四元数域主特征空间投影鲁棒自适应波束形成
2016-11-25章希睿刘志文王亚昕徐友根
章希睿,刘志文,王亚昕,徐友根
(北京理工大学 信息与电子学院,北京 100081)
四元数域主特征空间投影鲁棒自适应波束形成
章希睿,刘志文,王亚昕,徐友根
(北京理工大学 信息与电子学院,北京 100081)
针对常规四元数域波束形成器在模型误差条件下的性能退化问题,提出基于拉伸三极子双平行阵列的四元数域主特征空间投影鲁棒自适应波束形成方法. 相比现有四元数域最劣态最优化鲁棒波束形成器,该方法无需求解具有高计算复杂度的凸优化问题,且不涉及用户参数的优化设置,更易于实现. 仿真结果表明,所提出的波束形成器可有效克服信号相消问题,能够以较低的计算成本获取优于四元数域最劣态最优化鲁棒自适应波束形成器的性能,且其优势在高信噪比和短快拍条件下尤为显著.
鲁棒自适应波束形成;电磁矢量传感器阵列;四元数;主特征空间投影
自适应波束形成技术可广泛应用于雷达、声纳、无线通信、语音信号处理以及超声成像等领域,并已取得许多重要成果与进展[1-5]. 面对当今日益复杂多变的电磁环境,仅利用信号幅度、相位、频率和波形等信息已远远不够,将具有极化分集特性的电磁矢量传感器应用于自适应波束形成技术中就显得十分必要. 在文献[6-7]中,交叉偶极子和三极子首次被应用于自适应阵列系统,可有效抑制与期望信号具有相同或相近入射角的干扰源. 此后,基于全电磁矢量传感器的自适应波束形成方法输出信干噪比性能得到定量研究[8-9].
近年来,基于四元数的电磁矢量传感器阵列信号处理方法受到广泛关注[10-14]. 在信号波达方向估计方面,文献[15-16]中首次基于双分量传感器阵列构建四元数信号模型,并在此基础上提出四元数域多重信号分类方法;另外,旋转不变信号参数估计技术亦被推广至四元数域[17]. 在自适应波束形成方面,经典的最小方差无畸变波束形成器在四元数框架下得以研究[18-19]. 随后,利用两路干扰及噪声对消思想,文献[20]中提出一种具有联合结构且能够抑制单个强相干干扰的四元数域波束形成算法. 最近,最劣态最优化波束形成器亦被推广到四元数域[21-23].
本文研究基于主特征空间投影的四元数域鲁棒自适应波束形成算法,由于仅涉及样本协方差矩阵的特征分解运算,因而比上面提及的四元数域最劣态最优化波束形成器更易于实现.
1 拉伸三极子双平行阵列四元数信号模型
考虑如图1所示的由2N个拉伸三极子天线所构成的双平行阵列,对阵列进行空域子阵划分:子阵1包括所有位于y轴的偶极子,子阵2则包括所有位于y′轴的偶极子. 两个子阵的输出矢量可写为
(1)
(2)
建立下述拉伸三极子双平行阵列四元数信号模型:
(3)
利用K次独立数据快拍,可得到四元数域阵列输出样本协方差矩阵为
(4)
2 四元数域主特征空间投影鲁棒波束形成器
(5)
利用拉格朗日乘数法,可得Q-Capon之最优权矢量为
(6)
(7)
(8)
(9)
称之为四元数域主特征空间投影鲁棒自适应波束形成器(QPEP). 与现有波束形成器相比,QPEP只需要进行四元数特征分解,无需求解凸优化问题,且不涉及用户参数的选取.
3 仿真实验
采用由6个拉伸三极子构成的双平行阵列(即N=3),其中拉伸间隔以及每两个拉伸三极子间的距离均设置为信号半波长. 假设有1个期望信号与2个非相干干扰从y-z平面入射至阵列,此时所有入射信号的方位角均为90°,而俯仰角分别为5°、30°和60°;信干比固定为-20 dB;蒙特卡罗独立实验次数设置为100. 另外,在考虑导向矢量误差的实验中,将各种模型误差归结为真实导向矢量和标称导向矢量之间的误差矢量e,且其范数‖e‖为(0,2]区间里满足均匀分布的随机数. 仿真实验共比较3种四元数域波束形成器的性能:本文提出的QPEP算法、Q-Capon算法[18]以及用户参数ε=2的QWCCB算法[21-22],其中求解QWCCB算法最优权矢量采用了SeDuMi工具包[25]与YALMIP求解器[26];此外,最优输出SINR曲线“OPT-SINR”亦作为性能基准出现在仿真图中.
3.1 波束方向图
本实验旨在验证所提出的QPEP算法在面对模型失配误差时的有效性. 为了绘制一维波束方向图,假定入射信号的极化参数相同,仅存在俯仰角差异;本实验中,输入SNR和快拍数分别设置为10 dB和50次. 图2所示的仿真结果表明,QPEP算法可有效解决模型失配问题,不仅在两个干扰处(30°和60°)形成零陷,还在期望信号俯仰角5°处形成主瓣;相比之下,Q-Capon算法则发生了期望信号相消问题:在期望信号5°处亦形成零陷. QPEP算法面对模型失配误差时的鲁棒性主要归因于基于四元数域的特征空间投影使得信号特征空间与噪声特征空间具有更强的正交性. 除此之外,四元数域样本协方差矩阵所隐含的数据平滑过程也是该法可应对模型失配误差的又一因素.
3.2 输出信干噪比曲线
通过比较各种方法在存在导向矢量误差时的输出信干噪比性能,本实验验证了QPEP算法在同时面对导向矢量误差和协方差矩阵有限采样误差时具备的更高鲁棒性. 图3(a)和图3(b)所示的仿真结果显示,QPEP算法在鲁棒性和收敛速度方面均为最优,其优势在高信噪比和短快拍条件下尤为明显. 相比而言,Q-Capon算法在高信噪比条件下性能较差,这是因为当期望信号导向矢量不能精确已知时,Q-Capon算法会产生信号相消问题,随着输入信噪比的增加,信号相消问题越明显,从而导致输出信干噪比下降.
3.3 单次运行时间
本实验旨在考察QPEP、QWCCB与Q-Capon 3种算法在相同硬件及软件条件下(Intel i3双核处理器,主频3.30 GHz,内存4 GB;Matlab仿真软件)的单次运行时间随快拍数和传感器个数变化的曲线. 图4(a)显示,当采用10个拉伸三极子时,QWCCB算法运行1次需要近0.3 s,而QPEP和Q-Capon算法运行1次则分别需要0.03 s和0.06 s;图4(b)则说明,3种算法的计算复杂度主要取决于传感器的个数,几乎不受快拍数的影响.
4 结 论
本文研究了基于拉伸三极子双平行阵列的四元数域主特征空间投影鲁棒自适应波束形成方法. 首先,与此前基于极化匹配子阵划分的建模方法不同,本文以空域子阵划分的方式构建新型四元数模型;所提出的四元数域主特征空间投影方法利用Q-Capon波束形成器权矢量属于信号加干扰主特征空间的本征结构,对噪声子空间泄漏现象进行截断处理,最终达到提升波束形成器鲁棒性的目的;该算法为无需求解凸优化问题与选取用户参数的硬约束类方法,较现有软约束类方法更易于实现.
[1] Monzingo R A,Miller T W. Introduction to adaptive arrays[M]. New York: Wiley,1980.
[2] Johnson D H,Dudgeon D E. Array signal processing: concepts and techniques,signal processing series[M]. Englewood Cliffs,USA: Prentice Hall,1993.
[3] Van Trees H L. Optimum array processing[M]. New York: Wiley,2002.
[4] Zhang L,Liu W,Li J. Low-complexity distributed beamforming for relay networks with real-valued implementation[J]. IEEE Transactions on Signal Processing,2013,61(20):5039-5048.
[5] Wang Z S,Li J,Wu R B. Time-delay-and time-reversal-based robust capon beamformers for ultrasound imaging[J]. IEEE Transactions on Medical Imaging,2005,24(10):1308-1322.
[6] Compton R T. On the performance of a polarization sensitive adaptive array[J]. IEEE Transactions on Antennas and Propagation,1981,29(5):718-725.
[7] Compton R T. The tripole antenna: an adaptive array with full polarization flexibility[J]. IEEE Transactions on Antennas and Propagation,1981,29(6):944-952.
[8] Nehorai A,Ho K C,Tan B T G. Minimum-noise-variance beamformer with an electromagnetic vector sensor[J]. IEEE Transactions on Signal Processing,1999,47(3):601-618.
[9] Xu Y G,Liu T,Liu Z W. Output SINR of MV beamformer with one EM vector sensor of non-identical electric and magnetic noise power[C]∥IEEE International Conference on Signal Processing. Beijing, China: IEEE Press, 2004:419-422.
[10] Reed I S,Mallett J D,Brennan L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems,1974,AES-10(6):853-863.
[11] Chang L,Yeh C C. Performance of DMI and eigenspace-based beamformers[J]. IEEE Transactions on Antennas and Propagation,1992,40(11):1336-1347.
[12] Feldman D D,Griffiths L J. A projection approach for robust adaptive beamforming[J]. IEEE Transactions on Signal Processing,1994,42(4):867-876.
[13] Li J,Stoica P. Robust adaptive beamforming[M]. Hoboken,New Jersey: Wiley,2005.
[14] Vorobyov S A,Gershman A B,Luo Z Q. Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem[J]. IEEE Transactions on Signal Processing,2003,51(2):313-324.
[15] Miron S,Le Bihan N,Mars J I. High resolution vector-sensor array processing using quaternions[C]∥IEEE/SP 13th Workshop on Statistical Signal Processing. Bordeau,France: IEEE Press, 2005:918-923.
[16] Miron S,Le Bihan N,Mars J I. Quaternion-MUSIC for vector-sensor array processing[J]. IEEE Transactions on Signal Processing,2006,54(4):1218-1229.
[17] Gong X F,Xu Y G,Liu Z W. Quaternion ESPRIT for direction finding with a polarization sensitive array[C]∥IEEE International Conference on Signal Processing. Beijing, China: IEEE, 2008:378-381.
[18] Gou X M,Xu Y G,Liu Z W,et al. Quaternion-Capon beamformer using crossed-dipole arrays[C]∥IEEE International Symposium on Microwave,Antenna,Propagation,and EMC Technologies for Wireless Communications. Beijing, China: IEEE, 2011:34-37.
[19] Tao J W,Chang W X. The MVDR beamformer based on hypercomplex processes[C]∥IEEE International Conference on Computer Science and Electronics Engineering. Hangzhou, China: IEEE, 2012:273-277.
[20] Tao J W,Chang W X. A novel combined beamformer based on hypercomplex processes[J]. IEEE Transactions on Aerospace and Electronic Systems,2013,49(2):1276-1289.
[21] Zhang X R,Liu W,Xu Y G,et al. Quaternion-based worst case constrained beamformer based on electromagnetic vector-sensor arrays[C]∥IEEE International Conference on Acoustics,Speech,and Signal Processing. [S.l.]: IEEE, 2013:4149-4153.
[22] Zhang X R,Liu W,Xu Y G,et al. Quaternion-valued robust adaptive beamformer for electromagnetic vector-sensor arrays with worst-case constraint[J]. Signal Processing. Vancouver, Canada: IEEE, 2014,104:274-283.
[23] Zhang X R,Liu Z W,Liu W,et al. Quasi-vector-cross-product based direction finding algorithm with a spatially stretched tripole[C]∥IEEE Region 10 Conference (TENCON). Xi’an,China: IEEE,2013:1-4.
[24] Lee H C. Eigenvalues and canonical forms of matrices with quaternion coefficients[C]∥Proceedings of Royal Irish Academy. Ireland: Royal Zrish Acaderny, 1949(52):253-260.
[25] Sturm J F. Using SeDuMi 1.02,a MATLAB toolbox for optimization over symmetric cones[J]. Optimization Methods and Software,1998,11(1-4):625-653.
[26] Lofberg J. YALMIP: A toolbox for modeling and optimization in MATLAB [C]∥IEEE International Symposium on Computer Aided Control Systems Design. Taipei,China: IEEE, 2004:284-289.
(责任编辑:刘芳)
Quaternion-Valued Robust Adaptive Beamforming Based on Principal Eigenspace Projection
ZHANG Xi-rui,LIU Zhi-wen,WANG Ya-xin,XU You-gen
(School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China)
Based on the principal eigenspace projection in the quaternion domain,a robust adaptive beamforming scheme was proposed with a dual-parallel array of spatially stretched tripole antennas,to tackle the performance degradation of quaternion-based adaptive beamformers in the presence of model mismatch errors. Compared with the quaternion-based worst-case constrained beamformer,the presented method does not need convex optimization and user-parameter selection. Numerical simulations show that the proposed method can tackle the signal self-nulling problem effectively,and significantly outperforms the quaternion-based worst-case constrained beamformer in the case of high SNRs and small sample sizes with reduced computational complexity.
robust adaptive beamforming; electromagnetic vector-sensor array; quaternion; principal eigenspace projection
2015-03-21
国家自然科学基金资助项目(61331019,61490691)
章希睿(1984—),男,博士生,E-mail:xrzhang@bit.edu.cn.
刘志文(1962—),男,教授,博士生导师,E-mail:zwliu@bit.edu.cn.
TN 971.1
A
1001-0645(2016)07-0755-05
10.15918/j.tbit1001-0645.2016.07.018