华北落叶松人工林地土壤养分与土壤酶的季节变化及关系
2016-12-12孙鹏跃徐福利王渭玲王玲玲牛瑞龙白小芳
孙鹏跃,徐福利,王渭玲,王玲玲,牛瑞龙,高 星,白小芳
(1.西北农林科技大学 生命科学学院,陕西 杨凌 712100;2.中国科学院 水利部水土保持研究所,陕西杨凌 712100;3.西北农林科技大学 资源环境学院,陕西 杨凌 712100;4.中国科学院大学, 北京100049)
华北落叶松人工林地土壤养分与土壤酶的季节变化及关系
孙鹏跃1,徐福利2,3,王渭玲1,王玲玲1,牛瑞龙1,高 星1,白小芳2,4
(1.西北农林科技大学 生命科学学院,陕西 杨凌 712100;2.中国科学院 水利部水土保持研究所,陕西杨凌 712100;3.西北农林科技大学 资源环境学院,陕西 杨凌 712100;4.中国科学院大学, 北京100049)
以秦岭地区幼中龄林(5,10,20年生)华北落叶松Larix principis-rupprechtii人工林地土壤为研究对象,在林木生长季节(5-10月)每月中旬采集表层(0~20 cm)土壤样品,通过测定不同物候期的土壤速效养分质量分数与土壤酶活性,研究分析两者的物候季节动态特征及相互关系,旨在发现华北落叶松人工林地土壤肥力最低的时期并为人工林的合理施肥提供基础理论指导。结果表明:3种林龄人工林(5,10,20年生)土壤速效养分(速效氮、速效磷)质量分数在整个生长季节内变化规律趋于一致,在林木生长旺盛期土壤速效氮和速效磷质量分数最低,土壤速效氮质量分数最低值分别为29.49,19.96和47.32 mg·kg-1;土壤速效磷质量分数最低值分别为2.31,2.79和1.60 mg·kg-1。3种龄林人工林(5,10,20年生)土壤酶(脲酶、转化酶、磷酸酶、过氧化氢酶)活性在整个生长季节内变化规律基本相同,由萌芽展叶初期到落叶末期土壤脲酶活性和转化酶活性呈逐渐上升趋势,土壤脲酶活性最低值分别为0.33,0.25和0.15 mg·g-1;土壤转化酶活性最低值分别为40.82,41.91和22.25 mg·g-1。从生长旺盛初期到落叶期土壤磷酸酶活性呈缓慢下降趋势,土壤磷酸酶活性最低值分别为0.16,0.13和0.22 mg·g-1;在生长旺盛初期土壤过氧化氢酶活性最低,土壤过氧化氢酶活性最低值分别为1.39,1.44和2.68 mL·g-1。与幼龄林 (5年生,10年生)相比,中龄林(20年生)土壤速效磷质量分数显著下降(P<0.05)。土壤速效养分与土壤酶相关性密切,说明土壤酶可以较好地反映土壤肥力状况。因此,土壤肥力由萌芽展叶期到生长旺盛期出现下降而到落叶期有上升趋势,且由幼龄林到中龄林土壤肥力有下降趋势,应在生长旺盛期对中龄林林地进行适当施肥。图2表3参38
森林土壤学;华北落叶松;速效养分;土壤酶;季节动态
土壤速效养分是指土壤所提供的植物生活所必需的易被作物吸收利用的营养元素,是评价土壤自然肥力的主要因素之一[1]。土壤酶是土壤一切生物化学过程的积极参与者[2],它不仅可以表征土壤物质能量代谢程度,而且可以作为评价土壤肥力高低和生态环境质量优劣的一个重要生物指标[3]。土壤养分与土壤酶联系非常紧密[3]。林分类型[4]、土壤类型[5-7]、海拔高度[8]、林下植被[9]等立地条件影响土壤养分含量与土壤酶活性以及两者之间的关系,其中,季节变化也是一个非常重要的因素,并对其有明显的影响[10-11]。华北落叶松 Larix principis-rupprechtii属松科Pinaceae落叶松属Larix,是中国暖温带亚高山地区的代表性森林类型,主要分布于河流的发源地,在水源涵养和水土保持方面具有重要作用[12]。秦岭地区华北落叶松人工林有7 900 hm2,占陕西华北落叶松人工林总面积的90%[13],但是由于多代连栽、炼山、造林整地、不合理的采伐利用方式等原因而导致人工林地力出现了衰退的现象[14]。目前,对秦岭地区华北落叶松人工林土壤养分含量与土壤酶活性以及两者之间相关性等地力质量评价的研究较多[15-16],但是对它们随不同物候期变化规律的研究近乎空白。本研究以秦岭地区华北落叶松人工林地土壤为研究对象,选取立地条件相似的5,10和20年生的华北落叶松人工林样地,拟通过对各个年龄华北落叶松人工林地中与土壤碳、氮和磷循环相关的3种土壤酶活性和与土壤氧化循环密切相关的过氧化氢酶、土壤速效养分质量分数的测定,揭示各变量之间随不同物候期的变化规律,旨在发现秦岭地区华北落叶松人工林地土壤肥力最低的时期,并为人工林的合理施肥提供基础理论指导。
1 材料与方法
1.1 研究区概况
5,10年生(幼龄林)和20年生(中龄林)华北落叶松人工林试验样地设置在陕西省宝鸡市太白县太白林业局南滩实验苗圃林场,地处太白县城东南4 km的秦岭西主峰鳌山脚下,34°02′18″N,107°20′51″E,属秦岭谷地小气候带。该处年均降水量为600.0~1 000.0 mm,年平均气温7.6℃,年均无霜期158.0 d,最高气温32.8℃,最低气温-25.5℃,林木生长期为166.0 d。表1为研究区样地基本概况。
1.2 研究方法
1.2.1 标准地设置与样品采集 于2012年4月中旬布设样地,分别在5,10和20年生华北落叶松人工林样地各选取20 m×20 m大小的3块标准样地。在林木整个生长季节,从2012年5月到10月于每月
中旬采集土壤样品。用土钻法在每个标准样地沿 “S”型采集5个点的0~20 cm土壤样品,然后用四分法取土装入塑封袋。为了保证采集土壤样品的均一性,每次在每个样地取样时尽量选择相同的地点。将土壤样品带回实验室风干后分别过0.25 mm和1.00 mm的筛,并装入塑封袋中,用于不同土壤指标的测定。
表1 样地林分基本特征Table 1 Basic characteristics of experimental plots
1.2.2 测定方法 采用1.0 mol·L-1氯化钾浸提,用AA3型连续流动分析仪测定土壤速效氮(德国Bran+ Luebbe公司);采用0.5 mol·L-1碳酸氢钠浸提,钼锑抗比色法测定土壤速效磷;采用1 mol·L-1醋酸铵浸提,火焰光度法测定土壤速效钾[17];采用DELTA-320型pH仪测定土壤pH值。土壤脲酶测定采用靛酚比色法,其活性以24 h后1.0 g土壤铵态氮(NH3-N)毫克数表示(mg·g-1);土壤蔗糖酶测定采用3,5-二硝基水杨酸比色法,其活性以24 h后1.0 g土壤葡萄糖毫克数表示(mg·g-1);土壤磷酸酶测定采用磷酸苯二钠比色法,其活性以2 h后1.0 g土壤五氧化二磷毫克数表示(mg·g-1);土壤过氧化氢酶测定采用高锰酸钾法,其活性以1.0 g土消耗0.02 mol·L-1高锰酸钾的毫升数表示(mL·g-1)[18]。
1.3 数据处理
采用Excel 2007软件绘图。显著性检验由单因素方差分析(one-way ANOVA)和多重比较(Duncan)分析完成,检验显著性水平设定为α=0.05。土壤养分与土壤酶的相关关系采用Pearson法进行分析。所有数据统计分析均在SPSS 20.0中进行。
2 结果与分析
2.1 华北落叶松人工林地土壤养分季节变化特征
图1表明:3种林龄人工林土壤速效养分(速效氮、速效磷、速效钾)质量分数在整个生长季节内变化规律趋于一致,其中,土壤速效氮与速效磷质量分数从萌芽展叶期(5-6月)到生长旺盛期(7-8月)逐渐下降并降至整个生长季节最低,而到落叶期(9-10月)逐渐上升,随物候期呈先降低后升高趋势;土壤速效钾质量分数与土壤pH值从萌芽展叶期(5-6月)到生长旺盛期(7-8月)逐渐上升并升至整个生长季节最高,而到落叶期(9-10月)逐渐下降,随物候期呈先增高后降低趋势。
2.2 华北落叶松人工林地土壤酶季节变化特征
图1 不同林龄华北落叶松人工林地土壤养分季节变化Figure 1 Seasonal changes of soil available nutrients with different stand ages
图2表明:3种林龄人工林在整个生长季节内土壤酶(脲酶、转化酶、磷酸酶、过氧化氢酶)活性变化规律基本相同,其中,土壤脲酶活性从萌芽展叶期(5-6月)到落叶期(9-10月)一直缓慢上升,随物候
期呈逐渐升高趋势;在整个生长季节内土壤转化酶与土壤脲酶活性变化规律相似,区别在于土壤转化酶活性在落叶末期(10月)急剧上升,且10月极显著高于其他月份(P<0.01);土壤磷酸酶活性从萌芽展叶初期(5-6月)到末期逐渐下降,由萌芽展叶末期到生长旺盛初期(6-7月)渐渐回升,而从生长旺盛初期到落叶期(7-10月)又缓慢下降,总体上随物候期呈先降低后升高再降低趋势。土壤过氧化氢酶活性从萌芽展叶期(5-6月)到生长旺盛初期(7月)逐渐下降并降至整个生长季节最低,而从生长旺盛期(7-8月)到落叶期(9-10月)逐渐上升,随物候期呈先降低后升高趋势。
2.3 不同林龄华北落叶松人工林地土壤养分和土壤酶平均值差异比较
由表2可知:20年生林地土壤速效氮显著高于5和10年生林地土壤(P<0.05),5和10年生林地土壤速效磷和速效钾质量分数以及土壤脲酶活性和转化酶活性均显著高于20年生林地土壤(P<0.05)。20年生林地土壤磷酸酶活性和过氧化氢酶活性高于5和10年生林地土壤,但差异不显著(P>0.05)。5和10年生林地土壤pH值稍高于20年生,但差异不显著(P>0.05)。
表2 不同林龄华北落叶松人工林地土壤养分和土壤酶平均值差异比较(平均值±标准差)Table 2 Comparison of the average soil nutrient contents and soil enzymes activities with different stand ages(±s)
表2 不同林龄华北落叶松人工林地土壤养分和土壤酶平均值差异比较(平均值±标准差)Table 2 Comparison of the average soil nutrient contents and soil enzymes activities with different stand ages(±s)
说明:同列数据后不同小写字母表示不同林龄间差异达5%显著水平。
?
2.4 华北落叶松人工林地土壤养分与土壤酶相关性分析
表3表明:土壤速效氮与土壤过氧化氢酶呈极显著正相关关系(P<0.01);土壤速效磷与土壤转化酶呈极显著正相关关系(P<0.01);土壤速效钾与土壤脲酶呈极显著正相关关系(P<0.01),与土壤转化酶呈显著正相关关系(P<0.05),与土壤过氧化氢酶呈极显著负相关关系(P<0.01);土壤pH值与土壤过氧化氢酶呈显著负相关关系(P<0.05)。
3 讨论与结论
3.1 季节对土壤养分和土壤酶的影响
氮磷是植物生长所必须的大量元素,有前人研究表明森林生态系统易受到氮磷的限制[19]。本研究中,在生长旺盛期土壤速效氮和速效磷质量分数最低,可能是因为在生长旺盛期降水较多,雨水对土壤表层速效氮和速效磷淋失严重。此外,这一时期,林木根系也需要吸收大量氮磷养分以满足自身生长发育的需要,这与薛敬意等[20]研究结果相吻合。生长旺盛期土壤速效钾质量分数最高,这与已有的研究结果不同[10],可能是因为进入生长旺盛期后,降水增多,温度升高,土壤干湿交替会引起黏土矿物的收缩与膨胀,影响速效钾的固定与释放,进而对土壤速效钾质量分数产生影响[21]。本研究表明,生长旺盛期的土壤pH值高于其他2个时期。在江远清等[10]研究中,鼎湖山马尾松Pinus massoniana林地9月的土壤pH值低于其他月份,说明土壤pH值随不同物候期变化是一个比较复杂的过程,土壤中氢离子(H+)浓度易受到钙(Ca2+),镁(Mg2+),铝(Al3+),钾(K+)等阳离子[10]、土壤温度和土壤含水率[22]综合作用的影响。
表3 土壤养分与土壤酶的相关系数Table 3 Correlation coefficients between soil nutrients and soil enzymes
土壤脲酶和转化酶活性均在落叶期达到最高峰,这与范艳春等[23]的研究结果一致,与陶宝先等[11]和王艮梅等[24]的分析结论不一致。在本研究中,土壤磷酸酶活性在萌芽展叶初期(5月)较高,可能是这一时期土壤理化因子较适宜和上一年凋落物在次年发挥效应共同作用的结果[24],但在萌发展叶末期(6月),此种效应渐渐趋于转弱,土壤磷酸酶活性出现小幅度下降;随着林木生长进入生长旺盛初期(7月),气温升高,林木根系代谢加快,根系分泌物有利于土壤磷酸酶活性提高,这与杨志勇等[25]的研究结果一致;在落叶期气温逐渐降低,导致土壤磷酸酶活性再次下降。本研究表明:生长旺盛期土壤过氧化氢酶活性最低,这与熊浩仲等[26]对川西亚高山地区的研究结果不同,可能是因为秦岭山区与川西亚高山地区在气候条件、地形地貌、植物群落类型等存在差异造成的。
综合分析得出,各个林龄华北落叶松人工林土壤速效养分和土壤酶受物候季节影响显著,土壤肥力由萌芽展叶期到生长旺盛期出现下降而到落叶期有上升趋势。
3.2 林龄对土壤养分和土壤酶的影响
本研究表明:从幼龄林到中龄林土壤速效氮质量分数增加,这与牛小云等[27]的研究结论不一致。目前,林龄对土壤氮矿化的影响机理还没有定论,可能是因为研究树种和林龄不一致,从而导致研究结果不同[28]。本研究发现:幼龄林土壤速效磷为2.96~3.77 mg·kg-1,与马云波等[29]对幼龄林华北落叶松研究结果相比偏高;中龄林土壤速效磷为2.14 mg·kg-1,与雷瑞德等[16]对中龄林华北落叶松所做的研究比较,其土壤速效磷质量分数低于后者,说明与幼龄林相比,中龄林土壤更缺少速效磷。张树梓等[30]研究表明:土壤速效磷是华北落叶松中龄林林分更新主要影响因子。由此可见:土壤速效磷对中龄华北落叶松人工林的正常生长显得尤为重要。周琨等[31]研究认为:土壤速效钾随林龄增加而增加。在本研究中,从幼龄林到中龄林土壤速效钾质量分数下降,但是3种林龄人工林土壤速效钾变化范围为92.85~124.11 mg·kg-1。依据全国第2次土壤普查养分分级的标准,本研究样地土壤速效钾充足。幼龄林的土壤pH值高于中龄林,这与前人的研究结果一致[27,30]。
林龄主要通过影响土壤物理性质、水热状况和生物区系间接影响土壤酶活性[32]。本研究表明:幼龄林土壤脲酶活性和转化酶活性显著高于中龄林,可能是由于林龄不同,凋落物现存量、厚度、周转、养分归还等不同,林分的温度、湿度和微生物数量上存在差异,细根产量和微生物组成的差异对土壤酶活均产生较大影响[32],这与张超等[33]研究结果呈现的规律一致。周琨等[31]研究认为:土壤磷酸酶活性随林龄增加而增加。本研究中,幼龄林土壤磷酸酶活性较高,中龄林偏低,可能是因为随林龄增加土壤速效磷减少,从而诱导土壤磷酸酶活性提高[34]。与刘杰等[35]在河北省塞罕坝机械林场的研究结果不同。本研究认为土壤过氧化氢酶活性随林龄增加而增加,原因可能是研究样地的立地条件存在差异。
通过以上分析得出,由幼龄林到中龄林土壤肥力有下降趋势,应在林木生长旺盛期对中龄林地适当施肥以缓解土壤肥力的下降状况。
3.3 华北落叶松人工林地土壤养分与土壤酶的相关关系
土壤过氧化氢酶来自真菌和细菌,也可能来自植物根系[36]。有研究表明:林木根系土壤真菌和细菌数量随着林龄增加而增加,土壤过氧化氢酶活性也随之增强[37]。本研究中,中龄林土壤过氧化氢酶活性高,土壤速效氮质量分数也高;幼龄林土壤过氧化氢酶活性低,土壤速效氮质量分数也低,这与付刚等[15]的研究结果一致,说明土壤过氧化氢酶在土壤氮素循环中具有重要作用。本研究表明:土壤速效磷与土壤转化酶呈极显著正相关关系(P<0.01),这与葛晓改等[32]的研究结果略有不同,可能是因为本样地土壤速效磷极度匮乏,土壤微生物通过降解凋落物来增加土壤速效磷质量分数,同时可能会诱导土壤转化酶活性增强来辅助降解凋落物的过程。与陶宝先等[11]对黄棕壤,周琨等[31]对红壤和付刚等[15]对山地褐土研究结果一致。土壤速效钾与土壤脲酶和转化酶均呈显著正相关关系(P<0.05),说明对于不同土壤类型,土壤中速效钾都有助于土壤氮素和碳素的养分循环。根据吴雪等[38]的研究,土壤速效钾对土壤过氧化氢酶有较强的直接负效应,说明速效钾对过氧化氢酶具有抑制作用。本研究也发现土壤速效钾与土壤过氧化氢酶呈极显著负相关(P<0.01),其具体原因有待进一步探究。华北落叶松人工林中龄林土壤pH值为6.24,土壤过氧化氢酶活性为3.43 mL·g-1,比中龄马尾松人工林[37]高,而土壤过氧化氢酶活性低于后者。土壤pH值越低,土壤过氧化氢酶活性越高,说明酸性土壤中的过氧化氢酶活性相对较高。
总体分析,土壤速效养分与土壤酶相关性密切,土壤酶可以作为重要的生物指标来评价物候季节变化对土壤肥力的影响。
[1] 赵业婷,常庆瑞,李志鹏,等.黄土高原沟壑区耕地土壤速效养分空间特征及丰缺状况研究:以陕西省富县为例[J].土壤通报,2012,43(6):1438-1443.
ZHAO Yeting,CHANG Qingrui,LI Zhipeng,et al.Study on the spatial variability and distribution pattern of soil available nutrients in gully Loess Plateau farmland:Shaanxi Fuxian as an example[J].Chin J Soil Sci,2012,43(6):1438-1443.
[2] 杨万勤,王开运.森林土壤酶的研究进展[J].林业科学,2004,40(2):152-159.
YANG Wanqin,WANG Kaiyun.Advances in forest soil enzymology[J].Sci Silv Sin,2004,40(2):152-159.
[3] 刘善江,夏雪,陈桂梅,等.土壤酶的研究进展[J].中国农学通报,2011,27(21):1-7.
LIU Shanjiang,XIA Xue,CHEN Guimei,et al.Study progress on functions and affecting factors of soil enzymes[J].Chin Agric Sci Bull,2011,27(21):1-7.
[4] 朱昊宇.红壤丘陵区不同林分类型土壤酶活性及养分特征[J].现代农业科技,2015(6):203-205,225.
ZHU Haoyu.Soil enzyme activities and nutrient contents of different forest stands in red soil hilly region[J].Mod A-gric Sci Technol,2015(6):203-205,225.
[5] 张孝存,郑粉莉,安娟,等.黑土区坡耕地土壤酶活性与土壤养分关系研究[J].干旱区资源与环境,2013,27(11):106-110.
ZHANG Xiaocun,ZHENG Fenli,AN Juan,et al.Relationship between soil enzyme activities and soil nutrient of a sloping farmland in the black soil region[J].J Arid Land Resour Environ,2013,27(11):106-110.
[6] 陈璟,杨宁.亚热带红壤丘陵区5种人工林对土壤性质的影响[J].西北农林科技大学学报:自然科学版,2013,41(12):167-173,178.
CHEN Jing,YANG Ning.Effects of five plantations on soil properties in subtropical red soil hilly region[J].J Northwest A&F Univ Nat Sci Ed,2013,41(12):167-173,178.
[7] 焦利卫,齐树亭,吕玉珊,等.盐化潮土不同农田土壤养分和土壤酶活性研究[J].安徽农业科学,2009,37(35):17620-17622.
JIAO Liwei,QI Shuting,L譈Yushan,et al.Research on soil enzyme activities and soil nutrients in different types of farm land in salinization fluvo-aquic soil[J].J Anhui Agric Sci,2009,37(35):17620-17622.
[8] 袁启凤,解璞,黄静,等.云南不同海拔高度对杜鹃土壤酶活性与土壤养分的影响[J].热带作物学报,2013,34(12):2363-2367.
YUAN Qifeng,XIE Pu,HUANG Jing,et al.The influence on soil enzyme activities and soil nutrient contents in Rhododendron soil at different altitudes in Yunnan Province[J].Chin J Trop Crop,2013,34(12):2363-2367.
[9] 漆良华,张旭东,彭镇华.湘西北小流域植被恢复区土壤酶活性及养分相关性[J].东北林业大学学报,2011,39(3):83-88.
QI Lianghua,ZHANG Xudong,PENG Zhenhua.Soil enzyme activities and their path analysis with soil nutrient properties under different vegetation restoration patterns in small watershed,northwest Hunan[J].J Northeast For U-niv,2011,39(3):83-88.
[10] 江远清,莫江明,方运霆,等.鼎湖山主要森林类型土壤交换性阳离子含量及其季节动态特征[J].广西植物,2007,27(1):106-113.
JIANG Yuanqing,MO Jiangming,FANG Yunting,et al.Concentrations of exchangeable cations of soil and their seasonal dynamics in three representative forests of Dinghushan Biosphere Reserve[J].Guihaia,2007,27(1):106-113.
[11] 陶宝先,张金池,俞元春,等.苏南丘陵地区森林土壤酶活性季节变化[J].生态环境学报,2010,19(10):2349-2354.
TAO Baoxian,ZHANG Jinchi,YU Yuanchun,et al.Season variations of forest soil enzyme activities in the hilly region of southern Jiangsu Province[J].Ecol Environ Sci,2010,19(10):2349-2354.
[12] 姚延梼,陈建中,胡建芳.华北落叶松[M].北京:中国农业科学技术出版社,2013:1-5.
[13] 赵海燕,徐福利,王渭玲,等.秦岭地区华北落叶松人工林地土壤养分和酶活性变化[J].生态学报,2015,35(4):1086-1094.
ZHAO Haiyan,XU Fuli,WANG Weiling,et al.Soil nutrients and enzyme activities in Larix principis-rupprechtii plantations in the Qinling Mountains,China[J].Acta Ecol Sin,2015,35(4):1086-1094.
[14] 张昌顺,李昆.人工林地力的衰退与维护研究综述[J].世界林业研究,2005,18(1):17-21.
ZHANG Changshun,LI Kun.Advance in research on soil degradation and soil improvement of timber plantations[J].World For Res,2005,18(1):17-21.
[15] 付刚,刘增文,崔芳芳.秦岭山区典型人工林土壤酶活性、微生物及其与土壤养分的关系[J].西北农林科技大学学报:自然科学版,2008,36(10):88-94.
FU Gang,LIU Zengwen,CUI Fangfang.The feature of soil enzyme activity and quantity of microorganism under artificial forests and their relationships with soil nutrient in Qinling Mountain Area[J].J Northwest A&F Univ Nat Sci Ed,2008,36(10):88-94.
[16] 雷瑞德,党坤良,张硕新,等.秦岭南坡中山地带华北落叶松人工林对土壤的影响[J].林业科学,1997,33(5):463-470.
LEI Ruide,DANG Kunliang,ZHANG Shuoxin,et al.Effect of a Larix principis-rupprechtii forest plantation on soil in middle zone of south-facing slope of the Qingling Mountains[J].Sci Silv Sin,1997,33(5):463-470.
[17] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:81-108.
[18] 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986:274-323.
[19] 毛庆功,鲁显楷,陈浩,等.陆地生态系统植物多样性对矿质元素输入的响应[J].生态学报,2015,35(17):1-18.
MAO Qinggong,LU Xiankai,CHEN Hao,et al.Responses of terrestrial plant diversity to elevated mineral element inputs[J].Acta Ecol Sin,2015,35(17):1-18.
[20] 薛敬意,唐建维,沙丽清,等.西双版纳望天树林土壤养分含量及其季节变化[J].植物生态学报,2003,27(3):373-379.
XUE Jingyi,TANG Jianwei,SHA Liqing,et al.Soil nutrient contents and their characteristics of seasonal changes under Shorea chinensis forest in Xishuangbanna[J].Acta Phytoecol Sin,2003,27(3):373-379.
[21] 陈钦程,徐福利,王渭玲,等.秦岭北麓不同林龄华北落叶松土壤速效钾变化规律[J].植物营养与肥料学报,2014,20(5):1243-1249.
CHEN Qincheng,XU Fuli,WANG Weiling,et al.Seasonal dynamics of available K in soil for different ages of Larix principis-rupprechtii in the northern foot of the Qinling[J].J Plant Nutr Fert Sci,2014,20(5):1243-1249.
[22] BALDRIAN P,ŠNAJDR J,MERHAUTOVÁ V,et al.Responses of the extracellular enzyme activities in hardwood
forest to soil temperature and seasonality and the potential effects of climate change[J].Soil Biol Biochem,2013,56:60-68.
[23] 范艳春,王鹏程,肖文发,等.三峡库区2类典型森林5种土壤酶季节动态及其与养分的关系[J].华中农业大学学报,2014,33(4):39-44.
FAN Yanchun,WANG Pengcheng,XIAO Wenfa,et al.Seasonal dynamics of soil enzymes and its relationship with nutrients for two forests in Three Gorges Reservoir Area[J].J Huangzhong Agric Univ,2014,33(4):39-44.
[24] 王艮梅,罗琳琳,郑聚锋.苏北不同代次和林龄杨树人工林土壤酶活性季节变化特征[J].南京林业大学学报:自然科学版,2014,38(4):45-50.
WANG Genmei,LUO Linlin,ZHENG Jufeng.Seasonal dynamics characteristics of soil enzyme activities of poplar plantation with different stand ages and rotations[J].J Nanjing For Univ Nat Sci Ed,2014,38(4):45-50.
[25] 杨志勇,李刚,姚成,等.苏北大丰生态工程区2种植物群落土壤酶活性比较[J].生态学报,2009,29(7):3649-3657.
YANG Zhiyong,LI Gang,YAO Cheng,et al.Comparative studies on the soil enzymic activities of two plant communities in Dafeng ecological engineering wetland of northern Jiangsu[J].Acta Ecol Sin,2009,29(7):3649-3657.
[26] 熊浩仲,王开运,杨万勤.川西亚高山冷杉林和白桦林土壤酶活性季节动态[J].应用与环境生物学报,2004,10(4):416-420.
XIONG Haozhong,WANG Kaiyun,YANG Wangqin.Seasonal variations of soil enzyme activities in fir and birch forests in subalpine area of western Sichuan[J].Chin J Appl Environ Biol,2004,10(4):416-420.
[27] 牛小云,孙晓梅,陈东升,等.辽东山区不同林龄日本落叶松人工林土壤微生物、养分及酶活性[J].应用生态学报,2015,26(9):2663-2672.
NIU Xiaoyun,SUN Xiaomei,CHEN Dongsheng,et al.Soil microorganisms,nutrients and enzyme activity of Larix kaempferi plantation under different ages in mountainous region of eastern Liaoning Province,China[J].Chin J Appl Ecol,2015,26(9):2663-2672.
[28] 苗娟,周传艳,李世杰,等.不同林龄云南松林土壤有机碳和全氮积累特征[J].应用生态学报,2014,25(3):625-631.
MIAO Juan,ZHOU Chuanyan,LI Shijie,et al.Accumulation of soil organic carbon and total nitrogen in Pinus yunnanensis forests at different age stages[J].Chin J Appl Ecol,2014,25(3):625-631.
[29] 马云波,许中旗,张岩,等.冀北山区华北落叶松人工林对土壤化学性质的影响[J].水土保持学报,2015,29(4):165-170.
MA Yunbo,XU Zhongqi,ZHANG Yan,et al.Impact of larch plantation on soil chemical property in north mountain of Hebei[J].J Soil Water Conserv,2015,29(4):165-170.
[30] 张树梓,李梅,张树彬,等.塞罕坝华北落叶松人工林天然更新影响因子分析[J].生态学报,2015,35(16):1-12.
ZHANG Shuzi,LI Mei,ZHANG Shubin,et al.Factors affecting natural regeneration of Larix principis-rupprechtii plantation in Saihanba of Hebei,China[J].Acta Ecol Sin,2015,35(16):1-12.
[31] 周琨,张淼,薛新权,等.不同林龄马尾松人工林土壤酶变化特征研究[J].现代农业科技,2013(15):165-167.
ZHOU Kun,ZHANG Miao,XUE Xinquan,et al.Study on the variation characteristics of soil enzyme in man-made forest of Pinus massoniana at different ages[J].Mod Agric Sci Technol,2013(15):165-167.
[32] 葛晓改,肖文发,曾立雄,等.三峡库区不同林龄马尾松土壤养分与酶活性的关系[J].应用生态学报,2012,23(2):445-451.
GE Xiaogai,XIAO Wenfa,ZENG Lixiong,et al.Relationships between soil nutrient contents and soil enzyme activites in Pinus massoniana stands with different ages in Three Gorges Resevvoir Area[J].Chin J Appl Ecol,2012,23(2):445-451.
[33] 张超,刘国彬,薛萐,等.黄土丘陵区不同林龄人工刺槐林土壤酶演变特征[J].林业科学,2010,46(12):23-29.
ZHANG Chao,LIU Guobin,XUE Sha,et al.Evolution of soil enzyme activities of Robinia pseudoacacia plantation
at different ages in Loess Hilly Region[J].Sci Silv Sin,2010,46(12):23-29.
[34] YANG Kai,ZHU Jiaojun,GU Jiacun,et al.Changes in soil phosphorus fractions after 9 years of continuous nitrogen addition in a Larix gmelinii plantation[J].Ann For Sci,2015,72(4):435-442.
[35] 刘杰,马履一,贾忠奎,等.不同林龄华北落叶松林下土壤理化性质及微生物学指标评价[J].水土保持通报,2013,33(6):88-93.
LIU Jie,MA Lüyi,JIA Zongkui,et al.Assesses of soil physicochemical properties and microbiology indicators in Larix principis-rupprechtii plantations[J].Bull Soil Water Conserv,2013,33(6):88-93.
[36] 孙辉,吴秀臣,秦纪洪,等.川西亚高山森林土壤过氧化氢酶活性对升高温度和CO2浓度的响应[J].土壤通报,2007,38(5):891-895.
SUN Hui,WU Xiuchen,QIN Jihong,et al.Response of soil catalase activities to temperature and CO2in subalpine forest in the western Sichuan[J].Chin J Soil Sci,2007,38(5):891-895.
[37] 梅杰,周国英.不同林龄马尾松林根际与非根际土壤微生物、酶活性及养分特征[J].中南林业科技大学学报,2011,31(4):46-49.
MEI Jie,ZHOU Guoying.Study of rhizosphere and non-rhizosphere microbial,enzyme acttivity and nutrients element content of soil in different stand ages Pinus massoniana forest[J].J Cent South Univ For Technol,2011,31(4):46-49.
[38] 吴雪,贡璐,冉启洋,等.阿拉尔垦区土壤理化因子与酶活性的通径分析[J].水土保持研究,2013,20(3):48-54.
WU Xue,GONG Lu,RAN Qiyang,et al.Path analysis of soil physicochemical properties and enzymatic activities in the Aler Reclamation Area[J].Res Soil Water Conserv,2013,20(3):48-54.
Seasonal dynamics of soil nutrients and soil enzyme activities in Larix principis-rupprechtii plantations
SUN Pengyue1,XU Fuli2,3,WANG Weiling1,WANG Lingling1,NIU Ruilong1,GAO Xing1,BAI Xiaofang2,4
(1.College of Life Sciences,Northwest A&F University,Yangling 712100,Shaanxi,China;2.Institute of Soil and Water Conservation of Chinese Academy of Sciences and Ministry of Water Resources,Yangling 712100,Shaanxi, China;3.College of Resources and Environment,Northwest A&F University,Yangling 712100,Shaanxi,China;4. University of Chinese Academy of Sciences,Beijing 100049,China)
This research was conducted to determine the stage when soil fertility was poorest within plantation growing seasons and to provide guidelines for rational application of fertilizer in an artificial forest.The mass fraction of soil available nutrients and soil enzyme activities characteristic of phenological and seasonal dynamics and their relationships in young- (5 a and 10 a)and middle-aged (20 a)stands of Larix principis-rupprechtii plantations of the Qinling Mountains were measured throughout the growing season.A fixed 20 m×20 m standard plot was randomly selected with three replications in each plantation stand.Surface soil samples
forest soil science;Larix principis-rupprechtii;soil available nutrient;soil enzyme activity;seasonal dynamics
S714.5
A
2095-0756(2016)06-0944-09
2015-11-07;
2015-12-16
国家重点基础研究发展计划(“973”计划)项目(2012CB416902)
孙鹏跃,从事植物生理生态等研究。E-mail:spy10081008@126.com。通信作者:王渭玲,教授,博士,从事植物生理生态和植物环境关系等研究。E-mail:ylwwl@nwsuaf.edu.cn
10.11833/j.issn.2095-0756.2016.06.004
(0-20 cm)were collected from the middle of May to October in 2012 and analyzed with a least significant difference (Duncan)test at 0.05 level and Pearson correlation analysis at 0.05 level.Results indicated that soil available nutrients(soil available N and soil available P)and soil enzyme activities(urease,invertase,phosphatase,and catalase)for three stand ages manifested the same rules throughout the growing season,and there was significant difference in the same indicator for each plantation stand among various stages (P< 0.05). The mass fraction of soil available N and available P were lowest in the vigorous growth period with the lowest mass fraction of soil available N being 29.49(5 a),19.96(10 a),and 47.32(20 a)mg·kg-1and the lowest mass fraction of soil available P being 2.31(5 a),2.79(10 a),and 1.60(20 a)mg·kg-1(P< 0.05).Also, significant correlations was observed between soil available nutrient content and soil enzyme activity(P<0.05).Thus,soil enzymes could be used as positive biological indicators for weighing soil fertility.[Ch,2 fig. 3 tab.38 ref.]