β淀粉样蛋白与年龄相关性白内障△
2017-01-12郑天玉徐婕卢奕
郑天玉 徐婕 卢奕
·综述·
β淀粉样蛋白与年龄相关性白内障△
郑天玉 徐婕 卢奕
白内障是世界首位致盲性眼病,而年龄相关性白内障(ARC)是其中最主要的类型。ARC的发病机制以及非手术干预已经成为了研究热点。近来,研究者在多种证据支持下提出ARC与阿尔兹海默病(AD)可能存在类似的发病机制;因此,导致AD发生的关键物质β-淀粉样蛋白(Aβ)与ARC的相关性受到了特别关注。本文主要就Aβ与ARC的相关性研究进展作一综述。(中国眼耳鼻喉科杂志,2017,17:363-365,369)
白内障,年龄相关性;β淀粉样蛋白;淀粉样蛋白前体;β分泌酶;氧化应激
白内障是世界首位致盲性眼病,而年龄相关性白内障(age-related cataract, ARC)是其中最主要的类型。随着社会老龄化的加剧,其所占比例进一步上升。目前,通过手术摘除混浊的晶状体并植人工晶状体是治疗ARC的唯一有效方法。但是,白内障术后不可避免存在屈光调节问题、手术并发症和后发障等问题,给社会带来了巨大的负担[1]。因此,通过研究ARC的发病机制,寻找其非手术治疗的方法,成为了当前研究热点。
以往研究表明白内障可能与阿尔兹海默病(Alzheimers disease, AD)存在类似的发病机制。Cumurcu等[2]发现,在白内障患者中AD样认知功能障碍者明显多于未患白内障的对照组;而AD患者中白内障发生率也明显高于未患AD的对照组。Goldstein等[3]发现,AD患者的晶状体存在核上区皮质混浊,而在此部位存在明显的淀粉样蛋白特异性刚果红染色。此外,在转基因AD模型小鼠晶状体中也发现了核上和皮质深层的白内障[4]。von Otter等[5]还发现,KLC1基因突变可能同时与AD和白内障相关。Jun等[6]也发现,δ catenin基因可能同时与AD和白内障相关。这些研究均表明白内障与AD的发病机制可能存在相关性。因此,导致AD发生的关键物质β-淀粉样蛋白(β-amyloid, Aβ)与ARC的相关性受到了特别关注[3, 7-8]。
1 Aβ的生物学特性
Aβ是由40(Aβ1~40)或42~43(Aβ1~42,43)个氨基酸组成的可溶性多肽,它由淀粉样蛋白前体(amyloid precursor protein, APP)剪切形成。APP先经过β分泌酶(β-secretase)切割生成可溶性APPβ(soluble APPβ, sAPPβ)和固定于膜的C端片段(APPβ-carboxylterminal fragment, APPβ-CTF),然后APPβ-CTF在γ-分泌酶(γ-secretase)切割下最终生成Aβ[9],Aβ的异常聚集导致淀粉样纤维的形成,为AD的致病关键[10]。此外,APP也可经过α-分泌酶(α-secretase)的切割作用形成无细胞毒性的可溶性APPα片段(soluble APPα, sAPPα)[11]。
2 Aβ在晶状体中的表达
有研究者[12-14]发现,在哺乳动物的正常晶状体中,晶状体上皮细胞和皮质纤维细胞表达APP及其分泌酶,提示晶状体中存在与脑组织中类似的APP代谢和Aβ生成过程。Goldstein等[3]也发现,在正常老年人晶状体皮质和房水中,存在Aβ的微量表达,但正常晶状体中不存在淀粉样沉淀。也有研究[15]观察了ARC患者的晶状体前囊膜,发现前囊下上皮细胞存在APP和Aβ的阳性染色。遗憾的是,该研究未设立正常对照,且未行定量检测,因此目前尚无文献报道ARC患者晶状体中APP和Aβ的含量是否较正常人有所改变;也无文献报道Aβ在ARC发病中究竟发挥着什么作用及其作用机制如何。
3 Aβ通过氧化应激促进ARC
目前公认,氧化损伤因素在ARC发病机制中占主要地位[16-20]。氧化损伤作用于晶状体内的晶状体蛋白质,对其造成损伤,使蛋白质发生变性而异常聚集、破碎或者沉淀,从而引起晶状体的浑浊发生白内障[16]。此外,近来的研究还发现,氧化损伤可以对晶状体上皮细胞(lens epithelial cells, LECs)中的核DNA(nuclear DNA, nDNA)和线粒体DNA(mitochondrial DNA, mtDNA)造成损伤[21]。LECs是晶状体中唯一有分裂活性、数量相对稳定的细胞。它们在晶状体中酶活性最高,并与其下方的晶状体纤维细胞进行信息传递与物质交流,也含有晶状体绝大部分防护性、代谢性、渗透性及其他的调节系统,对晶状体的生长、分化、维持晶状体的稳定性与透明性起着十分重要的作用。其 nDNA和mtDNA损伤使细胞活性下降,而LECs的细胞活性与晶状体混浊的发展密切相关,是各型非先天性白内障共同的细胞学基础,氧化损伤促进了LECs的凋亡,从而引发ARC的形成[22-25]。
而既往许多研究[26-29]已证实,Aβ与氧化损伤存在密切的相关性。AD的相关研究[27, 30]表明,Aβ具有很强的氧化损伤作用。根据AD研究者提出的经典淀粉样蛋白瀑布假说,一方面,Aβ通过增加活性氧(reactive oxygen species, ROS)的生成,引起脑组织中氧化损伤环境加剧和神经细胞毒性;另一方面,氧化损伤环境可诱导Aβ的生成进一步增加。由此可知,氧化损伤环境与Aβ沉积这两方面互相促进,一旦启动将产生瀑布式的自我放大效应,在疾病发展中产生更大的影响[29]。而白内障研究者也发现,氧化损伤环境可以导致体外培养的LECs和完整晶状体中的APP表达和Aβ生成增多[7, 28];同时,Aβ聚集的区域出现了LECs和附近纤维细胞的变性和凋亡[28]。Lee等[15]将200 nmol/L Aβ与晶状体培养液中的牛血清白蛋白(albumin from bovine serum, BSA)交联,发现Aβ可诱导大鼠晶状体中正常形态的单层LECs向多层纤维细胞转化以及凋亡,甚至出现了晶状体的混浊。此外,值得关注的是,培养液中加入Aβ后,晶状体出现了典型的皮质混浊[15, 28]。这种典型的皮质浑浊改变,同人ARC以及目前ARC研究中常用的动物模型——紫外线照射和半乳糖性模型非常相似[31-32]。Nagai等[7, 33]还发现随着年龄的增加(25~60 d),UPL大鼠(白内障模型大鼠)晶状体中过氧化氢(H2O2)含量逐渐增加,并伴随着其LECs中Aβ含量的显著增加以及晶状体逐渐浑浊,无白内障的正常对照组大鼠随着年龄增长则无明显变化,而通过每天2次滴0.5%的双硫醒(disulfiram eye drops, DSF)滴眼液能减少60 d龄的UPL大鼠晶状体中H2O2含量的增加,从而减少Aβ的累积并减轻晶状体的浑浊程度。因此他们推测UPL大鼠发生白内障可能与晶状体中大量累积的Aβ有关,且已证实Aβ的累积对LECs的线粒体有损伤作用,而LECs的线粒体损伤与晶状体的浑浊存在密切相关性。这些研究均提示,Aβ所致氧化损伤可能是引起ARC发病的机制之一。
4 Aβ减缓ARC
尽管目前大部分的研究均认为,Aβ可以引起氧化损伤,促进细胞凋亡,进而可能导致白内障的发生。但是,Zou等[34]还发现Aβ可以抵抗金属离子引起的氧化损伤,减少氧化损伤引起的细胞死亡,他们将5 μmol/L的Aβ加入细胞培养液中预处理后,再往培养液中加入Cu2+、Fe2+等金属离子。结果发现金属离子对细胞活性具有很强的毒性损伤作用,而Aβ可以对抗这种损伤,与未进行Aβ预处理的对照组相比,Aβ预处理组的细胞活性显著高于对照组。Plant等[35]则证实通过抑制β分泌酶或γ分泌酶而抑制Aβ的生成,可以引起神经细胞的死亡;而加入低浓度(10 pmol/L~1 nmol/L)的Aβ后可以避免这种死亡的发生。因此,有学者推测Aβ可能是细胞的一个保护性因子。当细胞受到损伤时,Aβ反馈性表达增加以对抗损伤对细胞带来的伤害[34, 36]。其实,早在20年前,Regland等[37]就已经提出了这种代偿机制假说。他们认为Aβ是机体中的生理性蛋白,Aβ的生成增多可能是细胞对外来损伤的一个反馈性调节结果,而基因或环境因素导致的Aβ缺乏则才是有害的致病因素。然而,其作用机制如何目前还不得而知。已有研究[38]发现Aβ定位于细胞核,提示其可能具有调控基因表达的作用。Barucker等[39]通过微阵列分析发现,Aβ可以引起225个基因表达水平发生变化,其中包括与晶状体的发育密切相关的基因IGFBP5。IGFBP5的表达异常会引起晶状体浑浊,从而产生白内障[40-41]。此外,Chen等[42]证实Aβ还可以引起全基因组的低甲基化水平,而基因组的甲基化水平与衰老密切相关。
5 展望
目前,Aβ与ARC的相关性研究还处于初级阶段,Aβ在ARC患者中的表达变化及其对ARC的影响还有待进一步深入探究。有研究发现Aβ具有促进氧化损伤作用,而另外一些研究却发现Aβ具有对抗氧化损伤的作用。我们推测不同研究所得出的不同结果可能与不同试验中选取的Aβ浓度不同有关,在发现Aβ具有氧化损伤作用的研究中选取的Aβ浓度平均较发现Aβ具有对抗氧化损伤作用的研究中高,因此我们猜想低浓度的Aβ可能才具有对抗氧化损伤的作用,而高浓度的Aβ则有促进氧化损伤作用。Aβ对氧化损伤究竟是有促进作用还是对抗作用?对机体是有害还是有利?对ARC的发病有什么影响以及其影响机制如何?目前都还没有形成统一的定论。虽然已证实,在正常人和ARC患者晶状体中均存在Aβ的表达,但是尚没有研究对两者晶状体中Aβ表达含量进行对比,Aβ表达含量在ARC患者中如何变化目前还不得而知。目前很少有文献报道,在体内环境下Aβ与ARC的相关性。因此,未来的研究应设立不同浓度组的Aβ,观察其对晶状体上皮细胞的影响,并扩大人体取材的样本量,分别选取ARC与正常人的样本,明确ARC患者与正常人相比LECs内Aβ水平的变化,探索在体内环境下Aβ与ARC的相关性,从而为有效防治ARC的发生提供新的思路。
[ 1 ] Tang Y, Wang X, Wang J, et al. Prevalence of age-related cataract and cataract surgery in a Chinese adult population: the Taizhou Eye Study[J]. Invest Ophthalmol Vis Sci, 2016,57(3):1193-1200.
[ 2 ] Cumurcu T, Dorak F, Cumurcu BE, et al. Is there any relation between pseudoexfoliation syndrome and Alzheimer′s type dementia?[J]. Semin Ophthalmol, 2013,28(4):224-229.
[ 3 ] Goldstein LE, Muffat JA, Cherny RA, et al. Cytosolic beta-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer′s disease[J]. Lancet, 2003,361(9365):1258-1265.
[ 4 ] Melov S, Wolf N, Strozyk D, et al. Mice transgenic for Alzheimer disease β-amyloid develop lens cataracts that are rescued by antioxidant treatment[J]. Free Radic Biol Med, 2005,38(2):258-261.
[ 5 ] von Otter M, Landgren S, Nilsson S, et al. Kinesin light chain 1 gene haplotypes in three conformational diseases[J]. Neuromolecular Med, 2010,12(3):229-236.
[ 6 ] Jun G, Moncaster JA, Koutras C, et al. Delta-Catenin is genetically and biologically associated with cortical cataract and future Alzheimer-related structural and functional brain changes[J]. PLoS One, 2012,7(9):e43728.
[ 7 ] Nagai N, Ito Y. Excessive hydrogen peroxide enhances the attachment of amyloid beta1-42 in the lens epithelium of UPL rats, a hereditary model for cataracts[J]. Toxicology, 2014,315:55-64.
[ 8 ] Meehan S, Berry Y, Luisi B, et al. Amyloid fibril formation by lens crystallin proteins and its implications for cataract formation[J]. J Biol Chem, 2004,279(5):3413-3419.
[ 9 ] Hu J, Lin T, Gao Y, et al. The resveratrol trimer miyabenol C inhibits beta-secretase activity and beta-amyloid generation[J]. PLoS One, 2015,10(1):e115973.
[10] Thal DR, Fändrich M. Protein aggregation in Alzheimer′s disease: Abeta and tau and their potential roles in the pathogenesis of AD[J]. Acta Neuropathol, 2015,129(2):163-165.
[11] Guillot-Sestier MV, Sunyach C, Ferreira ST, et al. α-secretase-derived fragment of cellular prion, N1, protects against monomeric and oligomeric amyloid β (Aβ)-associated cell death[J]. J Biol Chem, 2012,287(7):5021-5032.
[12] Parthasarathy R, Chow KM, Derafshi Z, et al. Reduction of amyloid-beta levels in mouse eye tissues by intra-vitreally delivered neprilysin[J]. Exp Eye Res, 2015,138:134-144.
[13] Li G, Percontino L, Sun Q, et al. Beta-amyloid secretases and beta-amloid degrading enzyme expression in lens[J]. Mol Vis, 2003,9:179-183.
[14] Frederikse PH, Zigler JS Jr. Presenilin expression in the ocular lens[J]. Curr Eye Res, 1998,17(9):947-952.
[15] Lee KW, Seomun Y, Kim DH, et al. Possible role of amyloid beta-(1-40)-BSA conjugates in transdifferentiation of lens epithelial cells[J]. Yonsei Med J, 2004,45(2):219-228.
[16] Shibata S, Shibata N, Shibata T, et al. The role of Prdx6 in the protection of cells of the crystalline lens from oxidative stress induced by UV exposure[J]. Jpn J Ophthalmol, 2016, 60(5):408-418.
[17] Zhu J, Hou Q, Dong XD, et al. Targeted deletion of the murine Lgr4 gene decreases lens epithelial cell resistance to oxidative stress and induces age-Related cataract formation[J]. PLoS One, 2015,10(3):e0119599.
[18] Selin JZ, Lindblad BE, Rautiainen S, et al. Are increased levels of systemic oxidative stress and inflammation associated with age-related cataract?[J]. Antioxid Redox Signal, 2014,21(5):700-704.
[19] Zhang J, Wu J, Yang L, et al. DNA damage in lens epithelial cells and peripheral lymphocytes from age-Related cataract patients[J]. Ophthalmic Res, 2014,51(3):124-128.
[20] Zoric' L, Colak E, Canadanovic' V, et al. Oxidation stress role in age-related cataractogenesis[J]. Med Pregl, 2010,63(7-8):522-526.
[21] Erol Tinaztepe Ö, Ay M, Eser E. Nuclear and mitochondrial DNA of age-related cataract patients are susceptible to oxidative damage[J]. Curr Eye Res, 2017,42(4)583-588.
[22] Gosak M, MarkovicR, Fajmut A, et al. The analysis of intracellular and intercellular calcium signaling in human anterior lens capsule epithelial cells with regard to different types and stages of the cataract[J]. PLoS One, 2015,10(12):e0143781.
[23] Wang X, Simpkins JW, Dykens JA, et al. Oxidative damage to human lens epithelial cells in culture: estrogen protection of mitochondrial potential, ATP, and cell viability[J]. Invest Ophthalmol Vis Sci, 2003,44(5):2067-2075.
[24] Li WC, Kuszak JR, Dunn K, et al. Lens epithelial cell apoptosis appears to be a common cellular basis for non-congenital cataract development in humans and animals[J]. J Cell Biol, 1995,130(1):169-181.
[25] Goodenough DA. The crystalline lens. A system networked by gap junctional intercellular communication[J]. Semin Cell Biol, 1992,3(1):49-58.
[26] Takagane K, Nojima J, Mitsuhashi H, et al. Aβ induces oxidative stress in senescence-accelerated (SAMP8) mice[J]. Biosci Biotechnol Biochem, 2015,79(6):912-918.
[27] Swomley AM, Förster S, Keeney JT, et al. Abeta, oxidative stress in Alzheimer disease: evidence based on proteomics studies[J]. Biochim Biophys Acta, 2014,1842(8):1248-1257.
[28] Frederikse PH, Garland D, Zigler JS Jr, et al. Oxidative stress increases production of beta-amyloid precursor protein and beta-amyloid (Abeta) in mammalian lenses, and Abeta has toxic effects on lens epithelial cells[J]. J Biol Chem, 1996,271(17):10169-10174.
[29] Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer′s disease[J]. Trends Pharmacol Sci, 1991,12(10):383-388.
[30] Lesiewska H, Malukiewicz G, Bagniewska-Iwanier M, et al. Amyloid β peptides and cognitive functions in patients with pseudoexfoliation syndrome[J]. Curr Eye Res, 2016,41(5):662-666.
[31] Ji L, Li C, Shen N, et al. A simple and stable galactosemic cataract model for rats[J]. Int J Clin Exp Med, 2015,8(8):12874-12881.
[32] 崔蓓,付清,柳林,等. 紫外线辐射致大鼠白内障模型的建立[J]. 国际眼科杂志,2009,9(5):836-838.
[33] Nagai N, Ito Y. Adverse effects of excessive nitric oxide on cytochrome c oxidase in lenses of hereditary cataract UPL rats[J]. Toxicology, 2007,242(1-3):7-15.
[34] Zou K, Gong JS, Yanagisawa K, et al. A novel function of monomeric amyloid beta-protein serving as an antioxidant molecule against metal-induced oxidative damage[J]. J Neurosci, 2002,22(12):4833-4841.
[35] Plant LD, Boyle JP, Smith IF, et al. The production of amyloid beta peptide is a critical requirement for the viability of central neurons[J]. J Neurosci, 2003,23(13):5531-5535.
[36] Roberts GW, Gentleman SM, Lynch A, et al. Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer′s disease[J]. J Neurol Neurosurg Psychiatry, 1994,57(4):419-425.
[37] Regland B, Gottfries CG. The role of amyloid beta-protein in Alzheimer′s disease[J]. Lancet, 1992,340(8817):467-469.
[38] Barucker C, Harmeier A, Weiske J, et al. Nuclear translocation uncovers the amyloid peptide A 42 as a regulator of gene transcription[J]. J Biol Chem, 2014,289(29):20182-20191.
[39] Barucker C, Sommer A, Beckmann G, et al. Alzheimer amyloid peptide abeta42 regulates gene expression of transcription and growth factors[J]. J Alzheimers Dis, 2015,44(2):613-624.
[40] Civil A, van Genesen ST, Klok EJ, et al. Insulin and IGF-I affect the protein composition of the lens fibre cell with possible consequences for cataract[J]. Exp Eye Res, 2000,70(6):785-794.
[41] Sato S, Nakamura M, Cho DH, et al. Identification of transcriptional targets for Six5: implication for the pathogenesis of myotonic dystrophy type 1[J]. Hum Mol Genet, 2002,11(9):1045-1058.
[42] Chen KL, Wang SS, Yang YY, et al. The epigenetic effects of amyloid-beta(1-40) on global DNA and neprilysin genes in murine cerebral endothelial cells[J]. Biochem Biophys Res Commun, 2009,378(1):57-61.
β-amyloidandage-relatedcataracts
ZHENGTian-yu,XUJie,LUYi.
DepartmentofOphthalmology,EyeEarNoseandThroatHospitalofFudanUniversity;MyopiaKeyLaboratoryofHealthMinistry,Shanghai200031,China
LU Yi, Email: luyieent@126.com
Cataract is the most common cause of blindness worldwide, while age-related cataract (ARC) is the main subtype of cataract. The pathogenesis and non-surgical therapies of ARC have become the research hotspots. Recently, with multiple supporting evidences, researchers have demonstrated that ARC formation might share a common mechanism with Alzheimer disease (AD) pathogenesis. Thus, the correlation between ARC and β-amyloid (Aβ) which plays a critical role in the pathogenesis of AD causes special concern. This article mainly reviewed the advances in the research of correlation between Aβ and ARC. (Chin J Ophthalmol and Otorhinolaryngol,2017,17:363-365,369)
Cataract, age-related; β-amyloid; Amyloid precursor protein; β-secretase; Oxidative stress
2016-07-18)
(本文编辑 诸静英)
国家自然科学基金面上项目 (81270989);国家自然科学基金青年项目 (81300747);高等学校博士学科点专项科研基金 (20130071120096);上海青年医师培养资助计划(第三批)
复旦大学附属眼耳鼻喉科医院眼科 卫生部近视眼重点实验室 上海 200031
卢奕(Email: luyieent@126.com)
10.14166/j.issn.1671-2420.2017.05.016