模拟气候变化对2针叶树种种子萌发和幼苗生长的影响
2016-11-12石晓东高润梅陈龙涛
石晓东,高润梅,陈龙涛
(山西农业大学林学院,030801,山西太谷)
模拟气候变化对2针叶树种种子萌发和幼苗生长的影响
石晓东,高润梅,陈龙涛
(山西农业大学林学院,030801,山西太谷)
气候变化影响林木早期生长,设置温度和水分的双因素三水平控制实验,研究山西气候变化对关帝山林区2种针叶树种种子萌发和幼苗生长的影响作用。结果表明,增温2℃和降水量增加20%利于这2树种种子出苗:出苗稳定期提前,出苗率提高;但增温6℃,降水减少20%时,种子出苗稳定期延迟,出苗率降低。气候变化对2树种的影响作用不同:华北落叶松对暖干化气候更敏感,增温或减少降水时,该种幼苗的死亡率大幅增加,苗高降低;温度和降水量变化对油松幼苗存活率和地上生长的影响作用不明显。降水量减少条件下的增温,促进华北落叶松和油松幼苗的主根和侧根伸长。发生土壤干旱时,华北落叶松和油松幼苗生长策略改变,优先满足根系生长。暖干化气候不利于华北落叶松种群的更新,生长季高温降低了幼苗适应性,即使降水量增加亦不能缓解。
气候变化;更新;种子萌发;幼苗生长
森林对气候变化敏感,全球多种森林生态系统已受到气候变暖与水分缺失的影响[1-3],林线向更高海拔迁移[4-5],树木死亡频发[3,6]。森林对气候变化的响应研究已成为当前生态学研究的主要内容之一。目前主要针对大径级树木,应用树木年代学理论模拟气候变化下树木的生长过程[7-8]。生长期高温少雨会缩短树木形成层的活动时间,影响树木的径向生长[9-10]。
全球气候变化背景下,中国增暖趋势明显,各类森林水平分布范围扩展,垂直带谱向更高海拔迁移[11-13]。从种子开始的幼苗更新与树木的分布、迁移和扩散密切相关,幼苗在与大径级个体的竞争中处于劣势,更易受到气候变化的影响而死亡[10,14];因此,种子萌发与幼苗存活对气候变化的响应研究日益受到关注[15-18]。华北落叶松(Larix principisrupprechtii)和油松(Pinus tabulaeformis)是华北山地的优势树种,具有保持水土和涵养水源的重要功能[19-20]。本研究通过温室气候控制试验,研究暖干化气候对这两针叶树种的种子萌发和幼苗生长的影响,以期深入理解气候变化对华北山地森林的影响作用,评估本区森林生态系统的脆弱性,为未来制定应对气候变化的森林经营管理措施提供理论支撑。
1 研究区概况
种源采自山西省关帝山林区(E 111°21′~111° 37′,N 37°45′~37°59′),属暖温带大陆性山地气候,年均温4.2℃,年均降水量822.6mm[21]。植被垂直分布规律明显:海拔1 650~1 800m以油松为主,与辽东栎(Quercus wutaishanica)、山杨(Populus davidiana)和白桦(Betula platyphylla)等混交;海拔1 800~2 600m以华北落叶松和云杉(包括青杄Picea wilsonii,白杄P.meyeri)为建群种,零星分布山杨、白桦和红桦(B.albo-sinensis)等[21]。
2 材料与方法
2.1 试验设计与材料
近半个多世纪以来,山西省暖干化气候趋势明显[22]:春季(2—4月)和夏季(5—7月)的气温显著增加(P<0.01),分别增加约2.5℃和1.5℃;春、夏季的降水量呈下降趋势,平均降幅约20%,但差异不显著(P>0.05)。基于上述分析和已有研究[18,22],笔者设计温度和降水量的双因素三水平试验(表1)。
2014年8—10月采集华北落叶松和油松种子,室内冷藏(0~4℃)过冬。2015年3月底取出种子,挑选大小均匀的饱满种子,4—6月进行试验。试验用土为种源地的林下表层土,过1 cm筛除去杂质,100℃烘干24 h。塑料花盆外径10 cm,高13 cm,底部有排水孔,外置托盘。蒸馏水浸种3 d,2%的KMnO4溶液消毒15min,之后蒸馏水冲洗多次,均匀置入塑料花盆,每盆10粒,覆土约1 cm。每处理5个重复。幼苗生长实验:塑料花盆中播种,多数幼苗出土2周后,每种选取72株长势良好、株高相近的幼苗,放入生长箱中接受温度和降水处理,每处理8个重复,持续培养60 d。期间,经常调换花盆位置,并辅以松土、除草等措施。
表1 培养箱温度和降水量的设置Tab.1 Temperature and precipitation setting of incubator
2.2 测定方法
播种后,每天观察记录出土幼苗数,出苗高峰过后,连续观测出土幼苗数均未发生变化时结束试验。以出苗率(seedling emergence percentage)和幼苗死亡率(seedling mortality)描述种子萌发状况[18]。幼苗生长60 d后,每个处理随机选择5株存活幼苗进行测量。从花盆中取出幼苗,小心洗去根部残土,记录幼苗侧根数,测量株高、最长针叶长、主根长和侧根长,精确至0.01 cm[22]。
2.3 数据处理
用SPSS 22.0统计软件的双因素方差分析(two way ANOVA)检验不同处理下的差异显著性。交互作用显著时,采用单因素方差分析(one-way ANOVA)检验不同温度或降水处理对各指标的影响;当交互作用不显著时,直接进行多重比较。最小显著差数法(least significant difference method,LSD)检验差异显著性,显著性水平为0.05。
3 结果与分析
3.1 增温和降水变化对两树种种子萌发的影响
适宜的温度和水分是种子萌发的必要条件,增温和降水量变化会影响种子出苗(表2)。温度增加,两树种的出苗稳定期提前:华北落叶松提前5~9 d,油松提前3~18 d。降水量减少,出苗稳定期滞后:华北落叶松滞后8~9 d,油松最多滞后27 d。降水量增加,华北落叶松出苗稳定期提前2~4 d。T0W+和T1W水热组合下,华北落叶松的出苗率较高,为53.33%和55.00%;油松出苗率显著受温度、水分及其交互作用的影响,T0W+组合的出苗率最高,为66.67%。即适当增温和增加降水量均利于这2树种的种子出苗,出苗期提前,出苗率提高,这与已有的研究结果一致[18]。同时,若增温过高,降水减少,会导致环境干旱化,种子出苗率降低[16,18]。
表2 不同水热组合下两树种的种子出苗结果Tab.2 Seed germination of two tree species in controlled conditions of temperature and water treatments
增温影响华北落叶松幼苗的存活(表2):增温2℃和6℃时幼苗的平均死亡率分别是对照的2.5和3.6倍;增温对油松幼苗成活无显著影响。究其原因,华北落叶松是华北地区寒温性针叶林的建群种[23],油松是暖温带与温带地区的地带性植被,主要分布于低中山地区。适宜分布区的高海拔树木比低海拔树木对气候变化更敏感[24],西伯利亚落叶松(L.sibirica)林下幼苗缺失,也与夏季土壤高温缺水密切相关[9]。东北地区“暖干化”(增温5℃,降水量减少30%)气候趋势下,华北落叶松将向东北方约扩展800 km[12-13],即暖干化气候不利于华北落叶松的种群更新与发展。本研究中,增温时华北落叶松幼苗死亡率大幅增加,一定程度上可以验证该结论。
由表3知,温度或降水量变化对华北落叶松出苗率影响不显著(P>0.05),但油松出苗率显著受温度和水分这2个因素及其交互作用的影响(P<0.01)。
表3 双因素方差分析中的F值及差异水平Tab.3 F value and significant levels of response variable in two-way ANOVA
3.2 增温和降水变化对两树种幼苗生长的影响
幼苗受到环境因子限制时,改变生长特性是增强其在群落中建成和补充的主要途径之一[18]。由表3知,温度和降水对2树种的幼苗形态的部分指标独立作用显著。多重比较发现,温度和降水量变化对油松幼苗地上部分的生长无明显影响,但温度变化显著影响华北落叶松幼苗地上部分的生长(图1)。
图1 增温和降水处理对华北落叶松幼苗最长针叶长和苗高的影响Fig.1 Effects of increased temperature and precipitation on LNL and H of Larix principis-rupprechtii
降水量增加时,增温2℃的针叶长和苗高都高于对照,而降水量减少时,增温2℃和增温6℃的苗高均显著降低。这说明适宜的水分是幼苗生长的基础,水分充足时,适当增温可以促进华北落叶松的高生长与叶生长率;而降水量减少条件下的增温会加剧土壤干旱化,继而造成干旱胁迫,华北落叶松幼苗的高生长降低。
根系是幼苗最早且最直接感受土壤水分生境的器官,干旱胁迫必然对根系发育产生影响[20]。由表3知,2种幼苗根部生长对温度和降水量变化的响应有所不同:增温促进华北落叶松幼苗主根和侧根的伸长,但这种促进作用随降水量增加而减缓(图2)。降水量减少时,增温抑制油松主根伸长,但促进该种侧根的伸长(图2)。
3.3 春季增温和降水变化对2树种幼苗生长相关性的影响
图2 增温和降水处理对两树种幼苗根部生长的影响Fig.2 Effects of increased temperature and precipitation on root growth of seedlings of the two species
华北落叶松幼苗各部生长的相关性见表4。对照温度下,主根长与侧根数显著正相关;增温2℃时,最长针叶长与主根长显著负相关;增温6℃时,最长针叶长与苗高显著负相关。降水量减少时,最长针叶长与苗高显著负相关;对照降水量条件下,主根长与平均侧根长显著负相关;降水量增加时,最长针叶长与苗高极显著正相关。这说明降水量减少条件下的增温,会引起土壤干旱化,导致水分严重亏缺,华北落叶松和油松的生长重心向根系转移,根系表面积增大,以增强对水分及养分的吸收[20,22]。
表4 华北落叶松幼苗营养器官生长的相关性分析Tab.4 Correlation analysis for elongation growth of vegetative organs for seedlings of Larix principis-rupprechtii
降水对油松幼苗生长的影响作用大于温度的影响:在降水量减少条件下,油松主根长与侧根平均长显著正相关(R=0.78,P<0.05),其他处理下各部生长相关性不明显,与已有研究结果相似[10]。有研究认为,降水是小径级油松生长的限制因子[10]。2树种在气候变化条件下的生长差异表现出其对气候敏感的差异性:华北落叶松为华北地区代表性的高山林线组成树种,长期生长于冷湿环境,对暖干化的气候变化较敏感,限制性因子的微弱改变即影响到树木的生长[25];油松是分布在北方地区的温性针叶树种,耐干旱贫瘠,适应性强[26],对暖干化气候变化不甚敏感。
特别指出,林木生长受树种生物学特性、立地条件、微气象因子和人工抚育措施等诸多因子的综合影响,但是最相关的环境因子为当地的降水和温度。本文采用温室气候控制试验,研究气候变化对林木早期生长的影响,所得结论存在一定局限,但可为后续的野外研究提供基础资料。为了增加生境模拟的真实性,国际上以不同种源的野外交互播种(reciprocal sowing)或栽植试验(reciprocal transplanting)开展林木生长对气候变化的响应研究[4],将是今后研究的新思路。
4 结论
1)适当增温和增加降水量利于这两树种种子出苗,出苗稳定期提前,出苗率提高;但增温过高,降水减少时,种子出苗稳定期延迟,出苗率降低。
2)气候变化对两树种的影响有所不同:华北落叶松作为华北地区寒温性针叶林的建群种,长期生于冷湿环境,对暖干化气候更敏感,幼苗死亡率大幅增加,苗高降低;油松幼苗地上部分的生长受温度和降水量变化的影响不明显。
3)降水量减少条件下的增温,会引起土壤水分亏缺,华北落叶松和油松的生长重心向根系转移,根系生长增加,幼苗主根和侧根显著伸长,以增加吸收表面积。
4)暖干化气候不利于华北落叶松幼苗的存活与生长,生长季高温降低了幼苗适应性,即使降水量增加亦不能缓解。
5 参考文献
[1] Allen CD,Macalady A K,ChenchouniH,etal.A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J].Forest Ecology and Management,2010,259(4):660.
[2] Choat B,Steven J,Tim JB,et al.Global convergence in the vulnerability of forests to drought[J].Nature,2012,491(7426):752.
[3] Patrick JM,Anthony PO,David T T,et al.Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality[J].New Phytologist,2012,197(3):862.
[4] Alfredo G,Jose M I,Dorothea B,et al.Response to artificial drying until drought-induced death in different elevation populations of a high-mountain plant[J].Plant Biology,2013,15(1):93.
[5] Harsch M A,Hulme P E,Mc Glone M S.Are treelines advancing?A globalmeta-analys is of tree line response to climate warming[J].Ecology Letters,2009,12(10):10409.
[6] Woodalla CW,Zhub K,Westfallc JA,et al.Assessing the stability of tree ranges and influence of disturbance in eastern US forests[J].Forest Ecology and Management,2013,291(5):172.
[7] King G M,Gugerli F,Fonti P,et al.Tree growth response along an elevational gradient:climate or genetics?[J].Oecologia,2013,173(4):1587.
[8] 尹红,王靖,刘洪滨,等.小兴安岭红松径向生长对未来气候变化的响应[J].生态学报,2011,31(24):7343. Yin Hong,Wang Jing,Liu Hongbin,et al.A research on the response of the radial growth of Pinus koraiensis to future climate change in the XiaoXing' AnLing[J].Acta Ecologica Sinica,2011,31(24):7343.(in Chinese)
[9] Choimaa D,Tobias W,Zhao F J,et al.Increased summer temperatures reduce the growth and regeneration of Larix sibirica in southern boreal forests of Eastern Kazakhstan[J].Ecosystems,2013,16(8):1536.
[10]姜庆彪,赵秀海,高露双,等.不同径级油松径向生长对气候的响应[J].生态学报,2012,32(12):3859. Jiang Qingbiao,Zhao Xiuhai,Gao Lushuang,et al. Growth response to climate in Chinese pine as a function of tree diameter[J].Acta Ecologica Sinica,2012,32(12):3859.(in Chinese)
[11]郝占庆,代力民,贺红士,等.气候变暖对长白山主要树种的潜在影响[J].应用生态学报,2001,12(5):653. Hao Zhanqing,Dai Limin,He Hongshi,et al.Potential response of major tree species to climate warming in Changbai Mountain,Northeast China[J].Chinese Journal of Applied Ecology,2001,12(5):653.(in Chinese)
[12]冷文芳,贺红士,布仁仓,等.中国东北落叶松属3种植物潜在分布对气候变化的敏感性分析[J].植物生态学报,2007,31(5):825. Leng Wenfang,He Hongshi,Bu Rencang,et al.Sensitivity analysis of the impacts of climate on potential distribution of three larch(Larix)species in northeastern China[J].Journal of Plant Ecology,2007,31(5):825.(in Chinese)
[13]程肖侠,延晓冬.气候变化对中国东北主要森林类型的影响[J].生态学报,2008,28(2):534. Cheng Xiaoxia,Yan Xiaodong.Effects of climate change on typical forest in the northeastof China[J].Acta Ecologica Sinica,2008,28(2):534.(in Chinese)
[14]Dalgleish H J,Koons D N,Adler P B.Can life-history traits predict the response of forb populations to changes in climate variability?[J]Journal of Ecology,2010,98(1):209.
[15]Mathieu L E,Matthias S,Rolf S,et al.Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch[J].Global Change Biology,2013,19(10):3184.
[16]Ian JR,Brandon T S,Gregory W S,et al.Eavesdropping in plants:delayed germination via biochemical recognition[J].Journal of Ecology,2014,102(1):86.
[17]Walck J L,Hidayati S N,Dixon K W,et al.Climate change and plant regeneration from seed[J].Global Change Biology,2011,17(6):2145.
[18]董丽佳,桑卫国.模拟增温和降水变化对北京东灵山辽东栎种子出苗和幼苗生长的影响[J].植物生态学报,2012,36(8):819. Dong LiJia,Sang Weiguo.Effects of simulated warming and precipitation change on seedling emergence and growth of Quercusmongolica in Dongling Mountain,Beijing,China[J].Chinese Journal of Applied Ecology,2012,36(8):819.(in Chinese)
[19]韩文娟,曹旭平,张文辉.地被物对油松幼苗早期更新的影响[J].林业科学,2014,50(1):49. Han Wenjuan,Cao Xuping,Zhang Wenhui.Effect of ground cover on early regeneration of Pinus tabulaeformis plantation[J].Scientia Silvae Sinicae,2014,50(1):49.(in Chinese)
[20]王巧,刘秀梅,王华田,等.干旱和水涝胁迫对幼龄油松生长及光合作用的影响[J].中国水土保持科学,2015,13(6):40. Wang Qiao,Liu Xiumei,Wang Huatian,etal.Effects of drought and water logging on growth and photosynthesis of potted young Pinus tabulaeformis Carr.[J].Science of Soil and Water Conservation,2015,13(6):40.(in Chinese)
[21]石晓东,高润梅,韩有志,等.凋落物对2针叶树种种子萌发和幼苗生长的影响[J].中国水土保持科学,2014,12(4):112. Shi Xiaodong,Gao Runmei,Han Youzhi,et al.Litters' effects on seed germination and seedling growth of two coniferous tree species[J].Science of Soil and Water Conservation,2014,12(4):112.(in Chinese)
[22]高润梅,石晓东,王林,等.当年生华北落叶松幼苗的耐旱性[J].林业科学,2015,51(7):148. Gao Runmei,Shi Xiaodong,Wang Lin,et al.Drought resistance of current-year seedlings of Larix principis-rupprechtii[J].Scientia Silvae Sinicae,2015,51(7):148.(in Chinese)
[23]江源,杨艳刚,董满宇,等.芦芽山林线白杄与华北落叶松径向生长特征比较[J].应用生态学报,2009,20(6):1271. Jiang Yuan,Yang Yangang,Dong Manyu,et al.Stem radius growth of Picea meyri and Larix principis-rupprechtii nearby the tree-line of Luya Mountain[J].Chinese Journal of Applied Ecology,2009,20(6):1271.(in Chinese)
[24]于健,徐倩倩,刘文慧,等.长白山东坡不同海拔长白落叶松径向生长对气候变化的响应[J].植物生态学报,2016,40(1):24. Yu Jian,Xu Qianqian,Liu Wenhui,et al.Response of radial growth to climate change for Larix olgensis along an altitudinal gradient on the eastern slope of Changbai Mountain,Northeast China[J].Chinese Journal of Plant Ecology,2016,40(1):24.(in Chinese)
[25]董满宇,江源,王明昌,等.芦芽山林线华北落叶松径向变化季节特征[J].生态学报,2012,32(23):7430. Dong Manyu,Jiang Yuan,Wang Mingchang,et al.Seasonal variations in the stems of Larix principis-rupprechtii at the treeline of the Luya Mountains[J].Acta Ecologica Sinica,2012,32(23):7430.(in Chinese)
[26]彭剑峰,杨爱荣,田沁花.万仙山油松径向生长与气候因子的关系[J].生态学报,2011,31(20):5977. Peng Jianfeng,Yang Airong,Tian Qinhua.Response of radial growth Chinese pine(Pinus tabulaeformis)to climate factors in Wanxian Mountain of Henan Province[J]. Acta Ecologica Sinica,2011,31(20):5977.(in Chinese)
Effects of simulated climate change on seed germ ination and seedling growth of two coniferous tree species
Shi Xiaodong,Gao Runmei,Chen Longtao
(College of Forestry,Shanxi Agricultural University,030801,Taigu,Shanxi,China)
[Background]Early development stages of trees are expected to bemore sensitive to climate change,and representamajor bottleneck to plant community recruitment.In North China,drought index had increased dramatically since 1990s,understanding on seedling's response to anticipated decrease in water availability is urgently needed.Larix principis-rupprechtii and Pinus tabulaeformis are two dominant coniferous tree species in North China,and play significant ecological roles in water conservation.[Methods]We collected seeds of these two species from Guandi Mountain,Shanxi Province,and conducted a controlled greenhouse experiment to investigate how climate changes(warming and precipitation change)would affect their seedling emergence and growth.Three levels were set for both temperature and water supply.Temperature levels were monthly mean temperature(T0)over the past15 years(1999- 2013),increased by 2℃(T1)and by 6℃(T2).Water supply levels were monthly mean precipitation(W)over past the 15 years(1999- 2013),reduction by 20%(W-)and addition by 20%(W+).A two-way ANOVA was used to compare seedling growth(including seedling emergence percentage,needle length,height,length of main root,number of lateral root,and length of lateral root)between the two treatments to the species.If the interaction was tested to be significant(P<0.05),one way ANOVA was used to test the effects of water treatments on seedling indexes,and multiple comparison was used otherwise.The least significant difference method(LSD)was used to test the significantdifferences of all data at level of 0.05.[Results]Seed germination of the two species was affected by temperature and precipitation changes.Seedling's stable germination time reduced and seedling emergence percentage improved by increased temperature of 2℃and water addition.However,in the condition of increased temperature of6℃or water reduction,stable germination time of seedling delayed and seedling emergence percentage decreased.Seedlings of the two species presented different responses to the climate change.L.principis-rupprechtii was affected more greatly by warming and drying climate than P.tabulaeformis.Seedling morality of L.principis-rupprechtii increased sharply and seedling height decreased by higher temperature and water reduction.The changes from increased temperature or precipitation showed no significant effects on seedling survival and aboveground-growth of P. tabulaeformis.Underground growth of both L.principis-rupprechtii and P.tabulaeformis increased by longer primary and lateral roots.[Conclusions]Soil drought was induced by dramatically increased temperature and reduced precipitation,which resulted in adaptive strategy of the two species by reducing aboveground growth and giving priority to root growth.Seedlings showed an interspecific variation of response to water deficit.L.principis-rupprechtii was more sensitive to climate change than P. tabulaeformis.The regeneration of L.principis-rupprechtii was inhibited by warming and drying climate. The seedling growth was negatively affected by highly increased temperature in growing period,and it could not be improved by water addition.
climate change;regeneration;seed germination;seedling growth
S714;S727.26
A
1672-3007(2016)05-0066-08
10.16843/j.sswc.2016.05.009
2016- 03- 28
2016- 09- 01
项目名称:国家自然科学基金“华北落叶松种子萌发与幼苗生长对暖干化气候的响应机制研究”(31400536);山西省回国留学人员科研资助项目“干旱胁迫下外生菌根菌对华北落叶松幼苗生长的影响机制”(2015-062)
石晓东(1976—),男,副教授,硕士生导师。主要研究方向:森林生态与森林培育。E-mail:sxdsir@163.com