APP下载

云南铜厂沟Cu-Mo多金属矿花岗闪长斑岩地球化学特征及其矿床成因

2017-01-03彦廷龙刘学龙王迎春杨富成吕晓春潘江涛李德宗

地质与勘探 2016年6期
关键词:岛弧花岗闪文昌

彦廷龙,刘学龙,王迎春,杨富成,吕晓春,潘江涛,李德宗

(1.昆明理工大学 国土资源工程学院,云南昆明 650051; 2.武警黄金第十支队,云南昆明 650051)

云南铜厂沟Cu-Mo多金属矿花岗闪长斑岩地球化学特征及其矿床成因

彦廷龙1,刘学龙1,王迎春2,杨富成1,吕晓春2,潘江涛2,李德宗2

(1.昆明理工大学 国土资源工程学院,云南昆明 650051; 2.武警黄金第十支队,云南昆明 650051)

铜厂沟铜钼多金属矿位于云南格咱岛弧成矿带的南延部分,是近几年成矿带内新发现的铜钼多金属矿床。区内的花岗闪长斑岩地球化学特征研究结果显示,SiO2含量是63.02%~69.60%,铝饱和指数A/CNK值为0.65~1.05,属于准铝质-弱过铝质,全碱(K2O+Na2O)含量为6.19%~9.11%,相比中酸性岩石碱度较高。岩石中的轻稀土比较富集(LREE/HREE=15.48~21.15),轻重稀土分馏明显(LaN/YbN=30.44~38.66),δEu无明显异常,δCe弱负异常说明成矿作用是在氧化环境下进行。富集大离子亲石元素(LILE),相对亏损高场强元素(HFSE),指示岩石是与碰撞造山作用相关的花岗岩系列。从格咱岛弧北部的休瓦促向南到达铜厂沟,区内发育的燕山期酸性岩带呈NS向展布,向南侧伏,出露面积逐渐变小,剥蚀深度变浅。酸性岩带内形成一系列燕山期的大-中型钼(铜)多金属矿床,在纵向上(由浅至深)和横向上(从铜厂沟到休瓦促)具有相似的分带性,表现出成矿元素由中低温成矿元素Cu、Pb、Zn到高温成矿元素Mo、W的分带特征。根据矿床地质背景和岩石地球化学特征,讨论了成矿物质来源和矿床成因,建立了成矿模式,以期对今后区内的找矿勘查和成矿预测提供科学依据。

铜厂沟矿区 花岗闪长斑岩 格咱岛弧 矿床成因 成矿模式

Yan Ting-long, Liu Xue-long, Wang Ying-chun, Yang Fu-cheng, Lü Xiao-chun, Pan Jiang-tao, Li De-zong. Geochemical characteristics and mineralization genesis of the Tongchanggou Mo(Cu)-polymetallic deposit in Yunnan Province[J]. Geology and Exploration, 2016,52(6):1065-1075.

0 引言

格咱岛弧位于义敦岛弧的南端,是西南三江地区构造火山岩带中重要的地质单元和重要的Cu(Mo)多金属矿集区(金灿海等,2013;Lietal.,2014;刘学龙,2014)。区内发育的成矿事件主要有印支晚期与燕山晚期两大成矿事件,前者的典型代表矿床有普朗铜矿、雪鸡坪铜矿等,诸多学者对岛弧内该期矿床的岩石地球化学、成矿年代学、矿床成因及成矿过程等方面做了较深入的研究(杨岳清等,2002;曾普胜等,2004,2006;范玉华等,2006;林清茶等,2006;李健康等,2007;王守旭等,2007;李文昌等,2011),研究程度相对较高;燕山晚期矿床虽然也有许多研究者,但是多数集中在矿床地质特征分析、少数对成矿流体物质来源和成矿年代上有初步讨论(尹光侯等,2009;李文昌等,2011,2012,2013;贾丽娜,2013;李军,2013;杨丽梅等,2013;王鹏等,2015;王新松等,2015;刘学龙等,2016)。与成矿带内燕山晚期的成矿作用相关的矿床多为矽卡岩型、斑岩型和热液脉型Cu-Mo(W)多金属矿床,从北到南主要的矿床有休瓦促Mo-W、热林Cu-Mo(W)、红山Cu-Mo和铜厂沟Cu-Mo等多金属矿床。铜厂沟Cu-Mo多金属矿床是岛弧内典型的斑岩型-矽卡岩型矿床,其斑岩体锆石年龄为84.57±0.29Ma(余海军等,2015),辉钼矿Re-Os同位素年龄为85±10Ma(李文昌等,2012),说明成岩和成矿均发生在燕山晚期,可能具有成因上联系。因此,本文在前人研究基础上,对矿区钻孔中揭露到的花岗闪长斑岩体,分别采取了具有代表性的矿化斑岩体和非矿化斑岩体样品及分析研究区的成矿地质背景、岩石的地球化学特征,讨论成矿物质的来源和矿床成因,建立成矿模式,以期为今后区内的地质勘查和成矿预测提供科学依据。

图1 云南格咱岛弧地质矿产分布图(据李文昌等,2012)Fig.1 Map showing geology and distribution of mineral resources in the Gezan island arc of Yunnan province(after Li et al.,2012)Ⅰ-杨子板块;Ⅱ-甘孜-理塘板块结合带;Ⅲ-义敦岛弧;Ⅳ-中咱微陆块;Ⅴ-金沙江结合带;Ⅵ-江达-维西火山弧;Ⅶ-昌都-兰坪陆块;Ⅷ-三达山-景洪火山弧;Ⅸ-澜沧江结合带;Ⅹ-保山陆块;1-全新统砾岩;2-更新统砂、泥岩;3-喇嘛垭组变质细粒砂岩;4-图姆沟组板岩、安山岩;5-金门过卡组;6-曲嘎寺组板岩、灰岩;7-上部:灰岩、大理岩,下部:砂岩、板岩;8-青天堡组泥岩、砂岩夹灰岩;9-三叠系未分;10-坪子组长石砂岩夹结晶灰岩;11-峨眉山玄武岩玄武岩夹灰岩;12-中村组玄武岩;13-燕山晚期二长花岗斑岩;14-燕山晚期花岗斑岩;15-印支期石英二长斑岩;16-印支期英安斑岩;17-印支期石英闪长玢岩;18-印支期闪长玢岩;19-石英闪长玢岩;20-辉长辉绿岩;21-省界;22-地质界线;23-断层;24-钼多金属矿;25-铜矿;26-金矿Ⅰ-Yangtze;Ⅱ-Garze-Litang suture;Ⅲ-Yidun island-arc belt;Ⅳ-Zhongza massif;Ⅴ-Jinshajiang suture;Ⅵ-Jiangda-Weixi volcanic;Ⅶ-Changdu-Lanping block;Ⅷ-Sandashan-Jinghong volcanic arc;Ⅸ-Lancangjiang suture;Ⅹ-Baoshan block;1-Holocene series conglomerate;2-Pleistocene series sandstone and mudstone;3-Lamaya Formation metamorphic fine sandstone;4-Tumugou Formation slate and andesite;5-Jinmen-Guoka Formation;6-Qukasi Formation slate and limestone;7-Upper:Limestone and marble,Lower:sandstone and slate;8-Tianqingbao Formation mudstone and sandstone;9-Triassic;10-Pingzi Formation sandstone and limestone;11-Emeishan basalt for-mation basalt and linestone;12-Zhongocun Formation basalt;13-Yanshanian adamellite;14-Yans-hanian granite-porphyry;15-Indo-china epoch quartz-monzonite porphyry;16-Indo-china epoch dacite porphyry;17-Indo-china epoch quartz diorite porphyrite;18-Indo-china epoch diorite por-phyrite;19-quartz diorite porphyrite;20-gabbro-diabase;21-province boundary;22-geological boundary;23-fault;24-molybdenum polymetallic deposit;25-copper deposit;26-gold deposit

1 区域地质概况

格咱岛弧经历了印支期的洋壳俯冲造山,燕山期的碰撞造山和喜马拉雅期的陆内汇聚三大造山阶段(杨岳清等,2002;侯增谦,2004)。格咱岛弧带内有大面积岩浆岩出露,构造发育,岩浆活动与构造密切相关,燕山期的构造发育过程首先以挤压作用为主,后转变为伸展作用;燕山晚期138Ma~75Ma,发生造山后伸展作用,在80Ma左右达到最大强度(侯增谦,2004)。位于格咱岛弧的南端,扬子板块、松潘-甘孜板块和中咱陆块三者的交汇部位的铜厂沟Cu-Mo多金属矿床(图1),正是形成于燕山晚期造山后伸展作用下,是格咱岛弧燕山晚期的典型矿床。其与休瓦促、红山、热林矿区的矿床特征相似,含矿岩体分别为隐伏的花岗闪长斑岩、黑云二长花岗斑岩、二长花岗岩和二长斑岩等斑岩体,属于同期酸性岩浆活动成矿作用(李文昌等,2012),说明成矿带内燕山晚期的典型矿床具有一定相似性和规律性,均表现出以Mo、Cu成矿作用为主,伴生Cu、W等多金属成矿元素。成矿带内与矿化关系密切的蚀变有钾长石化、绢云母化和硅化等均普遍发育。岛弧内燕山晚期典型矿床成矿物质来源以地壳为主,少量来源于地幔(王守旭等,2007;李文昌等,2013;Wangetal.,2014a,2014b);印支晚期的典型矿床和燕山晚期形成的典型矿床相比,成矿物质来源具有明显的不同,以地幔为主,少量来源于地壳(Lengetal.,2014;Wangetal.,2014a)。

2 矿床地质特征

铜厂沟矿区位于NE向倾伏的近NS向的大背斜核部构造内(图2),该背斜在挤压作用下形成,并被后期的拉张等构造作用所破坏,使其在研究区内出露不完整,局部已经无法辨别背斜特征。研究区内主要的火山岩以华力西期玄武岩为主,分布在铜厂断裂附近;侵入岩有石英闪长玢岩(δομ)、辉绿玢岩(βμ)、花岗闪长斑岩(γδπ)沿拉巴河断裂附近展布,其出露面积均小于0.1km2。研究区地层由背斜核部向两翼呈对称状产出,依次是黑泥哨组(P2h)玄武岩,北衙组(T2b)灰岩。区内断裂构造发育,尤其NW向断裂与区域主构造线方向一致,多数为逆断层,而NE向断裂数量较少,发育较早,多被NW向断裂错断。拉巴河断裂和铜厂断裂(F1)是区内主干断裂,其北段均作用于研究区内背斜的核部附

近,为主要导矿构造,控制着整个矿区内岩浆岩和矿体的展布。主干断裂两侧伴生10余条次级构造,走向为近NE、NW、EW向三组方向,以NW 向为主。F2、F5为矿区内主要的次级构造,F2属于研究区内控矿构造,其附近的北衙组(T2b)灰岩和黑泥哨组(P2h)玄武岩为矿化围岩,灰岩中常见矽卡岩化和大理岩化,局部具有铜钼矿化和弱角岩化;F5错断主干断裂F1,并使其发生平移,在两者交汇部位有花岗闪长斑岩体侵入,在接触带附近和斑岩体内分别发生了大理岩化和铜钼矿化。

铜厂沟Cu-Mo多金属矿的矿床类型有矽卡岩型、热液脉型和斑岩型,主要矿体有KT1、2、12号矿体,赋存于矽卡岩、玄武岩及花岗闪长斑岩体中,受F1、F2、F5三条断层控制。KT1矿体赋存于玄武岩与灰岩之间的矽卡岩中,KT2位于KT1下部,均呈似层状向NW向倾伏的急倾斜矿体。KT12矿体赋存于斑岩体内部,呈岩株状产出,全岩Mo、Cu矿化,厚度变化较大,矿体规模大、平均品位低,以Mo矿化为主,局部具弱Cu矿化,矿床类型为斑岩型。矿床整体在纵向上具有元素的分带特征,地表以铜为主伴生钼,深部则以钼为主,局部具弱铜矿化,矿化在纵向上表现为Cu(Pb、Zn)→Cu、Mo→Mo(W)变化规律(图3)。

3 样品的采集和分析

图2 铜厂沟矿区地质简图(据刘学龙等,2016)Fig.2 Geological sketch map of Tongchanggou deposit (after Liu et al.,2016)1-第四系; 2-北衙组灰岩; 3-黑泥哨组玄武岩; 4-花岗闪长斑岩; 5-矽卡岩; 6-地层界限; 7-断层及编号; 8-钻孔及勘探线号1-Quaternary; 2-Beiya Formation limestone; 3-Heininshao Formation basalt; 4-Granite-porphyry; 5-skarn; 6-geological bounda-ry; 7-fault and number; 8-drilling and exploration line number

为对铜厂沟矿区岩石地球化学特征研究,本次分析的样品全部采自于铜厂沟矿区钻孔揭露的花岗闪长斑岩,进行岩石地球化学(主量、稀土、微量元素)分析。考虑到有效对比分析,采样对象分为矿化(CCG-3、CCG-4、CCG-6、CCG-8、LBB-57)和非矿化(CCG-7、CCG-9、LBB-73、LBB-74、LBB-77-2)的花岗闪长斑岩样品。CCG-3、CCG-4、CCG-6、CCG-7、CCG-8、CCG-9样品的岩石主量、微量和稀土元素测试在国土资源部昆明矿产资源监督检测中心完成;LBB-57、LBB-73、LBB-74、LBB-77-2样品的岩石主量、微量和稀土元素测试在中国地质科学院地球物理地球化学勘查研究所完成。主量元素的测定均采用X-荧光光谱仪(XRF)测定,精度优于5%;微量和稀土元素的测定均采用等离子体质谱仪(ICP-MS),相对湿度30%,误差范围小于5%,分析结果科学有效,元素分析结果详见表1。

4 岩石地球化学特征

4.1 常量元素

铜厂沟研究区花岗闪长斑岩地球化学分析结果见表1。分析结果显示:花岗闪长斑岩富硅SiO2(63.02%~69.60%),Al2O3(12.86%~15.36%),铝含量相对较高;MgO(1.11%~1.63%),TiO2(0.40%~0.63%)。全碱(K2O+Na2O)含量为6.19%~9.11%,AR为1.96~2.58,相比中酸性岩石碱度较高。分异指数(DI)=72.40~80.99,固结指数(SI)=10.17~13.46,较高的分异指数和较低的固结指数说明研究区赋矿斑岩体的岩浆分异程度相对较高。K2O(2.60%~5.91%),A/CNK值变化范围0.65~1.05,平均值0.92,在A/CNK-A/NK 关系图解中(图4),样品绝大部分落在准铝质花岗岩区域,少量落在过铝质花岗岩区域。因此,岩石属于准铝质-弱过铝质高钾钙碱性花岗闪长斑岩。

图3 铜厂沟矿区8号线勘探线剖面图(据云南省地调院,2013)Fig.3 Geological section along No.8 line in the Tongchanggou deposit (after Institute of Geological Survey of Yunnan Province,2013)1-冲积砂砾; 2-灰岩; 3-花岗闪长斑岩; 4-矿体; 5-钻孔号及孔深1- alluvial sand; 2-limestone; 3-granite-porphyry; 4-ore; 5-drilling and drilling depth

4.2 稀土元素和微量元素

研究区花岗闪长斑岩的稀土元素总量∑REE为178.68×10-6~247.98×10-6,平均值225.50×10-6,稀土元素含量较高。在稀土元素的球粒陨石标准化图中(图5a),所选样品的配分模式呈现右倾模式,表现出富集轻稀土元素(LREE)的特征。对比所采集的矿化样品和非矿化样品中的稀土元素含量,从图5a中每个样品曲线变化基本一致,表示其亏损和富集情况相似,说明成矿物质可能来源于花岗闪长斑岩中。LaN/YbN值为30.44~38.66,LREE/HREE值为15.48~21.15,LaN/YbN和LREE/HREE均表现出较高的比值特征,说明形成斑岩的轻稀土元素(LREE)较强的分馏作用,其岩浆分异程度亦相对较高。δEu值为0.83~1.01,显示出无明显的异常特征,δCe值为0.89~0.94,显示出弱负异常特征。Eu、Ce的离子价态能够反映出不同的成矿环境。图6中,矿化样品和非矿化样品的δEu、δCe表现为:矿化样品中δCe有一个样品显示无异常与其它样品结果差距较大,可能是采样时混入围岩等原因引起的。总体上,矿化与非矿化样品中δEu均无明显异常,矿化样中δCe显示为弱负异常,δCe在非矿化样中无明显异常,说明成矿作用可能在氧化环境下进行的。

表1 铜厂沟花岗闪长斑岩主量(%)、微量和稀土元素(×10-6)分析结果

续表1

Continued Table 1

样品编号CCG-03CCG-04CCG-06CCG-07CCG-08CCG-09LBB-57LBB-73LBB-74LBB-77-2Mo195.40242.80180.7019.42161.0089.33557.306.245.963.39Ba2200.001600.001200.001600.001900.001400.001267.001147.50794.701505.40W2.742.176.073.002.732.2514.490.8411.622.61Pb18.1015.9098.3063.9020.6078.3031.7222.6120.2435.90Bi0.090.131.150.340.121.380.340.140.170.19Th17.3617.1718.1715.4116.7017.4221.9423.1217.7021.96U4.404.275.112.934.263.2423.275.774.415.64Zr190.50180.10189.00183.60189.00197.80181.00146.40137.90163.00Hf3.363.012.832.772.822.786.665.925.736.64As8.189.884.607.298.018.051.000.921.080.84Te0.050.060.070.050.060.050.030.040.060.02Se0.100.180.150.090.190.220.230.200.120.06Ge0.920.640.741.200.820.871.011.140.721.05Cs4.723.545.907.074.277.072.672.166.782.75B11.009.0017.0023.0010.5013.002.502.408.802.30F655.00678.00785.00654.00706.00734.00832.81621.98504.92648.46Ga19.6517.7818.5916.5419.2019.6320.4121.6116.7222.28In0.020.020.560.030.040.040.030.020.030.03Re0.080.070.030.010.020.010.010.020.040.01Sc4.204.354.434.184.634.506.546.824.946.33Sn3.063.083.703.252.662.791.511.611.931.62Tl0.420.290.410.270.310.310.470.250.430.36∑REE217.94233.85245.50208.23229.41244.82247.98226.75178.68221.86LREE/HREE15.4816.9416.4616.0016.1516.5121.1518.7019.4519.68LaN/YbN30.4436.5636.7332.9234.8435.5738.6632.9334.0035.17δEu1.010.910.940.930.940.920.830.850.880.85δCe0.940.890.890.910.890.920.930.910.920.94

斑岩体的微量元素地幔标准化图表现出右倾的多峰谷模式(图5b),岩石中K、Rb、Nd、Th、Zr、La、Ce、Sm、Y等元素含量相对较高,Nb、Hf、Ti及Fe和Mg等元素的含量相对较低,表现出具有明显的La、Rb、K正异常和Ti 、Nb、Hf负异常。这种相对亏损高场强元素(HFSF)和重稀土元素(HREE),而具有相对较高的正异常的亲石元素(LILE)特征和碰撞造山带中酸性岩浆地球化学特征相似,岩石的微量元素配分模式与Wood(史长义等,2008)在八十年代绘制的微量元素蜘蛛网图中造山花岗岩的微量元素配分模式相接近,说明研究区斑岩体属于造山花岗岩类。

图4 A/CNK-A/NK分类图解Fig.4 A/CNK-A/NK classification diagram of porphyries1-非矿化样品;2-矿化样品1-non mineralized samples; 2-mineralized samples

5 矿床成因讨论

5.1 矿床成因与成矿规律

格咱岛弧继承了义敦岛弧的一般特征,岛弧内构造发育、岩浆活动频繁,具有良好的成矿地质条件(李文昌等,2010),在构造-岩浆活动过程中,岩浆与地层中的成矿元素叠加富集,形成了印支晚期和燕山晚期两大成矿高峰期(李健康等,2007)。自晚三叠世后,甘孜理塘洋向西俯冲诱发岩浆发生侵位(刘学龙等,2016),含矿热液发生运移形成了普朗、雪鸡坪等铜矿床;进入燕山晚期,在造山后伸展作用下,中酸性岩浆沿构造带侵入,使含矿热液在运移过程中发生富集,在与碳酸盐岩接触的构造带部位形成了矽卡岩型矿床,在斑岩体内部形成斑岩型和热液脉型矿床,其中铜厂沟Cu-Mo多金属矿床为其典型的代表矿床。铜厂沟地区已发现的隐伏斑岩体具有普遍矿化,以及已发现的矿体的高品位特征,显示出铜厂沟矿区强烈的成矿作用。同一时期,格咱岛弧内也形成了休瓦促、热林和红山Cu-Mo(Pb、Zn)等一系列的大中型多金属矿床。因此,铜厂沟和休瓦促、热林、红山地区以Mo为主的成矿作用并不是相互独立的成矿事件,它们共同构成了格咱地区燕山晚期岩浆运动成矿系统的组成部分。同时也表现出了典型的成矿复合叠加的现象,例如红山矿区斑岩型Cu-Mo矿床赋存于印支晚期的矽卡岩型Cu-Pb-Zn-Ag多金属矿床下部。

图5 稀土元素球粒陨石标准化图(a,标准化值据Sun and McDonough,1989)和微量元素蛛网图(b,标准化值据Taylor and McLennan,1985)Fig.5 Chlondrite normalized patterns(a,normalizing values after Sun and McDonough,1989) and primitative man-tle normalized patterns(b,normalizing values after Taylor and McLennan,1985) of Laba composite pluton

近年研究发现,从铜厂沟到休瓦促地区发育着燕山晚期以Mo为主要矿化的中酸性岩浆岩带,总体上呈NS向展布,由南至北岩带出露的面积逐渐变大,从几十m2到几百km2不等,埋深逐渐变小(李健康等,2007;李文昌等,2012)。岩带中成矿元素在纵向上(由浅至深)和横向上(从铜厂沟到休瓦促)具有相似的分带特征,其组合表现出Cu(Pb、Zn)→Cu、Mo→Mo、W由中低温成矿元素→中高温成矿元素→高温成矿元素的变化规律。尤其铜厂沟和红山矿床具有典型的低温到高温成矿元素的变化特征,而热林、休瓦促矿床缺少了中低温成矿元素。因此,铜厂沟和红山矿区深部、热林与休瓦促矿区以北地区应以寻找Mo、W高温矿床为主,而红山到铜厂沟矿区及其南部地区应以寻找Cu(Pb、Zn)中低温矿床为主。

图6 稀土元素δEu-δCe散点图Fig.6 Scatter diagram of δEu-δCe for REE1-非矿化样品;2-矿化样品1-non mineralized samples; 2-mineralized samples

图7 铜厂沟铜钼多金属矿床构造背景示意图Fig.7 Sketch of structural setting of Tongchanggou Cu-Mo polymetallic deposit1-玄武岩; 2-灰岩; 3-花岗闪长斑岩; 4-矽卡岩; 5-矿体编号; 6-断裂及编号1- basalt; 2-limestone; 3-granite-porphyry; 4-skarn; 5-ore number; 6-fault and number

5.2 成矿物质来源

在表1中,矿化样(CCG-3、CCG-4、CCG-6、CCG-8、LBB-57)和非矿化(CCG-7、CCG-9、LBB-73、LBB-74、LBB-77-2)花岗闪长斑岩稀土元素总量∑REE无明显差异,轻重稀土元素分异程度LREE/HREE相近。从图5a稀土元素球粒陨石标准化图中可知,矿化样品与非矿化样品,配分模式表现出高度的一致性,轻稀土元素富集的右倾模式。说明花岗闪长斑岩及其中酸性岩浆热液提供了矿体的成矿物质和成矿流体。

对于成矿物质来源的研究,也可采用金属硫化物矿床矿体的Re含量示踪研究区矿体的成矿物质来源。当成矿物质表现出壳幔混合源的特征,ω(Re)为(n×10)μg/g(黄典豪等,1996)。由表1可知,铜厂沟矿床中ω(Re)为10μg/g~80μg/g,与成矿物质来源于壳幔混合源的Re含量相一致。由此推断,铜厂沟矿床的成矿物质来源为壳幔混合源。实验室岩石学研究地幔物质的部分熔融只可以形成低于安山岩的SiO2含量的中基性岩浆岩(Bakeretal.,1995),而铜厂沟斑岩体具有较高SiO2、全碱(K2O+Na2O),表现为准铝质,并且其Fe、Mg含量较低而AR较高,说明其物质来源可能来源于地壳物质的部分熔融(李文昌等,2012)。综上所述,成矿物质来源可能于深部,以壳源物质为主,具有壳幔混合源特征。

5.3 矿床模式

铜厂沟矿区经历了多期构造作用,构造发育,主要构造型式以NS向拉巴河断裂和NE向的铜厂断裂(F1)两大断裂为主,其中拉巴河断裂错断了铜厂断裂(F1)和NNE向的大背斜,并且在其两侧形成了一系列NE、NW向的次级构造。其中拉巴河断裂与次级断裂共同控制着岩浆活动和矿体的展布(图7)。在地壳发生伸展作用下,引起携带成矿物质的流体沿构造带大规模上侵,在浅地表温度和压力降低后,伴随着岩浆分异作用成矿元素开始结晶析出,在有利于成矿元素发生富集的部位形成矿床。经工程验证,在铜厂沟矿区的灰岩地层中形成大规模的隐伏花岗闪长斑岩体,在与灰岩的接触带上局部形成矽卡岩,经测试均呈现出Cu-Mo-W矿化特征,依据本地区矿床特征以及构造背景,模拟成矿元素可能的迁移过程,建立构造-岩浆(成矿物质)侵入成矿模式,形成了成矿模式图如图8所示。

6 结论

(1)铜厂沟矿区花岗闪长斑岩体分异程度较高,属于准铝质-弱过铝质花岗斑岩体,其δCe值总体表现为弱负异常,表明其成矿环境为氧化环境。

(2)矿化和非矿化样品花岗闪长斑岩体在稀土元素球粒陨石标准化图中,表现出配分模式的高度一致性,轻稀土元素富集的右倾模式,说明花岗闪长斑岩可能为矿体提供了成矿物质来源。

(3)铜厂沟铜钼多金属矿床作为格咱岛弧燕山晚期成矿作用的典型矿床,了解其地质背景、赋矿围岩地球化学特征、成矿物质运移情况,总结其矿床成因及成矿规律,建立的“构造-岩浆(成矿物质)侵入成矿”模式,直观地反映出铜厂沟铜钼多金属矿床的成矿过程,对研究区及成矿带成矿流体的运移、成矿物质的来源和矿床形成的研究,以及对区域内找矿勘查和成矿预测提供科学依据。

致谢:野外工作得到了香格里拉鼎立矿业有限责任公司梅社华副总工程师、萧楠工程师及云南地质调查员李冰高工的大力支持和帮助;审稿专家对本文的细致评阅并提出宝贵的意见和建议,以及编辑部老师帮助;在此一并表示衷心的感谢!

图8 铜厂沟铜钼多金属矿床构造流体成矿模式Fig. 8 Structure-fluid mineralization model of Tongchanggou Cu-Mo polymetallic deposit1-花岗闪长斑岩; 2-矽卡岩; 3-玄武岩; 4-灰岩; 5-断裂; 6-成矿物质运移方向1-granite-porphyry; 2-skarn; 3-basalt; 4-limestone; 5-fault; 6-metallogenic material migration direction

Baker M B, Hirschmann M M, Ghiorso M S,Stolper E M. 1995. Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations[J]. Nature, 375(6529): 308-311

Fan Yu-hua, Li Wen-chang. 2006. Geological characteristics of the Pulang porphyry copper deposit, Yunnan[J].Geology in China, 33(2): 352-361(in Chinese with English abstract)

Hou Zeng-qian. 2004.Porphyry Cu-Mo-Au deposits: Some new insight and advances[J]. Earth Science Frontiers, 11(1): 132-139(in Chinese with English abstract)

Hou Zeng-qian, Yang Yue-qing,Qu Xiao-ming, Huang Dian-hao,Lu Qing-tian, Wang Hai-ping,Yu Jin-jie,Tang Shao-hua. 2004. Tectonic evolution and mineralization systems of the Yidun arc orogen in Sanjiang region, China[J]. Acta Geoscientia Sinica, 78(1):109-120(in Chinese with English abstract)

Huang Dian-hao,Du An-dao,Wu Deng-yu,Liu Lan-sheng,Sun Ya-li,Zou Xiao-qiu. 1996. Metallochronology of molybddenum(-copper) deposits in north China Platform:Re-Os age of molybdenite and its geological significance[J]. Mineral Deposits, 15(4): 289-297(in Chinese with English abstract

Jia Li-na. 2013.Geochemical characteristics of Tongchanggou Mo(Cu)-polymetallic deposit in Xianggelila of Yunnan Province[J]. Geological Journal of China Universities, (19): 286-288(in Chinese with English abstract)

Jin Can-hai, Fan Wen-yu, Zhang Hai, Shen Zhan-wu, Zhang Yu, Gao Jian-hua. 2013. Geochemical characteristics and genesis of the Zhuoma lead- zinc deposit in Yunnan Province[J]. Geology in China, 40(6): 1902-1911(in Chinese with English abstract)

Leng CB, Huang QY, Zhang XC, Wang SX, Zhong H, Hu RG, Bi XW, Zhu JJ, Wang XS. 2014. Petrogenesis of the Late Triassic volcanic rocks in the southern Yidun arc, SW China: Constraints from the geochronology,geochemistry, and Sr-Nd-Pb-Hf isotopes[J]. Lithos:190-191,363-382

Leng CB,Zhang XC, Hu RZ, Wang SX,Zhong H,Wang WQ, Bi XW. 2012.Zircon U-Pb and molybdenite Re-Os geochronology and Sr-Nd-Pd-Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian, Northwest Yunnan, China[J].Journal of Asian Earth Sciences, 60: 31-48

Li Jian-kang, Li Wen-chang, Wang Deng-hong, Lu Ying-xiang, Yin Guang-hou, Xue Shun. 2007. Re-Os dating for ore-forming event in the late of Yanshan Epoch and research of ore-forming regularity in Zhongdian arc[J].ActaPetrologica Sinica, 23(10): 2415-2422(in Chinese with English abstract)

Li Jun. 2013. Geochemical Characteristics and prospecting direction of Tongchanggou Mo(Cu)-polymetallic Deposit in Gezan Island,Yunnan province[J]. West-China Exploration Engineering, (3): 105-107(in Chinese)

Li Wen-chang,Wang Ke-yong, Yin Guang-hou, Qin Dan-he,Yu Hai-jun. 2013. Geochemical characteristics of ore-forming fluids and genesis of Hongshan copper deposit in northwestern Yunnan Province[J]. Actor Petrologica Sinica, 29 (1) : 270-282(in Chinese with English abstract)

Li Wen-chang, Pan Gui-tang, Hou Zeng-qian, Mo Xue-xuan, Wang Li-quan. 2010. Archipelagic-basin, forming collision theory and prospecting techniques along the Nujiang-Lancangjiang-Jinshajiang area in southwestern China[M]. Beijing: Geological Publishing House:40-45(in Chinese)

Li Wen-chang, Yin Guang-hou, Yu Hai-jun. 2014. The Yanshanian granites and associated Mo polymetallic mineralization in the Xiangcheng-Luoji area of the Sanjiang-Yangtze conjunction zone in southwest China[J]. Acta Geologica Sinica, 88(6): 1742-1756(in Chinese with English abstract)

Li Wen-chang,Yin Guang-hou, Yu Hai-jun,Lu Ying-xiang, Liu Xue-long. 2011. The porphyry metallogenesis of Geza volcanic magmatic arc in NW Yunnan[J]. Actor Petrologica Sinica, 27 (9) : 2541-2552(in Chinese with English abstract)

Li Wen-chang,Yu Hai-Jun,Yin Guang-hou,Cao Xiao-min,Huang Ding-zhu and Dong Tao. 2012.Re-Os dating of molybdenite from Tongchanggou Mo-polymetallic deposit in northwest Yunnan and its metallogenic environment[J].Mineral Deposits, 31(2):282-292(in Chinese with English abstract)

Ling Qin-cha, Xia Bin, Zhang Yu-quan. 2006. Zircon SHRIMP U-Pb dating of the syn-collisional Xuejiping quartz diorite porphyrite in Zhongdian,Yunnan,China,and its geological implications[J]. Geological Bulletin of China, 25 (1/2): 133-135(in Chinese with English abstract)

Liu Xue-long,Li Wen-chang,Yin Guang-hou. 2012. The metallogenic system of porphyry-skrn typpe Cu,Mo(Au)polymetallic deposits in Geza island arc of Yunnan province[J].Geology in China, 39(4):1007-1022(in Chinese with English abstract)

Liu Xue-long, Li Wen-chang, Zhang Na,Yang Fu-cheng,Kang Jian,Zhang Biao. 2016.Characteristics of sulfur and lead Isotopes and tracing of mineral sources in the Tongchanggou porphyry Mo(Cu) deposit at the southern edge of Geza arc belt, Yunnan[J]. Geology in China, 43(1): 209-220(in Chinese with English abstract)

Liu Xue-long,Li Wen-chang,Zhang Na,Yin Guang-hou,Deng Ming-guo. 2014. Geochronological, geochemical characteristics of Disuga ore-forming I-type granitic porphyries in the Geza arc,Yunnan Province, and their geological significance[J]. Geological Review, 60(1): 103-114(in Chinese with English abstract)

Shi Chang-ming, Yan Ming-cai, Chi Qing-hua. 2008. Chemical element abundance of China granite[M]. Beijing: Geological Publishing House:93-97 (in Chinese)

Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle complication and processes[J]. Geological Society of Londun, Special Publications, 42: 313-345

Taylor S R, Mclennan S M.1985.The continental crust: Its composition and evolution[M]. Blackwell: Oxford Press: 209-330

Wang Peng,Dong Guo-chen. 2015. Characteristics of chalcopyrite and porphyry copper isotope of the Zhongdian skarn copper ore deposit ,Yunnan [J].Journal of Jilin University(Earth Science Editon),45(1):1520-1507

Wang Shou-xu,Zhang Xing-chun,Leng Cheng-biao,Qin Chao-jian. 2007. A tentative study of ore geochemistry and ore-forming mechanism of Pulang porphyry copper deposit in Zhongdian,northwestern Yunnan[J]. Mineral Deposits, 26(3):277-288(in Chinese with English abstract)

Wang Xin-song, Bi Xian-wu,Hu Rui-zong, Leng Cheng-biao, Yu Hai-jun, Yin Guang-hou. 2015. S-Pb isotopic geochemistry of Xiuwacu magmatic hydrothermal Mo-W deposit in Zhongdian area, NW Yunnan:Constrains on the sources of metal[J]. Actor Petrologica Sinica, 31 (11) :3171-3188(in Chinese with English abstract)

Wang XS, Bi XW,Leng CB, Zhong H,Tang HF, Chen YW,Yin GH, Huang DG, Zhou MF. 2014a. Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo-Cu-(W) mineralization in the southern Yidun arc, SW China: lmplications for metallogenesis and geodynamic setting[J]. Ore Geology Reviews, 61: 73-95

Wang XS, Hu RZ, Bi XW, Leng CB, Pan LC, Zhu JJ, Chen YW. 2014b. Petrogenesis of Late Cretaceous hype granites in the southern Yidun Terrane: New constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau[J]. Lithos:208-209, 202-219

Yang Li-mei, Wu Jian-jing, Li Zong-yong,Yang Xin-qiang. 2013. A probe into the geology and genesis Of Tongchanggou Cu-Mo deposit, Zhongdian[J]. YunNan Geology, 32(2): 212-124(in Chinese with English abstract)

Yang Yue-qing,Hou Zeng-qian,Huang Dian-hao,Qu Xiao-ming. 2002.Collision orogenic process and metallogenic system in Zhogndian arc[J]. ActaGeoscientia Sinica, 23 (1): 17-24 (in Chinese with Englishabstract)

Yin Guang-hou,Li Wen-chang,Jiang Cheng-xing,Xu Dong,Li Jian-kang,Yang Shu-ran. 2009. The evolution of Relin uplex rock masses in Yanshan Phase and Ar-Ar dating age and copper-molybdenum mineralization characteristics of Zhongdian volcanic-magma arc[J]. Geology and Exploration, 45(4): 385-393(in Chinese with English abstract)

Yu Hai-jun, Li Wen-chang, Yin Guang-hou, Wang Jian-huang, Jiang Wen-tao,Wu Song, Tang Zhong. 2015. Geochronology, geochemistry and geological significance of the inrusion from the Tongchanggou Mo-Cu deposit,norhtwestern Yunnan[J].Acta Petrologica Sinica, 31(11): 3217-3233(in Chinese with English abstract)

Zeng Pu-sheng, Hou Zeng-qian, Li Li-heng, Li Wen-chang. 2004. Age of the Pulang porphyry copper deposit in NW Yunnan and its geological significance [J]. Geological Bulletin of China,23 (11): 1127-1131(in Chinese with English abstract)

Zeng Pu-sheng, Li Wen-chang, Wang Hai-ping, Li Hong. 2006. The indosinian Pulang superlarge porphyry copper deposit in Yunnan, China:petrology and chronology[J]. Acta Petrologica Sinica, 22(4): 990-1000(in Chinese with English abstract)

[附中文参考文献]

范玉华,李文昌. 2006.云南普朗斑岩铜矿床地质特征[J].中国地质,33(2):352-361

侯增谦.2004.斑岩Cu- Mo- Au矿床:新认识与新进展[J].地学前缘,11(1):132-139

侯增谦,杨岳清,曲晓明,黄典豪,吕庆田,王海平,余金杰,唐绍华.2004.三江地区义敦岛弧造山带演化和成矿系统[J].地质学报,78(1):109-120

黄典豪,杜安道,吴澄宇,刘兰笙,孙亚莉,邹晓秋.1996.华北地台钼(铜)矿床成矿学研究——辉钼矿的铼-锇年龄及其地质意义[J].矿床地质,15(4):289-297

贾丽娜. 2013.云南省香格里拉县铜厂沟铜钼矿矿床地质特征[J].高校地质学报,(19):286-288

金灿海,范文玉,张 海,沈战武,张 均,高建华.2013.石南卓玛铅锌矿床地球化学特征及矿床成因[J].中国地质, 40(6): 1902-1911

李健康,李文昌,王登红,卢映祥,尹光侯,薛 顺. 2007.中甸弧燕山晚期成矿事件的Re-Os定年及成矿规律研究[J].岩石学报,23 (10 )2415-2422

李 军. 2013.云南铜厂沟铜钼矿矿床地质特征及找矿方向[J].西部探矿工程,(3):105-107

李文昌,王可勇,尹光侯,秦丹鹤,于海军.2013.滇西北红山铜矿床成矿流体地球化学特征及矿床成因[J].岩石学报, 29(01):270-282

李文昌,潘桂堂,侯增谦,莫宣学,王立全.2010.西南“三江”多岛弧盆-碰撞造山成矿理论与勘查技术[M].北京:地质出版社:40-45

李文昌,尹光侯,余海军,卢映祥,刘学龙.2011.滇西北格咱火山-岩浆弧斑岩成矿作用[J].岩石学报, 027(09):2541-2552

李文昌,余海军,尹光侯,曹晓民,黄定柱,董 涛.2012.滇西北铜厂沟钼多金属矿床辉钼矿Re-Os同位素年龄及其成矿环境[J].矿床地质, 31(2):282-292

林清茶,夏 斌,张玉泉. 2006.云南中甸地区雪鸡坪同碰撞石英闪长纷岩错石SHRIMP U- Pb定年及其意义[J].地质通报, 25(1/2): 133-135

刘学龙,李文昌,尹光侯.2012.云南格咱岛弧斑岩-矽卡岩铜、钼(金)矿床成矿系统[J].中国地质,39(4):1007-1022

刘学龙,李文昌,张 娜,杨富成,康 健,张 彪.2016.云南格咱岛弧带南缘铜厂沟斑岩型铜钼矿床硫铅同位素特征与成矿物质来源示踪[J].中国地质,43(1):209-220

刘学龙,李文昌,张 娜,尹光侯,邓明国.2014.云南格咱岛弧地苏嘎成矿岩体工型花岗岩年代学、地球化学特征及地质意义[J].地质评论, 60(1): 103-114

史长义,鄢明才,迟清华.2008.中国花岗岩类化学元素丰度[M].北京:地质出版社:93-97

王 鹏,董国臣.2015.云南中甸红山-红牛矽卡岩铜矿黄铜矿和相关斑岩铜同位素特征[J].吉林大学学报(地球科学版):45(增刊1):1520-1527

王守旭,张兴春,冷成彪,秦朝建.2007.滇西北中甸普朗斑岩铜矿床地球化学与成矿机理初探[J].矿床地质,26(3):277-288

王新松,毕献武,胡瑞忠,冷成彪,余海军,尹光侯.2015.滇西北中甸地区休瓦促岩浆热液型Mo-W矿床S、Pb同位素对成矿物质来源的约束[J].岩石学报,31(11):3171-3188

杨丽梅,伍建兢,李宗勇,杨新强.2013.中甸铜厂沟铜钼矿矿床地质特征及成因探讨[J].云南地质, 32(1):212-124

杨岳清,侯增谦,黄典豪,曲晓明.2002.中甸弧碰撞造山作用与岩浆成矿系统[J].地球学报,23(1):17-24

尹光侯,李文昌,蒋成兴,许 东,李建康,杨舒然.2009.中甸火山-岩浆弧燕山期热林复式岩体演化与Ar-Ar定年及铜钼矿化[J].地质与勘探,45(4):385-393

余海军,李文昌,尹光侯,王建华,姜文涛,吴 松,唐 忠.2015.滇西北铜厂沟Mo-Cu矿床岩体年代学、地球化学及其地质意义[J].岩石学报,031(11):3217-3233

曾普胜,侯增谦,李丽辉,屈文俊,王海平,李文昌,蒙义峰,杨竹森.2004.滇西北普朗斑岩铜矿床成矿时代及其意义仃].地质通报, 23(11):1127-1131

曾普胜,李文昌,王海平,李 红.2006.云南普朗印支期超大型斑岩铜矿:岩石学及年代学特征[J].岩石学报,22(4):990-1000

Geochemical Characteristics and Mineralization Genesis of the Tongchanggou Mo(Cu)-Polymetallic Deposit in Yunnan Province

YAN Ting-long1, LIU Xue-long1, WANG Ying-chun2, YANG Fu-cheng1, LÜ Xiao-chun2, PAN Jiang-tao2, LI De-zong2

(1.FaccultyofLandandResourceEngineering,KunmingUnivercityofscienceandtechnology,Kunming,Yunnan650051; 2.No. 10GoldGeologicalPartyofCAPF,Kunming,Yunnan650051)

The Tongchanggou located in the southern part of the Gezan island arc mineralization zone of Yunnan Province. It is a newly discovered Mo(Cu)-polymetallic deposit in recent years. Geochemical features of granodiorite-porphyry of this deposit show content of SiO263.02%~69.60% and A/CNK values 0.65~1.05, indicating that it belongs to the metaluminous to the weakly peraluminous attribute-acidic rocks. Its (K2O+Na2O)values are 6.19%~9.11%, which is more than intermediate-acid rock. The rock is relatively enriched in LREE(LREE/HREE=15.48~21.15)and depleted in HREE(LaN/YbN=30.44~38.66),δEu andδCe values range from 0.83 to 1.01 and 0.89 to 0.94, respectively, which indicate an oxidation environment that the rock has no obvious Eu abnormalities except forδCe of mineralize samples. The rock is enriched in large ion lithiphile elements (LILE)and relatively depleted in high field-strength elements(HFSE. It shows that its formation is probably related to the collision and orogenesis. Granodiorite-porphyry of the Yanshanian instructions stretch in NS direction in Geza arc belt. From north to south in the area, a number of large-middle molybdenum polymetallic deposits were formed in the belt accordingly. The outcropped area is smaller and denudation depth becomes shallow toward south. It shows ore-forming elements from the low-temperature Cu, Pb, and Zn elements to the high-temperature Mo and W elements in either vertical (from shallow to deep) horizontal from Tongchanggou to Xiuwacu) directions. Based on metallogenic background and geochemical characteristics, this work discussed the metallogenic material sources and genesis of the deposit, and established the metallogenic model, which can provide evidence for ore prospecting and the metallogenic prediction of this area in the future.

Tongchanggou deposit, granodiorite-porphyry, Gezan island, mineralization Genesis, mineralization model

2016-04-05;[修改日期]2016-08-29;[责任编辑]陈伟军。

云南科技领军人才计划项(2013HA001)、国家自然科学基金项目(41502076)云南省教育厅基金项目(2015Y066)、昆明理工大学省级人培项目(KKSY201421042)联合资助。

彦廷龙(1989年-),男,硕士研究生,地质资源与地质工程专业,从事矿产勘查与找矿研究工作。E-mail:295552329@qq.com。

刘学龙(1983年-),男,副教授,讲师,主要从事西南三江地区地质矿产研究及教学工作。E-mail:xuelongliu@foxmail.com

P618.41;P618.65

A

0495-5331(2016)06-1065-11

猜你喜欢

岛弧花岗闪文昌
文昌发射场暮色
核雕收藏有什么窍门
伊豆-博宁-马里亚纳岛弧地壳厚度分布及其对岩浆活动的指示
东天山帕尔塔格西铜矿床地质特征及找矿方向
青海多彩铜多金属矿区火山岩地球化学特征及其对岛弧环境的限定
可控源音频大地电磁法在黑龙江某铜钼矿床深部找矿中的应用
神像与游走:文昌出巡非遗口述史系列之十一
吉林白山新路花岗闪长斑岩LA
--ICP--MS锆石U--Pb定年、地球化学特征及构造意义
大洋岛弧的前世今生*
新疆博乐科克赛铜钼矿与花岗闪长斑岩地球化学特征