新疆温宿县土壤重金属含量分布及污染风险评价
2017-01-09付彦博窦晓静赖宁黄建王新勇王治国
付彦博,窦晓静,赖宁,黄建,王新勇,王治国
(新疆农业科学院土壤肥料与农业节水研究所,乌鲁木齐 830091)
新疆温宿县土壤重金属含量分布及污染风险评价
付彦博,窦晓静,赖宁,黄建,王新勇,王治国
(新疆农业科学院土壤肥料与农业节水研究所,乌鲁木齐 830091)
土壤;重金属;污染评价;生态风险
0 引言
【研究意义】重金属是土壤环境污染物质之一[1],由于其滞留持久、高富集等特性,成为威胁区域生态系统健康的重要因素。随着工农业的快速发展,环境中重金属污染加剧,土壤重金属污染问题已成为全球广泛关注的环境问题[2, 3]。人类活动是土壤重金属污染的主要驱动因子,重金属的污染直接影响土壤性质(物理、化学),抑制土壤微生物活动,导致农作物的产、品质降低,最终危及人类健康[4]。旨在对新疆温宿县林果土壤重金属含量、分布状况及风险进行评价,为新疆重金属污染防治、修复等技术提供理论依据。【前人研究进展】新疆(干旱区)的相关研究主要集中于污灌农田、矿区、山地、绿洲城市工业园等。任力民等[8]以农田为研究对象,在新疆全疆(13个地州)进行土壤重金属含量调查,结果表明,6种重金属(Hg、Cd、Pb、As、Cr和Cu)含量均低于国家二级标准限值,污染评价均为安全等级。陈牧霞等[9]发现新疆污灌区重金属Cu、Zn、Ni、Cr、Pb以残渣态为主。土壤中李长春和姚峰等[10, 11]均选定五彩湾露天矿区为研究靶区,利用GIS手段厘定重金属的空间分布特征和主要来源,评价重金属污染等级。综合结果显示,此区域土壤中Cr污染最为严重,煤矿区域各个单元的污染程度:工业区>开采区>排土场>办公生活区。余艳华等[12]研究了新疆奎屯地区土壤重金属的污染状况,发现部分地区土壤As和Cd存在超标的情况,罗艳丽等[13]筛选出藨草(ScirpusL)和芦苇(Phragmites)为此区域的耐As植物。乌鲁木齐市周边[14-17]农田、菜地土壤重金属含量进行调查,土壤中重金属有明显积累,含量超过绿色食品土壤环境质量要求。【本研究切入点】近年来,土壤重金属含量已广泛成为区域环境质量评价的依据之一[5-7],但在西北干旱区相关研究较少。以新疆南部阿克苏温宿县研究靶区,重点分析17个样区(138个采样点)土壤重金属(As、Hg、Cd、Pb和Cr)的含量,同时评价土壤中5种重金属污染水平。【拟解决的关键问题】以新疆土壤背景值、国家土壤环境质量二级标准(GB15618-1995)为基础,采用单因子污染指数法和内梅罗综合污染指数法,阐明温宿县土壤重金属含量及分布特征,对污染指数进行定量比较及评级,为土壤重金属污染防治、修复等技术提供参考。
1 材料与方法
1.1 材 料
温宿县(40°52~42°15′N,79°28′~81°30′E)位于新疆西部天山中段的托木尔峰南麓,塔里木盆地北缘。属典型的大陆性气候,年均气温10.1℃,年均降水量 65.4 mm,年均无霜期185 d。
将温宿县林果按各乡镇划分为17个区,每个区分根据林果面积分布和土壤类型进行样点布设,共布设1 300个样点,选取138个具有代表性样点进行重金属样品采集测定。每个样地采用多点取样混合一个代表样,在每个样地中分别取土壤层0~20 cm的土壤0.5 kg,共138份。将土壤样品晾干后粉碎,过孔径筛(2 mm),保存待消煮测定。列出样品基本信息。表1
表1 样品信息
Table 1 The information of samples
采样地点Sampleareas样区编号Codes样品数量No.ofSamples经度(°)Longitude纬度(°)LatitudepH值PHvalue古勒阿瓦提乡Guleawatixiangcountry11140.97~41.1280.54~80.697.23佳木镇Jiamutown22341.23~41.3680.34~80.647.30塔格拉克牧场Tagelapasture3441.31~41.3480.17~80.207.32十万亩生态园Shiwanmuecologicalpark42141.34~41.4380.18~80.277.17恰格拉克乡Qiagelakecountry5741.23~41.2779.85~80.217.63阿热勒镇Areletown61041.15~41.2479.71~80.017.63水稻农场Shuidaofarm7341.22~41.2880.11~80.157.19吐木秀克镇Tumuxiuketown8741.37~41.5379.82~80.107.35托乎拉乡Tuohulacountry9841.28~41.3380.09~80.247.65共青团农场Gongqingtuaqnfarm10241.24~41.2780.62~80.637.42恰其力克牧Qiaqilikepasture11241.17~41.18≈80.837.74青年农场Qingnianfarm12141.180.547.66依希来木其Yixilaimuqi131441.19~41.3180.39~80.467.54克孜勒镇Keziletown142141.07~41.2380.42~80.517.55尤喀克麦盖提村Youkakemaitivillage152≈41.17≈79.867.67吉格代牧场Gugedaipasture16141.2979.87.63温宿镇Wensutown17141.3480.227.58
1.2 方 法
1.2.1 样品测定
土壤样品测定采用HCl+ HNO3+HF +HClO4全消毒法[18],秤取8.0 g土壤样品,用HCl+ HNO3+HF +HClO4(40+20+20+6 mL)消毒,定容至100 mL保存,待测定。待测液中,As、Hg含量用原子荧光光谱法测定,Cd含量用石墨炉原子吸收分光光度法测定,Pb、Cr含量用火焰原子吸收分光光度法测定。
1.2.2 重金属污染评价
根据不同样区和不同样点的整体调查,对研究区域采用污染指数[19, 20]和潜在生态风险指数进行综合评价。
1.2.2.1 污染指数法
单因子污染指数计算如公式(1),Pi为第i污染物的污染指数,Ci为第i污染物的实测值,Si为第i污染物的评价标准。
内梅罗(Nemerow)综合污染指数的计算如公式(2),Ps为综合污染指数,n为污染物总数,Pi为第i污染物的污染指数,Pmax所有污染元素指数中的最大值。
公式(1):Pi=Ci/Si.
依据《土壤环境质量标准》(GB15618-1995)中的二级标准对果园土壤重金属进行污染评价(pH=7.48<7.5,图1中警戒线),列出土壤污染指数分级[21, 22]。表2
表2 土壤污染指数分级
Table 2 The Grading of soil pollution indexes
指数Index范围Range污染等级Pollutiongrade污染水平Pollutionlevel单因子污染指数PiSinglefactorpollutionindex(Pi)Pi≤1安全清洁1
1.2.2.2 潜在生态风险指数法
采用Hakanson[23]潜在生态风险指数法评价温宿县土壤中重金属的生态风险及危害,公式如下:
表3 重金属生态风险、污染水平评估标准
Table 3 Assessment standards of potential ecological risk coefficient(Eir) and risk indices (RI) of heavy metals
1.3 数据统计
试验数据使用Microsoft Excel 2010(Microsoft公司,美国)进行预处理,SPSS19.0(IBM公司,美国)进行单因素方差分析(One-way ANOVA)和相关性分析。
2 结果与讨论
2.1 温宿县土壤重金属含量
研究表明,温宿县17个样区土壤重金属含量特征值为As平均含量11.96 mg/kg,标准差为3.56 mg/kg,变异系数为29.77%;Hg平均含量0.032 mg/kg,标准差为0.03 mg/kg,变异系数为9.38%;Cd平均含量0.17 mg/kg,标准差为0.04 mg/kg,变异系数为23.53%;Pb平均含量22.93 mg/kg,标准差为3.74 mg/kg,变异系数为16.31%;Cr平均含量43.38 mg/kg,标准差13.60 mg/kg,变异系数为28.11%。温宿县138个采样点5种土壤重金属差异不大(9.38%~29.77%),平均值和背景值的比值均接近1(0.5~1.7)。温宿县果园的重金属含量基本上与新疆土壤背景值相似,土壤均未受到污染。表4
表4 温宿县果园土壤重金属含量
Table 4 The heavy metal contents of Urumqi soil
注:背景值为新疆土壤背景值,比值为平均值/背景值[24, 25]Note: It’s the Xinjiang soil background value, the ratio is average/ background values
2.2 温宿县土壤重金属含量分布特征
研究表明,138个土壤样品As、Hg、Cd、Pb和Cr 5种重金属含量均低于国家土壤环境质量二级标准限值(国家《土壤环境质量标准》(GB15618-1995)),即该区域土壤重金属含量不存在污染的风险。其中Hg、Pb和Cr的土壤重金属含量均明显低于国家二级标准限值,土壤样点As和Cb的含量与警戒值较为接近。图1
2.3 土壤重金属的相关性
2.3.1 相关性
温宿县5种重金属含量的相关分析表明,土壤中5种重金属之间的相关关系较为简单,As-Hg、As-Cd、As-Cr、Hg-Cd、Hg-Cr、Cd-Pb、Cd-Cr 均呈极显著正相关(P<0.01),Hg-Pb呈极显著负相关,As-Pb之间没有显著性相关关系(P>0.05)。说明土壤中重金属As- Hg- Cd- Cr的相关性较好,具有较强的同源性,Pb有较强的异源性。表5
注:虚线为各重金属元素含量的国家土壤环境质量二级标准(GB15618-1995)限值
Note: The dotted line is the second grade of nation soil environmental quality standards limit for heavy metal content (GB15618-1995)
图1 土壤重金属含量
Fig.1 Soil heavy metals contents of each survey point
表5 土壤重金属含量的相关关系矩阵
Table 5 Correlation matrix of heavy metals contents in soils
注:**极显著性相关;*显著性相关Note: The sign ** indicates differences at significant level of P=0.01, and * with P=0.05
2.3.2 主成分分析
温宿县土壤重金属主成分因子分析表明,将土壤污染物的信息进行了集中和提取,识别出起主导作用的成分。主成分分析可知,5种重金属辨识出2 个主成分,分别解释总因子的54.6%和25.3%,累计贡献率达到54.6%和80.0%。因此,此分析数据可以解释5种重金属元素来源的绝大部分信息。第1主成分分析可知,重金属As、Hg、Cd和Pb具有较大载荷(高于背景值),第2主成分分析可知,只有重金属Cr具有较高的载荷,各元素之间的相关性较强。表6
表6 重金属元素主成分因子载荷矩阵
Table 6 Factors matrix of heavy metals insoils
元素Element主成分Principalcomponent12As0.899-0.019Hg0.8670.161Cd0.8180.371Pb0.684-0.541Cr0.1920.900方差贡献率Variancecontributionrate54.625.3积累贡献率Accumulationcontributionrat54.680.0
2.4 土壤重金属污染评价
采用污染指数法评价温宿县土壤中As、Hg、Cd、Pb和Cr重金属元素的污染状况,评价标准见表3,评价结果表明,由单因子污染指数来看,温宿县重金属As、Hg、Cd、Pb和Cr的土壤中均属于安全等级(Pi均≤1),为清洁水平;10万亩生态园的土壤污染指数值最低(0.31),清洁程度最高,恰格拉克乡的土壤污染指数值最高(0.77),但在安全等级以内;由5种重金属元素的综合污染指数可知,各样区的温宿县重金属As、Hg、Cd、Pb和Cr的土壤均属于安全等级(Px均≤0.7),为清洁水平;由温宿县各样区土壤重金属单因子、综合污染指数平均值可知,污染程度排序为:As(0.56)>Cd(0.38)>Cr(0.15)>Pb(0.07)>Hg(0.053),综合污染属于清洁水平(Px≤0.7)。表7
表7 土壤污染指数分级
Table 7 The Grading of soil pollution indexes
样区编码Samplecodes单因子污染指数Pi Singlefactorpollutionindex(Pi)AsHgCdPbCr综合污染指数PxComprehensivePollutionindex(Px)10.480.050.630.090.180.4920.440.040.540.080.150.4230.420.060.410.080.190.3440.310.050.420.070.10.5650.770.060.320.060.180.5860.660.060.320.060.170.570.630.140.590.070.180.580.660.170.60.070.180.5290.720.040.270.060.130.54100.380.040.430.070.120.34110.430.010.230.050.110.33120.740.020.330.060.150.55130.640.020.270.070.130.48140.590.020.30.070.160.45150.640.050.330.050.160.48160.680.070.250.050.140.51170.40.020.220.060.080.3平均值Mean0.560.0530.380.070.150.46
2.5 潜在生态风险评价
从综合潜在生态危险指数来看,5种重金属的RI值的范围为79.78~236.10。有58.8%的样区处于低生态风险程度(RI<150),41.2%的样区处于中生态风险程度(150≤RI<300)。各样区综合潜在生态风险指数的平均值表明,温宿镇处于低生态风险程度(RI=139.94<150)。表3,表8
表8 重金属潜在生态风险系数(Eir)和风险指数(RI)
3 讨 论
工农业的快速发展,导致土壤环境中重金属污染逐渐加剧,温宿县林果园主要种植红枣、核桃,以农业活动为主。温宿县17个样区138个土壤样品的重金属As、Hg、Cd、Pb和Cr的平均含量11.96、0.032、0.17、22.93 和43.38 mg/kg,与孙继坤[24]得出的新疆土壤背景值相似,说明近30年,温宿县林果园的土壤环境良好,基本上未受到农业活动的影响。5种重金属的含量分别均低于国家土壤环境质量二级标准限值,但部分地区的As和Cd含量较为接近警戒线,需做相应的预防、治理。
以污染指数、潜在生态风险指数法综合评定温宿县重金属情况,有更全面、更实时、更准确的优点。温宿县基本上不存在重金属污染、生态危险状况。其中,重金属As的污染指数为0.56,较其他元素大,需注意治理、管理。潜在生态风险评价得出,As、Pb和Cr处于低生态风险程度,Hg和Cd处于中生态风险程度,综合潜在生态风险评价属于低生态风险程度,说明温宿县整体的生态环境良好。因此,温度县土壤环境处于安全、清洁等级,有利于进行农业活动,研究结果可为该区土壤重金属污染防治、修复等技术的研究提供理论支撑。
4 结 论
新疆温宿县17个样区138个土壤样品的五种重金属含量(As、Hg、Cd、Pb和Cr)均低于国家土壤环境质量二级标准限值,且土壤重金属含量的变异系数比值均接近1(0.5~1.7),基本上与新疆土壤背景值相似,即该区域土壤重金属含量不存在污染的风险,土壤均未受到污染。
温宿县土壤中5种重金属之间基本上均呈极显著相关关系(As-Pb除外),可辨识为2个主成分。PC1中重金属As、Hg、Cd和Pb具有较大载荷,PC2中只有Cr具有较大载荷。
由单因子、综合污染指数来看,温宿县重金属As、Hg、Cd、Pb和Cr的土壤中均属于安全等级(Pi均≤1,Px均≤0.7),为清洁水平;由温宿县各样区土壤重金属单因子、综合污染指数平均值可知,污染程度排序为:As>Cd>Cr>Pb>Hg,综合污染属于清洁水平(Px≤0.7)。
References)
[1] 王岙, 白梅,崔勇. 吉林省部分地区食品中铅、镉污染状况分析[J]. 中国食品卫生杂志,2006,(3):239-243.
WANG Ao, BAI Mei, CUI Yong. (2006). Situation of Lead and Cadmium in Foods in Jilin Province during the Period 2001-2004 [J].ChineseJournalofFoodHygiene, (3):239-243. (in Chinese)
[2] Jrup, L. (2003). Hazards of heavy metal contamination.BritishMedicalBulletin, 68(486):167-182.
[3]黄益宗, 郝晓伟, 雷鸣, 等. 重金属污染土壤修复技术及其修复实践[J]. 农业环境科学学报, 2013,32(3):409-417.
HUANG Yi-zong, HAO Xiao-wei, LEI Ming, et al. (2013). The Remediation Technogy and Remediation Practice of Heavy metals-contaminated Soil [J].JournalofAgro-EnvironmentScience, 32(3):409-417. (in Chinese)
[4]吕建树, 张祖陆, 刘洋, 等. 日照市土壤重金属来源解析及环境风险评价[J]. 地理学报,2012,67(7):971-984.
LU Jian-shu, ZHANG Zu-lu, LIU Yang, et al. (2012). Sources Identification and Hazardous Risk Delineation of Heavy Metals Contamination in Rizhao City [J].ActaGeographicaSinica, 67(7):971-984. (in Chinese)
[5]马陶武, 朱程, 王桂岩, 等. 铜锈环棱螺对沉积物中重金属的生物积累及其与重金属赋存形态的关系[J]. 应用生态学报,2010,21(3):734-742.
MA Tao-wu, ZHU Chen, WANG Gui-yan, et al. (2010). Bioaccumulation of Sediment Heavy Metals in Bellamya Aeruginosa and its Relations with the Metals Geochemical Fractions [J].ChineseJournalofAppliedEcolo-gy, 21(3):734-742. (in Chinese)
[6]吴新民, 李恋卿, 潘根兴, 等. 南京市不同功能城区土壤中重金属Cu、Zn、Pb和Cd的污染特征[J]. 环境科学,2003,24(3):105-111.
WU Xin-min, LI Luan-qing, PAN Gen-xin et al. (2003). Soil Pollution of Cu,Zn,Pb and Cd in Different City Zones of Nanjing [J].EnvironmentalScience, 24(3):105-111. (in Chinese)
[7]穆叶赛尔·吐地, 吉力力·阿布都外力,姜逢清. 天山北坡土壤重金属含量的分布特征及其来源解释[J]. 中国生态农业学报,2013,21(7):883-890.
Muyessar Turdi, Jilili Abuduwaili, JIANG Feng-Qing. (2013). Distribution Characteristics of Soil Heavy Metal Content in Northern Slope of Tianshan Mountains and its Source Explanation [J].ChineseJournalofEco-Agriculture, 21(7):883-890. (in Chinese)
[8]任力民, 贾登泉,王飞. 新疆农田土壤重金属含量调查与评价[J]. 新疆农业科学,2014,51(9):1 760-1 764.
REN Li-min, JIA Deng-quan, WANG Fei. (2014). Preliminary Survey and Evaluation of Heavy Metal Content in Farmland Soil [J].XinjiangAgriculturalSciences, 51(9):1,760-1,764. (in Chinese)
[9]陈牧霞, 地里拜尔·苏力坦, 杨潇, 等. 新疆污灌区重金属含量及形态研究[J]. 干旱区资源与环境,2007,21(1):150-154.
CHEN Mu-xia, Dilibar Sultan, YANG Xiao, et al. (2007). Research on Concentration and Chemical Speciation of Heavy Metals in Sewage Irrigated Soil of Xinjiang [J].JournalofAridLandResourcesandEnvironment, 21(1):150-154. (in Chinese)
[10]李长春, 张光胜, 姚峰, 等. 新疆准东煤田五彩湾露天矿区土壤重金属污染评估与分析[J]. 环境工程,2014,(7):142-146.
LI Chang-chun, ZHANG Guang-sheng, YAO Feng, et al. (2014).Assessment of Soil Heavy Metal Pollution Area of Xinjiang Zhundong Wucaihu Surface Coal Mine [J].EnvironmentalEngineering, (7):142-146. (in Chinese)
[11]姚峰, 包安明, 古丽·加帕尔, 等. 新疆准东煤田土壤重金属来源与污染评价[J]. 中国环境科学,2013,33(10):1 821-1 828.
YAO Feng, BAO An-ming, GULI Jiapaer, et al. (2013). Soil Heavy Metal Sources and Pollution Assessment in the Coalfield of East Junggar Basin in Xinjiang[J].ChinaEnvironmentalScience, 33(10):1,821-1,828. (in Chinese)
[12]余艳华, 蒋平安, 罗艳丽, 等. 新疆奎屯垦区土壤砷污染现状评价[J]. 土壤通报,2008,39(6):1 445-1 448.
YU Yan-hua, JIANG Ping-an, LUO Yan-li, et al. (2008). Evaluation of Arsenic Pollution of Soil in Kuitun Reclamation Area of Xinjiang [J].ChineseJournalofSoilScience, 39(6):1,445-1,448. (in Chinese)
[13]罗艳丽, 余艳华, 郑春霞, 等. 新疆奎屯垦区土壤砷含量及耐砷植物的筛选[J]. 干旱区资源与环境,2010,24(2):192-194.
LOU Yan-li, YU Yan-hua, ZHENG Chun-xia, et al. (2010). Arsenic Concentrations in Soils and Plants in Kuitun Farm, Xinjiang[J].JournalofAridLandResourcesandEnvironment, 24(2):192-194. (in Chinese)
[14]卡哈尔·吾甫尔, 阿孜古丽·玉苏甫, 阿不都拉·阿巴斯, 等. 乌鲁木齐南郊亚花松萝重金属含量及其大气污染评价的研究[J]. 新疆农业科学,2010,47(9):1 780-1 785.
Kahar Gupur, Arzigul Yusup, Abdulla Abbas, et al. (2010). Study of the Heavy Metal Content of Usnea Subfloridanaand Assessment of the Air Pollution of Southern Suburb of Urumqi,Xinjiang[J].XinjiangAgriculturalSciences, 47(9):1,780-1,785. (in Chinese)
[15]易治伍, 王灵, 钱翌, 等. 乌鲁木齐市农田土壤重金属含量及评价[J]. 干旱区资源与环境,2009,23(2):150-154.
YI Zhi-wu, WANG Ling, QIAN Yi, et al. (2009). Heavy Metal Content Sand Evaluation of Farmland Soil in Urumqi[J].JournalofAridLandResourcesandEnvironment, 23(2):150-154. (in Chinese)
[16]刘玉燕,刘浩峰. 新疆米泉市污灌区土壤重金属污染及防治[J]. 昌吉学院学报,2007,(3):45-48.
LIU Yu-yang, LIU Hao-feng. (2007). Soil Heavy Metal Pollution and Its Prevention and Cure in Polluted Irrigated Area in Miquan City, Xinjiang [J].JournalofChangjiUniversity, (3):45-48. (in Chinese)
[17]时亚坤, 李凯荣,闫宝环. 铜川三里洞煤矿煤矸石风化土壤重金属分布及污染状况分析[J]. 水土保持研究,2012,19(1):187-191.
SHI Ya-kun, LI Kai-rong, YAN Bao-huan. (2012). Distribution and Assessment of Heavy Metal Contamination in Weathered Soil in Sanlidong Coal Mine of Tongchuan [J].ResearchofSoilandWaterConservation, 19(1):187-191. (in Chinese)
[18]高军侠, 党宏斌, 郑敏, 等. 郑州市郊农田土壤重金属污染评价[J]. 中国农学通报,2013,29(21):116-120.
GAO Jun-xia, DANG Hong-bin, ZHENG Min, et al. (2013).Heavy Metal Pollution Assessment of Farmland Soil in Suburb in Zhengzhou City [J].ChineseAgriculturalScienceBulletin, 29(21):116-120. (in Chinese)
[19]王春光, 张思冲, 辛蕊, 等. 哈尔滨市东郊菜地土壤重金属环境质量评价[J]. 中国农学通报,2010,26(2):262-266.
WANG Chun-guang, ZHANG Si-chong, XIN Rui, et al.(2010). Heavy Metal Environmental Assessment of Soil in East Suburb of Harbin [J].ChineseAgriculturalScienceBulletin, 26(2):262-266. (in Chinese)
[20]程芳, 程金平, 桑恒春, 等. 大金山岛土壤重金属污染评价及相关性分析[J]. 环境科学,2013,34(3):1 062-1 066.
CHENG Fang, CHENG Jin-ping, SANG Heng-chun, et al. (2013). Assessment and Correlation Analysis of Heavy Metals Pollution in Soil of Dajinshan Island [J].EnvironmentalScience, 34(3):1,062-1,066. (in Chinese)
[21]郭平, 谢忠雷, 李军, 等. 长春市土壤重金属污染特征及其潜在生态风险评价[J]. 地理科学,2005,25(1):108-112.
GUO Ping, XIE Zhong-lei, LI Jun, et al. (2005). Specificity of Heavy Metal Pollution and the Ecological Hazard in Urban Soils of Changchun City [J].ScientiaGeographicaSinica, 25(1):108-112. (in Chinese)
[22] Hakanson, L. (1980). An ecological risk index for aquatic pollution control.a sedimentological approach.WaterResearch, 14(8):975-1,001.
[23]张兆永, 吉力力·阿不都外力,姜逢清. 天山土壤微量(类)重金属的来源解析及潜在生态危害评估[J]. 应用生态学报,2014,25(11):3 168-3 176.
ZHANG Zhao-yong, JILILI Abuduwailil, JIANG Feng-qing. (2014). Source Identification and Potential Ecological Hazards Assessment of Trace Metalloid/ Heavy Metals in the Soil of Tianshan Mountains, Xinjiang, China [J].ChineseJournalofAppliedEcology, 25(11):3,168-3,176. (in Chinese)
[24] 孙继坤,胡志林,周鸿兴,等. 天山山地土壤中微量元素的含量与分布 [J]. 土壤学报,1987,24(2):335-341.
SUN Ji-kun, HU Zhi-lin, ZHOU Hong-xing, et al. (1987). Content and distribution of trace elementsin the soil of the Tianshan Mountains [J].ActaPedologicaSnica, 24(2):335-341.(in Chinese)
[25] 中国环境监测总站. 中国土壤元素背景值 [M]. 北京: 中国环境科学出版社,1990.
China National Environmental Monitoring Centre. (1990).China'sSoilElementBackgroundValues[M]. Beijing: China Environmental Science Press.(in Chinese)
Fund project:Supported by the special funds for basic science and technology research of nono "profit research institutions of Xinjiang Uygur Autonomous Region "remediation measures of main heavy metal pollution in Xinjiang soil" (ky2014037),Excellent Youth Fund of Xinjiang Academy of Agricultural Sciences "The influence of biocharcoal on the adsorption characteristics of heavy metal cadmium" (xjnkq-2014004) and special funds for the transformation of scientific and technological achievements "Walnut orchard health management of precision fertilizer technology integration and demonstration(201454122)
Distribution Characteristics and Risk Assessment of Soil Heavy Metal Contents in Wensu County of Southwest Xinjiang
FU Yan-bo, DOU Xiao-jing, LAI Ning, HUANG Jian, WANG Xin-yong, WANG Zhi-guo
(ResearchInstituteofSoil,FertilizerandAgriculturalWaterConservation,XinjiangAcademyofAgriculturalSciences,Urumqi830091,China)
【Objective】 To make clear the level of heavy metal contamination by analyzing the total quantity in Wensu County and conduct risk assessment of their safety.【Method】In 2004, 138 soil samples in 17 sampling points in Wensu County were collected, and the total content of heavy metals(As, Hg, Cd, Pb and Cr) was determined.【Result】The results showed that in Wensu county As was 11.96 mg/kg, Hg 0.032 mg/kg, Cd 0.17 mg/kg, Pb 22.93 mg/kg, Cr 43.38 mg/kg. The coefficient variability of heavy metals was really little. According to the state soil environmental quality standards as the evaluation standard, the integrated pollution indexes of various elements were: As>Cd>Cr>Pb>Hg. The pollution assessment showed that five kinds of heavy metals were all at security and clean level(Pi≤1), so was the comprehensive pollution indices of heavy metals(Px≤0.7). The average values of potential ecological risk assessment showed that the various elements were: Hg (77.35) > Cd (42.60) > As (11.03) >Pb (7.96) >Cr(1.01), a lower ecological risk level was estimated to soil heavy metals. The comprehensive range of potential ecological risk index of five finds of heavy metals was between 79.78 and 236.10, so a lower ecological risk level was determined, too.【Conclusion】In Wensu county, the heavy metal contamination (As, Hg, Cd, Pb and Cr) is lower than the warning level, and the degree of pollution is below the safe level. The single factor and comprehensive ecological risk assessment are also at a low ecological risk, which indicates that the soil environmental quality is overall good in Wensu County.
soil; heavy metals; pollution assessment; ecological risk
2016-08-26
自治区公益性科研院所基本科研业务费专项资金“新疆土壤主要重金属污染修复措施研究”(ky2014037);新疆农业科学院优秀青年基金“生物炭对土壤重金属镉吸附特征的影响”(xjnkq-2014004);自治区科技成果转化专项资金项目“核桃健康果园水肥精准管理技术集成与示范”(201454122)
付彦博(1986-),男,助理研究员,研究方向为土壤生态与农业节水,(E-mail)fuyanbo2010@163.com
王治国(1980-),男,副研究员,研究方向为土壤生态与农业节水,(E-mail)13565915020@126.com
10.6048/j.issn.1001-4330.2016.12.016
X825
:A
:1001-4330(2016)12-2280-10