APP下载

锐角三角函数学习导引

2016-12-22

初中生世界 2016年47期
关键词:坡角锐角三角锐角

锐角三角函数学习导引

崔恒刘

本章的重点是锐角三角函数的定义和直角三角形的解法,难点是综合运用知识解决实际问题.通过本章的学习,同学们要会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求相应锐角,能运用锐角三角函数解直角三角形及相关的实际问题.

一、深入理解锐角三角函数的概念

1.理解锐角三角函数的定义.

(1)正切、正弦和余弦的概念是在一个直角三角形中定义的,其本质是两条线段的比值,没有单位,其大小只与角的大小有关,与其所在的直角三角形的大小无关;

(3)正切tanA、正弦sinA和余弦cosA是一个完整的符号,tanA不是tan与A的积,离开了∠A,“tan”就没有意义了,只有合起来,tanA才表示∠A的正切,sinA、cosA也是如此;

(4)符号tanA表示∠A的正切,在符号tanA中,习惯省去角的符号“∠”,当用希腊字母α、β等表示角时,其正切中角的符号习惯上也省去,但当用三个英文字母或阿拉伯数字表示角时,角的符号“∠”不能省略,sinA、cosA也是如此,如tanα、sin∠ABC、cos∠1等.

2.应用锐角三角函数的定义.

例1(2016·甘肃兰州)在Rt△ABC中,∠C=90°,sinA=,BC=6,则AB=().

A.4 B.6 C.8 D.10

图1

【分析】先画出图形,如图1,在Rt△ABC中,由锐角三角函数定义表示出sinA,将sinA的值与BC的长代入即可求出AB的长.

【评注】熟练掌握锐角三角函数的基本概念是解好本题的关键,做题时边读题边画一个直角三角形,数形结合、看图说话,可避免主观出错.

二、理解记忆特殊角的三角函数值

任意角的三角函数值都可以由计算器获取,但由于特殊角的三角函数值常见常用,所以应当记忆,这样便于我们运用它们进行计算、求值和解直角三角形.

另外,观察表格,我们还有收获.横着看:正弦值、正切值,随着角度的增大而增大(其中tan30°·tan60°=1=tan45°);余弦值,随着角度的增大而减小.这个规律是不是一般规律?对所有的锐角三角函数都成立吗?有兴趣的同学可借助于计算器验证一下自己的发现.竖着看:sin45°=cos45°;斜着看:sin30°=cos60°,sin60°=cos30°.学习数学,要善于观察、思考,这样才能不断提升自己.

例2式子的值是().

A.2?3-2 B.0 C.2?3 D.2

【分析】将特殊角的三角函数值代入后,化简即可得出答案.原式=2×

【评注】本题考查了特殊角的三角函数值,因此,一些特殊角的三角函数值需要我们在理解的基础上熟练记忆.

例3已知tanA=,∠A为锐角,则∠A的取值范围是().

A.0°<∠A<30° B.30°<∠A<45°

C.45°<∠A<60° D.60°<∠A<90°

【分析】要确定∠A的取值范围,只要确定在哪两个特殊角的三角函数值之间即可.因为所以tan30°<tanA<tan45°,所以30°<∠A<45°,故选B.

【评注】解答本题不仅要熟记特殊角的三角函数值,还要理解“锐角三角函数的正切值随着角度的增大而增大”这个规律.

三、解直角三角形及其应用

1.直角三角形各元素之间的关系.

如图2,在Rt△ABC中,∠C=90°,a、b、c分别是∠A的对边、∠B的对边和∠C的对边.除直角外的五个元素之间有如下的关系:

三边之间的关系:a2+b2=c2;

两个锐角之间的关系:∠A+∠B=90°;

图2

2.解直角三角形的基本类型及解法.

已知类型已知条件解法步骤(1)c =两直角边a、b a2+ b2;(2)由t a n A =两边ab,求∠A;(3)∠B = 9 0 ° -∠A .(1)b = c2-a2;(2)由s i n A =斜边和一直角边(如c、a)ac,求∠A;(3)∠B = 9 0 ° -∠A .(1)∠B = 9 0 ° -∠A;(2)由t a n A = ab,求b;(3)由s i n A =一直角边和一锐角(如:a、∠A)一边和一角ac,求c .斜边和一锐角(如:c、∠A)(1)∠B = 9 0 ° -∠A;(2)由s i n A = ac,求a;(3)由c o s A = bc,求b .

由此我们知道:在直角三角形的六个元素中,除直角外的五个元素,只要知道两个元素(其中至少有一个是边),就可以求出其余的三个元素.解直角三角形的知识广泛应用于生活,尤其在测量过程中用于计算距离、高度、长度和角度等.

例4(2016·江苏苏州)如图3,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为().

虽然文章开头可千变万化,但作为初中学生来讲,还是要靠船下篙,简洁明了为好,课文中此类开头也很多,这里不再一一列举。我们老师在实际教学中,要根据学生的实际情况,灵活地运用文章开头的方法。

C(.2?3-2)m D(.2?6-2)m

图3

【分析】先在Rt△ABD中利用正弦的定义计算出AD,然后在Rt△ACD中利用正弦的定义计算AC即可.

【解答】在Rt△ABD中,sin∠ABD=

【点评】解直角三角形的关键是抓住已知条件,利用已知的边和角求出未知的边,进而解决问题.

例5(2016·四川巴中)一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图4所示,则下列关系或说法正确的是().

图4

A.斜坡AB的坡度是10°

C.AC=1.2tan10°米

【分析】坡度反映了斜坡的陡峭程度(这个度的意义不是角度),它是坡面的铅直高度h和水平宽度l的比,又叫做坡比,是一个比值,一般用i表示,常写成i=h∶l的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=tanα.

【解答】根据坡度是坡角的正切值得斜坡AB的坡度是i==tan10°,选:B.

【点评】本题考查了解直角三角形应用中的基本概念:坡度、坡角,理解坡度的含义是解题的关键.

例5(2016·山东菏泽)南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,如图5,当渔船航行至B处时,测得该岛位于正北方向20(1+3)海里的C处,为了防止某国巡警干扰,就请求我国A处的渔监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C之间的距离.

图5

图6

【分析】本题属于解直角三角形的应用——方向角问题,认真审题,理解方向是解题的关键.如图6,过点A作AD⊥BC,垂足为D,设CD=x,利用解直角三角形的方法,可得出AD,进而可得出BD,结合题意BC=CD+BD可列出方程,解出x的值后即可得出答案.

【解答】如图6,∠ACD=45°,∠ABD=30°.

设CD=x,在Rt△ACD中,可得AD=x,

解之得:x=20,

∴AC=2x=202(海里).

答:A、C之间的距离为202海里.

【点评】此题考查了关于方向角方面的实际应用,解答本题的关键是根据题意构造直角三角形,将实际问题转化为数学模型运用方程求解.

(作者单位:江苏省东台市实验中学教育集团南校区)

责任编辑:彭深

email:2020748334@qq.com

猜你喜欢

坡角锐角三角锐角
坡角对双坡屋盖风荷载特性影响分析
过非等腰锐角三角形顶点和垂心的圆的性质及应用(下)
过非等腰锐角三角形顶点和垂心的圆的性质及应用(上)
《锐角三角函数》拓展精练
锐角寻亲记
抗滑桩与边坡夹角对抗滑桩抗滑效果研究
锐角三角形有几个锐角
一群人的狂欢
山地光伏电站间距计算与合理选址
教具“多功能坡角测量器”设计制作