APP下载

一维生物趋化模型的初边值问题

2016-11-05张映辉

关键词:趋化边值问题抛物

张映辉, 李 聪, 王 易

(湖南理工学院 数学学院, 湖南 岳阳 414006)

一维生物趋化模型的初边值问题

张映辉, 李 聪, 王 易

(湖南理工学院 数学学院, 湖南 岳阳 414006)

主要研究一维生物趋化模型的初边值问题. 在L2范数充分小, H2范数不作任何约束的情况下, 通过构造一个非负凸熵, 再作它的L2能量估计、一阶能量估计、二阶能量估计, 从而得到初边值问题解的整体存在性和指数衰减估计.

生物趋化模型; 整体存在性; 指数衰减估计; 凸熵; 初边值问题

引言

考虑下面的生物趋化模型初边值问题解的整体存在性和指数衰减估计:

主要结果及证明

本文的主要结果为:

[1] H. G. Othmer, A. Stevens. Aggregation, blowup, and collapse: the ABCs of tax is in reinforced random walks [J]. SIAM J. Appl. Math, 1997(57):1044~1081

[2] H. A. Levine, B. D. Sleeman. A system of reaction diffusion equations arising in the theory of reinforced random walks[J]. SIAM J. Appl. Math, 1997(57):683~730

[3] M. Zhang, C. J. Zhu. Global existence of solutions to a hyperbolic-parabolic system[J]. Proc. Amer. Math. Soc, 2007, 135(4): 1017~1027

[4] J. Guo, J. X. Xiao, H. J. Zhao, C. J. Zhu. Global solutions to a hyperbolic-parabolic coupled system with largr initial data[J]. Acta Math. Sci. Ser. B Engl. Ed, 2009, 29(3): 629~641

[5] 张映辉, 谭 忠, 孙明保.一个耦合双曲—抛物系统的全局光滑解[J].数学年刊, 2013, 34A(1): 29~46

[6] 张映辉, 谭 忠, 赖柏顺, 等.一个模拟趋化现象的广义双曲—抛物系统的光滑解的全局分析[J]. 数学年刊, 2012, 33A(1): 27~38

[7] L. Corrias, B. Perthama, H. Zaag. A chemotaxis model motivated by angiogenesis[J]. C. R. Acrd. Sci. Paris. Ser. I, 2003(336): 141~146

[8] S. Gueron, N. Liron. A model of herd grazing as a traveling wave: chemotaxis and stability[J]. J. Math. Boil, 1989(27): 595~608

[9] D. Horstmann, A. Stevens. A constructive approach to travelling waves in chemotaxis[J]. J. Nonlinear Sci, 2004(14): 1~25

[10] R. Lui, Z. A. Wang. Ttaveling wave solutions from microscopic to macroscopic chemotaxis models[J]. J. Math. Biol, 2010(61): 739~761

[11] T. Nagai, T. Ikeda. Traveling waves in a chemotaxis model[J]. J. Math. Biol, 1991, 30: 169~184

[12] R. J. Duan, A. Lorz, P. Markowich. Global Solutions to the coupled chemotaxis-fluid equations[J]. Comm. Partial Differential Equations, 2010, 35(9):1635~1673

[13] D. Horstmanna, M. Winklerb. Boundedness vs. blow-up in a chemotaxis system[J]. J. Differential Equations, 2005, 215: 52~107

[14] Y. Yang, H. Chen, W. A. Liu. On existence of global solutions and blow-up to a system of reaction-diffusion equations modeling chemotaxis[J]. SIAM J Math Anal, 2001, 33: 763~785

[15] S. Kawashima. Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynmics[J]. Kyoto University, 1983

[16] S. Kato. On local and global existence theorems for a nonautonomous differential equations in a Banach space[J]. Funkcial. Ekvac, 1976, 19: 279~286

[17] T. Nishida. Nonlinear hyperbolic equations and related topics in fluid dynamics[J]. Publ. Math, 1978, 128: 1053~1068

[18] J. Smoller. Shock Waves and Reaction-Diffusion Equations[M]. New York-Berlin: Springer-Verlag, 1983

[19] L. Nirenberg. On elliptic partial differential equations[J]. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 1959, 13(2): 115~162

Initial Boundary Value Problem for One Dimensional Biological Chemotaxis Model

ZHANG Ying-hui, LI Cong, WANG Yi
(College of Mathemaics, Hunan Institute of Science and Technology Yueyang 414006)

In this paper, we mainly study the initial boundary value problem of one-dimensional biological chemotaxis model. In the case of sufficiently small L2-norm, and H2-norm without any constraints, by constructing a nonnegative convex entropy,and then making its L2-energy estimates, first-order and second-order energy estimates, we get the global existence and exponential decay estimates of solution to the initial boundary value problem.

biological chemotaxis model; global existence; exponential decay estimation; convex entropy; initial boundary value problem

O175.2

A

1672-5298(2016)03-0004-04

2016-07-11

湖南省大学生研究性学习和创新性实验计划项目(湘教通[2016]283号); 湖南省教育厅优秀青年项目(14B077)

张映辉(1981- ), 男, 湖南祁阳人, 博士, 湖南理工学院数学学院副教授. 主要研究方向: 偏微分方程

猜你喜欢

趋化边值问题抛物
高空抛物罪的实践扩张与目的限缩
三维趋化流体耦合系统整体解的最优衰减估计
一类描述肿瘤入侵与具有信号依赖机制的趋化模型有界性与稳定性分析
带非线性扩散项和信号产生项的趋化-趋触模型解的整体有界性
临界Schrödinger映射非齐次初边值问题的有限差分格式
带有积分边界条件的奇异摄动边值问题的渐近解
具不同分数阶扩散趋化模型的衰减估计
关于抛物-抛物Keller-Segel类模型的全局解和渐近性
不要高空抛物!
高空莫抛物