,2013,41(5):1266-1275.

[23]Liu Y,Liu W,Sun X,et al.Hydrogen saline offers neuroprotection by reducing oxidative stress in a focal cerebral ischemia⁃reperfusion rat model[J].Med Gas Res,2011,1(1):15.

[24]Wang C,Li J,Liu Q,et al.Hydrogen⁃rich saline reduces oxidative stress and inflammation by inhibit of JNK and NF⁃κB activation in a rat model of amyloid⁃beta⁃induced Alzheimer's disease[J].Neurosci Lett,2011,491(2):127-132.

[25]Li Q,Yu P,Zeng Q,et al.Neuroprotective Effect of Hydrogen⁃Rich Saline in Global Cerebral Ischemia/Reperfusion Rats:Up⁃Regulated Tregs and Down⁃Regulated miR⁃21,miR⁃210 and NF⁃κB Expression[J].Neurochem Res,2016,41(10):2655-2665.

[26]Ji Q,Hui K,Zhang L,et al.The effect of hydrogen⁃rich saline on the brain of rats with transient ischemia[J].J Surg Res,2011,168(1):e95-e101.

[27]Nie Y,Han BM,Liu XB,et al.Identification of MicroRNAs involved in hypoxia⁃and serum deprivation⁃induced apoptosis in mes⁃enchymal stem cells[J].Int J Biol Sci,2011,7(6):762-768.

[28]Lei P,Li Y,Chen X,et al.Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury[J].Brain Res,2009,1284:191-201.

[29]Chio CC,Lin JW,Cheng HA,et al.MicroRNA⁃210 targets antiapop⁃totic Bcl⁃2 expression and mediates hypoxia⁃induced apoptosis of neu⁃roblastoma cells[J].Arch Toxicol,2013,87(3):459-468.

[30]Bai X,Liu S,Yuan L,et al.Hydrogen⁃rich saline mediates neuro⁃protection through the regulation of endoplasmic reticulum stress and autophagy under hypoxia⁃ischemia neonatal brain injury in mice[J].Brain Res,2016,1646:410-417.

[31]Nagatani K,Wada K,Takeuchi S,et al.Effect of hydrogen gas on the survival rate of mice following global cerebral ischemia[J].Shock,2012,37(6):645-652.

[32]Sun Q,Cai J,Zhou J,et al.Hydrogen⁃rich saline reduces delayed neurologic sequelae in experimental carbon monoxide toxicity[J].Crit Care Med,2011,39(4):765-769.

[33]Wang W,Tian L,Li Y,et al.Effects of hydrogen⁃rich saline on rats with acute carbon monoxide poisoning[J].J Emerg Med,2013,44(1):107-115.

[34]Zweier JL,Flaherty JT,Weisfeldt ML.Direct measurement of free radical generation following reperfusion of ischemic myocardium[J].Proc Natl Acad Sci U S A,1987,84(5):1404-1407.

[35]Ohta S.Molecular hydrogen is a novel antioxidant to efficiently reduce oxidativestresswithpotentialfortheimprovementof mitochondrial diseases[J].Biochim Biophys Acta,2012,1820(5):586-594.

[36]Chen C,Chen Q,Mao Y,et al.Hydrogen⁃rich saline protects against spinal cord injury in rats[J].Neurochem Res,2010,35(7):1111-1118.

[37]Shen L,Wang J,Liu K,et al.Hydrogen⁃rich saline is cerebropro⁃tective in a rat model of deep hypothermic circulatory arrest[J].Neurochem Res,2011,36(8):1501-1511.

[38]Cui J,Chen X,Zhai X,et al.Inhalation of water electrolysis⁃de⁃rived hydrogen ameliorates cerebral ischemia⁃reperfusion injury in rats⁃A possible new hydrogen resource for clinical use[J].Neuro⁃science,2016,335:232-241.

[39]Ohta S.Recent progress toward hydrogen medicine:potential of molecular hydrogen for preventive and therapeutic applications[J].Curr Pharm Des,2011,17(22):2241-2252.

Research progress of protective mechanism of hydrogen on brain injury

ZHAN Ji⁃Chun1,2,ZHAO Ming⁃Yi2,LI Liu2,Idris Ahmed Sheikh2,ZHAO Ling⁃Ling2

1Xinjiang Medical University,Urumqi 830000,China;2The Third Xiangya Hospital of Central South University,Changsha 410013,China

Hydrogen is a medical gas for treatment of brain injury.Easy preparation,low cost,rapid onset,powerful permeability,non⁃toxicity,absence of residue,which are characteristics that make hydrogen become a promising application for clinical appli⁃cation.Brain injury is a kind of disease that structure and function of the brain were destroyed because of the vascular factors and the direct or indirect effects of external forces.The pathogenesis is related to many factors.This paper reviews the research progress of protective mechanism of hydrogen on brain injury through regu⁃lating inflammation,apoptosis,autophagy,mitochondrial energy changes,oxidative stress and endoplasmic reticulum stress.

hydrogen;brain injury;protective mechanism

R741

A

2095⁃6894(2017)03⁃22⁃04

2016-12-19;接受日期:2017-01-06

中南大学湘雅三医院重点学科建设项目;国家自然科学基金(81500231);湖南省自然科学基金(2015JJ6118);中南大学湘雅三医院“新湘雅人才工程”(JY201524)

詹纪春.研究方向:儿童神经系统疾病.E⁃mail:707259742@qq.com

赵玲玲.主任医师,教授,博士研究生导师.E⁃mail:llzhao2011@qq.com

猜你喜欢

脑损伤脑缺血氢气
低碳氢在炼油行业具有巨大潜力
针刺对脑缺血再灌注损伤大鼠大脑皮质细胞焦亡的影响
Quintero分期、CHOP分级与TTTS脑损伤的相关性对比分析
内源性NO介导的Stargazin亚硝基化修饰在脑缺血再灌注后突触可塑性中的作用及机制
间歇性低氧干预对脑缺血大鼠神经功能恢复的影响
右美托咪定抑制大鼠创伤性脑损伤后神经细胞凋亡
胆绿素改善大鼠脑缺血再灌注损伤的作用机制
脑损伤 与其逃避不如面对
氢气对缺血再灌注损伤保护的可能机制
Current pre-hospital traumatic brain injury management in China