APP下载

垄作耕地浅沟深度的测量和换算

2016-11-12张天宇

中国水土保持科学 2016年5期
关键词:卷尺黑土体积

张天宇

(1.东北师范大学国家环境保护湿地生态与植被恢复实验室,130024,长春;2.东北师范大学地理科学学院,130024,长春)

垄作耕地浅沟深度的测量和换算

张天宇1,2

(1.东北师范大学国家环境保护湿地生态与植被恢复实验室,130024,长春;2.东北师范大学地理科学学院,130024,长春)

浅沟侵蚀是土壤水蚀的一种重要形态。卷尺法是测量浅沟体积的重要方法。在使用卷尺法测量垄作耕地中的浅沟时会遇到一个难题,即:浅沟深度的测量位置只能选在垄台或垄沟,但无论选在哪里,所测得的浅沟深度都不能直接用来计算浅沟体积,而是需要先将其换算成无垄状态下的浅沟深度;而如何进行这种换算,尚缺乏相关报道。本研究旨在:建立1个可以将在垄台处测得的浅沟深度(测量深度)换算为无垄状态下的浅沟深度(换算深度)的换算公式,以辅助今后的浅沟测量工作;并结合该换算公式和东北黑土区的实测浅沟数据,计算不换算(直接使用测量深度计算浅沟体积)情况下的误差,以探讨换算的必要性。为此,本研究利用平面几何知识建立换算公式,并在黑龙江省鹤山农场鹤北2号小流域加以应用。结果表明:1)换算深度是1个以测量深度和垄台形态(高度、上宽、下宽)为自变量的函数。2)如果不换算(直接使用测量深度计算浅沟体积),会造成高估。垄作影响到浅沟深度的测量,但只要知道垄台形态,就可以将测量深度换算为换算深度。研究结果可以辅助今后的浅沟测量工作,具有一定实用价值。

土壤侵蚀;浅沟深度;换算;形态;垄作;垄台;黑龙江

土壤侵蚀是指水和风等营力对土壤物质的分离和搬运[1]。根据侵蚀的形态,土壤水力侵蚀可以分为细沟间侵蚀、细沟侵蚀、浅沟侵蚀和切沟侵蚀[2]。浅沟侵蚀形成的沟道称为浅沟,其宽度一般为30~50 cm,深度不超过50 cm[1]。浅沟不妨碍耕作活动,且常被耕作活动填充;而填充和侵蚀的长期交替进行会引发土壤侵蚀,导致浅沟两侧地面高程的显著下降,形成槽形地。在全球很多地区,浅沟侵蚀被认为是重要的泥沙源[3]。由于其重要性和特殊性,浅沟侵蚀于1950年代就已被我国学者列为一种专门的侵蚀形态[4]。1980年代已有针对性研究[5-6]。近年来,浅沟侵蚀研究的主要内容涉及浅沟监测方法[7]、产沙贡献率[8]、空间分布[9-10]、位置预报[11]、侵蚀量预报[12]、生态效应[13]及侵蚀机理[14]等方面。

浅沟体积是衡量浅沟侵蚀强度的重要指标,其测量方法主要有摄影测量法[7,15]和卷尺法[16]。与摄影测量法相比,卷尺法更为廉价,受野外条件限制更小,因此更为常用。卷尺法的一般步骤如下:1)使用卷尺或其他工具(GPS等)测量浅沟的长度;2)沿着浅沟每隔一定距离选取1个横截面;3)把每个横截面看作梯形或矩形,使用卷尺测量浅沟的宽度和深度,并计算出每个横截面的面积;4)把2个横截面之间的浅沟沟体看作平行六面体,用2个横截面之间的距离乘以二者面积的平均值,即得到浅沟的体积。

垄作是我国东北地区一种常用的耕作方式,它可以提高土壤温度、改良土壤水分状况和促进作物生长发育。垄作耕地中也会发生浅沟侵蚀,且浅沟常垂直于垄向发育、切穿垄台(图1)。这些浅沟也可以用卷尺法来测量,但垄作造成的地表起伏给浅沟深度的测量造成困难——测量位置只能选在垄台或垄沟。但无论选在哪里,所测得的浅沟深度都不能直接用来计算浅沟体积,而须先将其换算成无垄状态下的浅沟深度。如果不换算则会导致高估或低估。目前,如何进行这种换算,尚缺乏相关报道。本研究旨在:1)建立一个可以将在垄台处测得的浅沟深度(测量深度)换算为无垄状态下的浅沟深度(换算深度)的换算公式,以辅助今后的浅沟测量;2)结合该换算公式和实测浅沟数据,计算不换算——直接使用测量深度计算浅沟体积情况下的误差,以探讨换算的必要性。

1 材料与方法

首先,构造出一个垄台的横截面,并假设:垄台横截面为梯形,垄台被浅沟切穿,垄台表面与浅沟底面平行(图2A),垄作紧密相连,垄沟为V字型。这些假设条件基本符合东北黑土区的实际情况;其次,将垄台削平,并根据几何知识建立测量深度Hm与换算深度H的换算公式;再次,结合该换算公式和实测数据,探讨不换算(直接使用测量深度计算浅沟体积)情况下的误差。实测数据为黑龙江省鹤山农场鹤北2号小流域2009年浅沟数据,包括融雪浅沟和降雨浅沟。该小流域面积约3.4 km2。气候属寒温带大陆性季风气候,年平均降水量为492 mm。地形为波状起伏的丘陵,平均坡度2.2°。土壤为典型黑土。土地利用以旱地为主,垦殖率为93%。主要作物为大豆、玉米和春小麦等。耕作普遍采用垄作,常用垄台有2种:小垄和大垄(表1)。

图1 东北黑土区垄作耕地中的浅沟A:横剖面;B:纵剖面Fig.1 Ephemeral gullies in ridge-tillage croplands in the black soil region of northeastern China.A:Cross section view;B:Longitudinal section view

图2 A一个被浅沟切穿的垄台的横截面(阴影部分为垄台,空白部分为浅沟沟壁);B垄台被推平后的横截面Fig.2 A:The cross section of a ridge cut by ephemeral gully(EG)erosion(shadow part is ridge,and blank part is the side wall of EG);B:The cross section of the ridge after flattening

2 结果与分析

2.1 测量深度与换算深度的换算公式

由平面几何知识推得H的计算公式为:

表1 黑龙江省鹤山农场2种常用垄台的形态Tab.1 Morphologic characteristics of two types of ridge commonly used in the Heshan Farm,Heilongjiang Province cm

式中:Wu为垄台上宽,cm;Wl为垄台下宽,cm;Hr为垄台高度,cm;Hm为测量深度,cm;H为换算深度,cm。从式(1)可以推得Hm与H的关系式

由式(2)可知,H是一个以Hm和垄台形态(Hr,Wu和Wl)为自变量的函数,且在其他变量不变时,随着Hm的增大而增大,但总<Hm;在其他变量不变时,随着Hr的增加而减小;在其他变量不变时,随着Wu与Wl比值的增大而增大。当Wu=0时,即垄台变成三角形时,H恰好等于Hm减去0.5倍的Hr。当Wu=Wl,即:垄台变成矩形时,H=Hm;当Hm非常小时,H可能是负值。这种情况意味着垄台上的侵蚀量小于垄沟内的沉积量,实际上发生了土壤净沉积。

由式(2)可以推得

由式(3)可知,Hm与H的差值是一个以垄台形态(Hr,Wu和Wl)为自变量的函数;因此,只要知道垄台形态,就可以得到一个修正参数。用Hm减去这个修正参数,就可以得到H。以黑龙江省鹤山农场常见的2种垄台为例(表1),小垄对应的修正参数为3.75 cm,大垄对应的修正参数为2.39 cm。

2.2 直接使用测量深度计算浅沟体积的误差

2.2.1 计算公式 如果直接使用测量深度计算浅沟体积,会高估浅沟的深度和体积。高估的程度可以用体积相对误差来衡量,其计算公式为

式中E为体积相对误差。E实际为深度相对误差;但由于垄作对浅沟长度、宽度的测量不产生影响,因此E等同于体积相对误差。将式(2)代入式(4)可以推得

式(5)表明:E是以垄台形态(Hr,Wu和Wl)和H为自变量的函数;在其他因子不变时,E随Hr增大而增大,随Wu与Wl之比的减小而增大。这意味着,在垄台较高、较尖的情况下,体积相对误差更大,更需要考虑垄作的影响,在垄台形态不变时,E与H呈反比。仍以黑龙江省鹤山农场常见的2种垄台为例(图3和表1)。小垄情况下:H为5 cm时,E为75%,而H逼近至50 cm(注:常用的浅沟深度上限)时,E下降为8%;大垄情况下:H为5 cm时,E为48%,而H逼近至50 cm(常用的浅沟深度上限)时,E下降为5%。这意味着,在浅沟深度较小时,E更大,更需要考虑垄作的影响。2.2.2 应用实例 2009年,利用卷尺法对鹤北2号小流域所有浅沟进行测量。共发现28条融雪浅沟和23条降雨浅沟。测量结果显示,融雪浅沟、降雨浅沟和全部浅沟的总体积分别为506.5m3、937.1 m3和1 443.6m3(表2和表3)。如果直接使用测量深度计算浅沟体积,则融雪浅沟、降雨浅沟和全部浅沟的总体积将分别为546.7 m3、1 147 m3和1 690.4 m3,分别被高估8%、22%和17%。这种误差值是不可忽略的,因此换算是很有必要的。

图3 浅沟换算深度与体积相对误差的关系(深度上限为50 cm)Fig.3 Relationships between calibrated depth and relative error ratio of volume for ephemeral gullies(The upper limit of depth is 50 cm)

3 结论与讨论

1)垄作影响到浅沟深度的测量,但只要知道垄台形态(高度、上宽和下宽),就可以利用式(2)将在垄台处测得的浅沟深度换算为无垄状态下的浅沟深度,进而计算浅沟体积。式2需要测量人员测量垄台形态,导致工作量增加。不过实际情况中,同一地块一般使用同种犁具,垄台形态基本一致;因此,1个地块只需测量几个垄台即可,工作量增加并不大,换算具有可行性。

2)如果不换算,而直接使用在垄台处测得的浅沟深度计算浅沟体积,会造成高估。鹤北2号小流域的实测数据表明,2009年整个小流域的浅沟总体积可以被高估17%;因此,换算具有必要性。在垄台较高、较尖时,这种换算更加必要。

3)由于本研究实测数据有限,本文未探讨其他垄台、垄沟形态下的体积相对误差,有待今后补充。此外,已有研究对垄台、垄沟形态和浅沟深度的测量位置的介绍有限,故未能利用式(2)对前人测量结果进行换算和比较。

4)垄作不仅影响浅沟的测量,也影响浅沟侵蚀的机制和预报。在机制方面,虽然已经有研究对垄作条件下浅沟侵蚀机制进行了一些定性描述[17],但定量认识尚很匮乏[18]。在预报方面,尽管垄作影响

着汇水面积、径流量等重要的参数,但目前浅沟侵蚀模型很少予以考虑。综上,今后的研究重点为垄作耕地浅沟侵蚀机制和预报。

表2 鹤北2号小流域2009年融雪浅沟形态特征Tab.2 Morphologic characteristics of snow-melt ephemeral gullies(EG)in the Hebei-2 small watershed(Year 2009)

表3 鹤北2号小流域2009年降雨浅沟形态特征Tab.3 Morphologic characteristics of rainfall ephemeral gullies(EG)in the Hebei-2 small watershed(Year 2009)

表3 (续)Continued from Tab.3

[1] 伍永秋,鲁瑞洁,刘宝元.自然地理学[M].北京:北京师范大学出版社,2012:392. Wu Yongqiu,Lu Ruijie,Liu Baoyuan.Physical geography[M].Beijing:Beijing Normal University Press,2012:392.(in Chinese)

[2] Morgan R PC.Soil erosion and conservation[M].Oxford:Blackwell Publishing,2005:11.

[3] Poesen J,Nachtergale J,Vertstraeten G,et al.Gully erosion and environmental change.Importance and research needs[J].Catena,2003,50:91.

[4] 朱显谟.黄土区土壤侵蚀的分类[J].土壤学报,1956(2):99. Zhu Xianmo.Classification on the soilerosion in the loess region[J].Acta Pedologica Sinica,1956(2):99.(in Chinese)

[5] Foster G R.Understanding ephemeral gully erosion[C]∥National Research Council,Board on Agriculture.Assessing the National Research Inventory.Washington DC:Soil Conservation.National Academy Press,1986:90.

[6] 刘元保,朱显谟,周佩华,等.黄土高原坡面沟蚀的类型及其发生发展规律[J].中国科学院西北水土保持研究所集刊,1988,7:9. Liu Yuanbao,Zhu Xianmo,Zhou Peihua,et al.The laws of hillslope channel erosion occurrence and development on loess plateau[J].Memoir of NISWC Academia Sinica,1988,7:9.(in Chinese)

[7] Nouwakpo S K,Huang C H.A simplified close-range photogrammetric technique for soil erosion assessment[J].Soil Science Society of America Journal,2012,76:70.

[8] Capra A,Ferro V,Porto P,et al.Quantifying interrill and ephemeral gully erosion in a small Sicilian basin[J].Zeitschrift für Geomorphologie,2012,56:9.

[9] 赵维军,许智超,张岩,等.半干旱黄土区沟间地浅沟分布特征[J].干旱区研究,2011,28(4):586. Zhao Weijun,Xu Zhichao,Zhang Yan,et al.Study on distribution of ephemeral gullies in semiarid loess area[J].Arid Zone Research,2011,28(4):586.(in Chinese)

[10]苏子龙,崔明,范昊明.东北漫岗黑土区防护林带分布对浅沟侵蚀的影响[J].水土保持研究,2012,19(3):20. Su Zilong,CuiMing,Fan Haoming.Effect of shelterbelts distribution on ephemeral gully erosion in the rolling-hilly black soil region of northeast China[J].Research of Soiland Water Conservation,2012,19(3):20.(in Chinese)

[11]Daggupati P,Douglas-Mankin K R,Sheshukov A Y. Predicting ephemeral gully location and length using topographic index models[J].Transactions of the ASABE,2013,56:1427.

[12]Gordon LM,Bennett SJ,Bingner R L,etal.Simulating ephemeral gully erosion in AnnAGNPS[J].Transactions of the ASABE,2007,50:857.

[13]Liu Honghu,Zhang Tianyu,Liu Baoyuan,et al.Effects of gully erosion and gully filling on soil depth and crop production in the black soil region,northeast China[J]. Environmental Earth Sciences,2013,68:1723.

[14]Gong Jiaguo,Jia Yangwen,Zhou Zuhao,et al.An experimental study on dynamic processes of ephemeral gully erosion in loess landscapes[J].Geomorphology,2011,125:203.

[15]Gesch K R,Wells R R,Cruse R M,et al.Quantifying uncertainty of measuring gully morphological evolution with close-range digital photogrammetry[J].Soil Science Society of America Journal,2015,79:650.

[16]Zhang Yongguang,Wu Yongqiu,Liu Baoyuan,et al. Characteristics and factors controlling the development of ephemeral gullies in cultivated catchments of black soil region,Northeast China[J].Soil and Tillage Research,2007,96:28.

[17]崔明,蔡强国,张永光,等.漫岗黑土区坡耕地中雨季浅沟发育机制[J].农业工程学报,2007,23(8):59. CuiMing,Cai Qiangguo,Zhang Yongguang,et al.Development of ephemeral gully during rainy season in the slope land in rolling-hill black-soil region of Northeast China[J].Transactions of the CSAE,2007,23(8):59.(in Chinese)

[18]刘琳.横垄渗流及其侵蚀微地貌特征[D].济南:山东师范大学,2015:14. Liu Lin.Seepage and the rill morphological features on row sideslopes in contour ridging system[D].Jinan:Shandong Normal University,2015:14.(in Chinese)

Measurement and calibration of ephemeral gully depth in ridge-tillage croplands

Zhang Tianyu1,2

(1.State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration,Northeast Normal University,130024,Changchun,China;2.School of Geographical Sciences,Northeast Normal University,130024,Changchun,China)

[Background]Ephemeral gullies(EG)are small channels eroded by concentrated flow.The traditional method of monitoring EG is the ruler method,by which the widths,depths and lengths of EGs aremanually measured.Ridging,whereby elevated rows are created,is a commonly used tillage practice in China.EGs can develop in ridged croplands as furrows serve to concentrate runoff so that EGs develop perpendicular to rows as water spills over one ridge to the next furrow.In this case,the fluctuating relief induced by ridging causes difficulty in measurement of EG depth.Whether measurements are taken at ridge tops or in furrows,the measured depth cannot be used directly to calculate EG volume and must be calibrated to the EG depth that would have formed on a none-ridge(flat)land surface.Reports on the procedure and validity of calibration are limited.This study aims to establish an equation by which one can calibrate the depth measured from a ridge top(measured depth)to the corresponding depth for a none-ridge land surface case(calibrated depth),and understand the necessity of calibration.[Methods]Firstly,the cross-section of a ridge was established,whose shape was assumed to be an isosceles trapezoid.The distance from the ridge top to the EG bottom was measured,i.e.measured depth.Secondly,the ridge height was adjusted to that of a flat land surface.The distance from the newly adjusted land surface to the EG bottom was the calibrated depth.Thirdly,a calibration equation was established according to plane geometry knowledge.Fourthly,the calibration equation was applied to EGs in the Hebei-2 small watershed in the Heilongjiang Province to estimate the EG volume error in the noncalibration case.[Results]1)The calibrated depth was a function of the measured depth and the morphologic characteristics of the ridges(height,top width and bottom width).2)If the calibration was not used,the EG volume would be overestimated.The overestimation can be evaluated with relative error ratio(RER),which was positively correlated with the height and sharpness of the ridge and negatively correlated with EG depth.In the Hebei-2 watershed,the RER was 48%-75%when the EG was 5 cm deep and 5%-8%when the EG was almost 50 cm deep.For all 51 EGs,the RER was 17%. Therefore,the calibration is necessary.[Conclusion]For EGs in ridged croplands,the measured depth can be calibrated by the equation developed in this study,with morphologic characteristics of the ridges as parameters.Without calibration,the EG depth and volume could be overestimated by up to 17%at the small watershed scale.Therefore,the established equation is suitable for this calibration,and the calibration is necessary,and even necessary for water sheds with high and sharp ridges and shallow EGs. We suggest that the resultsmay be utilized for future EG surveying by more accurately calculating the significance of EG erosion.

soil erosion;ephemeral gully depth;calibration;morphology;ridge-tillage;ridge;Heilongjiang

S157

A

1672-3007(2016)05-0138-07

10.16843/j.sswc.2016.05.018

2015- 10- 15

2016- 07- 28

项目名称:中央高校基本科研业务费专项资金“吉林省黑土区典型小流域土壤沟蚀特征研究”(14QNJJ022);国家自然科学基金“黑土和白浆土浅沟侵蚀土壤阻力参数季节变化研究”(41401304)

张天宇(1981—),男,博士,讲师。主要研究方向:土壤侵蚀。E-mail:zhangty100@nenu.edu.cn

猜你喜欢

卷尺黑土体积
自然资源部:加强黑土耕地保护
添加木本泥炭和膨润土对侵蚀退化黑土理化性质的影响*
基于Sentinel-2遥感影像的黑土区土壤有效磷反演
为大树量身商
多法并举测量固体体积
钢卷尺示值误差测量结果的不确定度报告
寒地黑土无公害水产品健康养殖发展思路
聚焦立体几何中的体积问题
小体积带来超高便携性 Teufel Cinebar One
带铅笔芯的卷尺