APP下载

高职院校将数学建模思想融入高等数学教学必要性研究

2016-11-24赵智云

价值工程 2016年30期
关键词:数学建模高等数学教学

赵智云

摘要: 本文简述了传统的数学教学模式的落后,并提出把数学建模思想融入到传统的高等数学教学方法当中符合素质教育的时代要求,论述了其可行性、方法途径、功能及其重要意义。

Abstract: This paper briefly describes the backward of the traditional mathematics teaching mode, puts forward the idea of integrating mathematical modeling into the traditional teaching methods of higher mathematics meets the requirements of quality education, and discusses the feasibility, methods, function and significance.

关键词: 数学建模;高等数学;教学

Key words: mathematical modeling;higher mathematics;teaching

中图分类号:G652 文献标识码:A 文章编号:1006-4311(2016)30-0215-02

0 引言

高等数学课程在高等学校非数学专业的教学计划中是一门重要的基础理论课。通过掌握这门课程,能够帮助其更好地学习其他基础课和多数专业课,很多课程都或多或少的涉及到高等数学课程,它是这些课程的数学基础。

数学建模是用图表、程序、数学式子、数学符号等刻画客观事物的本质属性与内在联系,将抽象的实际问题转化为可以解决的数学问题的过程。

数学建模一般分为五个基本环节:①模型设置;②模型构成;③模型求解;④模型检验;⑤模型应用。

数学建模涉及的问题方方面面,且千变万化,建模过程可以说是渗透数学思想方法的过程,在不同的实际问题中数学建模可以渗透不同的思想方法和数学方法,其中思想方法主要包括探索思想、联想思想、类比化归和类比、等价转化思想、逻辑划分的思想、数形结合的思想、方程的思想等;数学方法主要包括归纳法、解析法、反证法、配方法、待定系数法、换元法、消元法等。通过数学建模,学生们能够了解和学习到很多的数学思想方法,如此不仅能够提高学生的综合素质,还能够使学生从本质上理解数学建模的思想(数学建模过程图见图1)。

1 高等数学的传统教学模式现状

随着社会的进步,很多高校开始改革和创新自身的高等数学教学模式,但部分高校依然采用的是传统的教学模式,导致其教学过程中存在以下问题:一是教学方式落后,采取的教学方法还是以“填鸭式”为主,教师过分地主导课堂,学生的主观能动性很低,只能被动地接收教师讲授的知识,不利于自身创造力和想象力的培养;二是教学过程过分重视逻辑性,忽视了应用性。当前社会对人才的要求同过去相比有了很大变化,很多企业都十分重视学生的实践能力,而传统教学模式下培养出来的学生普通实践能力较弱,理论知识较扎实,如此遇到实际问题常常没有能力解决,无法满足当代用人单位的需求;三是学生的学习积极性不高。在传统的教学模式下学生较少有机会进行自主思考和探索,多数时间都在消化教师讲授的知识,长此以往下去学生由于无法体会到学习的乐趣和解决问题的成就感,很容易对学习失去兴趣,如此不利于高校人才的培养。

2 建模思想融入高等数学教学的可行性

高职高专作为一种职业技术教育,其培养的学生都是应用型人才,而数学建模也旨在解决各类实际问题,两者在这一点上目的是相同的,因此在高等数学教学中融入建模思想是可行的,具体原因分析如下:一是由于高职学生的目的就是成为应用型人才,高职学生比其它层次的学生更清楚实际生产问题的流程,而数学建模往往伴随着各类实际问题,从这个角度讲,高职学生更了解实际生产问题的流程,因此比其它层次的学生更具优势;二是计算机高职学生已经掌握了一定的数学理论知识,且具有一定的解决实际问题的能力,这就使得在高等数学教学中融入建模思想具有了一定的先天优势,大大增加了其可行性。

3 数学建模融入到高等数学教学中的方法

将建模思想融入到高等数学教学中,学生在学习理论知识的同时还能够进行实践,使自身的理论知识和实践经验融会贯通,从而大大提升自身的实力,具体在高等数学教学中融入数学建模的方法如下:

3.1 弄清、搞透概念的意义

正因为实际需要才产生了数学概念,所以在实际的教学过程中教师应注重将抽象的实际问题转化为数学问题的过程,重视对学生数学学习兴趣的培养。高等数学中定积分的概念和导数的概念至关重要,其中导数的概念就是从交变电路的电流强度、物理学的变速直线运动的速度及几何曲线的切线斜率等实际问题抽象出来的。这同时也说明了导数的概念具有广泛的应用意义,通过掌握导数的概念可以解决生活中遇到的很多实际问题。定积分的基本思想是“化整为零取近似,聚零为整求极限”。定积分概念建立的关键是以局部取近似以直代曲,应抽象以常量代替变量。

3.2 加深、推广应用问题

高等数学中的应用问题众多,其中最具代表性的如下所示:

①最值问题。在导数的应用中最值问题是最先接触到的问题,教学中学习到的解决最值问题的方法实际上就是比较简单的数学建模思想。

②定积分的应用。“微元法”这一思想根植于定积分的概念,在教学过程中必须将定积分的概念进行充分的分析,使学生能够真正地掌握和灵活应用定积分,如此采用微元法解决实际问题时才能得心应手。

③微分方程就是为了解决实际问题。利用微分方程建立数学模型尚未建立统一的规则方法。通常采取的步骤是:首先确定变量,分析这些变量和他们的微元或变化率之间的关系,然后结合相关学科的理论知识和相关实践经验建立其微分方程,再对方程求解,并分析验证结果。微分方程能够解决很多实际问题,在教学过程中应本着由浅入深的原则,多举实例。

3.3 高等数学中数学模型的案例教学

案例教学,顾名思义就是在课堂教学中以具体案例作为教学内容,通过具体问题的建模范例,介绍数学建模的思想方法。

4 数学建模融入高等数学教学的功能和意义

4.1 数学建模的教育功能

4.1.1 数学建模课程有助于深化学生对数学的理解,树立正确的数学观

人们对数学的总体看法就是数学观。在生活中我们发现常常有数学系的学生发出感叹“学数学到底有什么用”,并且常常因为觉得学数学没有用途而对继续学习数学失去兴趣,反之是一些经常用到数学知识的学科(物理、计算机等)认为数学的作用很大。由此我们发现只有在实践中数学才会发散其魅力,通过数学建模课程,学生有机会将自身学到的知识进行实践,学习效果将事半功倍。

4.1.2 数学建模有助于训练学生的思维品质

曾有学者说过,思维品质主要包括思维的敏捷性、思维的批判性、思维的独创性、思维的灵活性、思维的深刻性。通过长时间的实践我们发现,在数学建模的过程中这些思维品质都能够得到培养和锻炼。

要想建立数学模型,首先必须对实际问题有个充分的了解,基于此才能发现问题的内在联系,继而解决问题。在建立数学模型的过程中,需要先将抽象的实际问题转化为数学问题,然后分析求解目标、已知条件和未知条件,要求很高的思维的深刻性和敏捷性。同时由于学生面对的建模问题是一个未知的问题,学生在建模过程中必须充分地发挥自身的想象力和洞察力,不断地转换思维角度,灵活应变才能完成数学建模。

此外,在完成了模型的建立后,还要进行分析和检验。这是一个回顾和反思的过程,在此过程中培养了学生的思维批判性。

4.1.3 数学建模有助于发展学生良好的非智力因素

实践表明,当学生意识到数学的作用时,其学习热情和主动性会更强,会更自觉地投入到数学的学习当中去。通过数学建模学生拓展了自身的知识储备,丰富了自己的视野。不可否认数学是一门较难的学科,学生通过学习数学能够锻炼自身坚忍不拔的意志,不仅如此,通过和同学讨论探讨,还能够培养自身的团队协作能力。

4.2 数学建模的融入有利于传统数学教育由“应试教育”向“素质教育”的转变

过去我国实行的是应试教育,现在我国追求的是素质教育,素质教育的目的是为了提高全民素质,它注重的是教育的发展功能,是为全体学生谋福利的。

数学教育思想改变了过去少数人学习数学的现状,将其变成了大众数学,它认为学习数学不是为了考试,学习数学能够帮助我们解决很多实际问题,数学教育思想体现在基础教育中的,数学教育是面对全体学生的,而不是少数数学尖子生。

培养学生的素质和能力应该有两个方面,一是通过分析、计算或逻辑推理能够正确、快速地求解数学问题,即运用已经建立起来的数学模型;二是用数学语言和方法去抽象、概括客观对象的内在规律,构造出待解决的实际问题的数学模型。

5 结语

既然数学教育本质上是一种素质教育,数学建模不仅凸现出其重要性,而且已成为现代应用数学的一个重要组成部分。学生通过开展数学建模的训练,能够拓展自身的知识储备,丰富自己的视野,提高其综合实力,使自身成长为一名优秀的理论知识和实践能力兼备的人才。因此在高等院校开展数学建模教学至关重要,它能够帮助高校培养出更多的优秀的应用型人才,真正地提高学生的综合素质。

参考文献:

[1]李大潜.数学建模与素质教育[J].中国大学教学,2002(10).

[2]杨厦.高职高专院校开展数学建模教学的重要意义[J].中国环境管理干部学院学报,2008(6).

[3]Xiao-fang xu. Mathematical modeling thought into linear algebra teaching exploration [J]. Journal of hubei institute of technology, 2013(05).

猜你喜欢

数学建模高等数学教学
“自我诊断表”在高中数学教学中的应用
对外汉语教学中“想”和“要”的比较
数学建模中创造性思维的培养
高等数学的教学反思
跨越式跳高的教学绝招