APP下载

干湿交替灌溉对水稻产量与水分利用效率的影响

2016-09-18展明飞朱宽宇王志琴杨建昌

作物学报 2016年7期
关键词:武运合酶分蘖

褚 光 展明飞 朱宽宇 王志琴 杨建昌

扬州大学江苏省作物遗传生理重点实验室 / 粮食作物现代产业技术协同创新中心, 江苏扬州 225009

干湿交替灌溉对水稻产量与水分利用效率的影响

褚光展明飞朱宽宇王志琴杨建昌*

扬州大学江苏省作物遗传生理重点实验室 / 粮食作物现代产业技术协同创新中心, 江苏扬州 225009

本研究旨在阐明干湿交替灌溉影响水稻产量的生理机制。大田种植3个当地高产水稻品种武运粳24 (粳稻)、扬两优6号(两系杂交籼稻)和甬优2640 (三系籼/粳杂交粳稻)。自移栽后7 d设置: 常规灌溉(CI, 保持水层)和干湿交替灌溉(AWD), 观察这2种灌溉模式对水稻根系与地上部生长发育的影响。结果表明, 与CI相比, AWD可以显著提高水稻产量与水分利用效率, 3个供试品种产量分别提高了5.34%、5.85%和6.62%, 水分利用效率分别提高了28.9%、25.3%和27.6%。产量与水分利用效率的提高主要得益于水稻根系和地上部植株的生理功能的改善, 表现出灌浆期较高的根系氧化力、根系伤流液强度、根系与叶片中玉米素与玉米素核苷的含量、剑叶净光合速率、籽粒中较高的蔗糖合酶、腺苷二磷酸葡萄糖焦磷酸化酶和淀粉合酶活性、较大的深层(10~20 cm)根系、较高的分蘖成穗率与叶面积指数。

水稻; 产量; 根系; 水分利用率; 干湿交替灌溉

水稻(Oryza sativa L.)是我国最大的粮食作物, 也是用水的第一大户, 稻田灌溉用水量约占农业用水总量的70%。随着人口的增长、城镇和工业的发展、全球气候的变化以及环境污染的加重, 用于灌溉的水资源愈来愈匮乏, 严重威胁到水稻生产的发展[1-3]。因此, 如何在提高产量的同时提高水分利用效率, 是水稻生产上亟待解决的问题。

多年来, 国内外稻作科学工作者围绕高产与水分高效利用的目标, 针对水稻各生育期需水规律、不同稻作制度下的灌溉模式等进行了广泛而深入的研究, 创建了多种节水灌溉技术, 如干湿交替灌溉、间歇湿润灌溉、覆膜旱种、无水层种稻等[4-7], 为水稻节水灌溉技术的进步与发展做出了重要贡献。其中, 干湿交替灌溉技术(alternate wetting and drying irrigation, AWD)是目前在生产中应用最为广泛的,在亚洲各主要水稻生产国都得到了大面积推广与应用, 取得了显著的节水效果[8-14]。但关于AWD对水稻产量的影响有不同研究结果, 有的增产, 有的减产[8-14]。目前, 有关AWD对产量影响的机制尚不清晰。

根系具有固定地上部植株, 吸收水分和养分,合成多种激素、有机酸和氨基酸等功能, 其形态和生理特性与地上部生长发育、产量和品质均有着紧密的联系, 对水稻生长发育起着十分重要的作用[15-17]。近年研究表明, 水稻根系的生长发育与各种环境条件密切相关, 尤以水分、肥料、耕作栽培措施等影响较大[18-20]。目前国内外关于干湿交替灌溉对水稻地上部影响的研究较多[21-23], 而对根系生长发育以及根冠相互作用机制的研究则较少。而深入研究AWD对水稻根系生长的影响, 对于阐明灌溉方式影响产量的机理有重要意义。为此本研究较为系统地观察了在全生育期干湿交替灌溉条件下3个当地高产水稻品种根系形态生理特征的变化及其与地上部生长发育的关系, 以期从根系与地上部生长发育的角度进一步认识水稻的高产与水分高效利用的机制。

1 材料与方法

1.1材料与试验地基本情况

试验于2014—2015年在扬州大学农学院试验农场进行。试验地前茬作物为小麦。耕作层含有机质2.61%、有效氮121 mg kg–1、速效磷25.2 mg kg–1、速效钾87.9 mg kg–1。供试品种2014年为武运粳24(常规粳稻)与扬两优6号(两系籼型杂交稻), 2015年为超大穗型品种甬优2640 (每穗颖花数>300, 三系籼/粳杂交粳稻)。5月13日至14日播种, 6月12日至13日移栽, 武运粳24与扬两优6号双本栽插, 甬优2640单本栽插。武运粳24于2014年8月20日抽穗, 扬两优6号于2014年8月23日抽穗, 甬优2640于2015年8月10日抽穗, 两年收获时间均为10月15日。栽插株、行距为16 cm × 25 cm。试验地上建有可移动大棚, 降雨时将大棚关闭, 其余时间打开大棚通风透光。

自移栽后7 d至成熟期, 设置2种灌溉模式: (1)常规灌溉(CI, conventional irrigation), 保持浅水层,中期搁田与收获前1周断水; (2)干湿交替灌溉(AWD), 除移栽至返青田间保持浅水层外, 其余时期采用干湿交替灌溉技术, 即自浅水层自然落干到土壤水势达-15 kPa时, 灌水1~2 cm, 再自然落干至土壤水势为-15 kPa, 再上浅层水, 如此循环。小区面积为6 m × 5 m, 3次重复, 完全随机区组排列。在AWD处理小区安装真空表式土壤负压计(中国科学院南京土壤研究所生产), 每小区安装3支土壤负压计监测15~20 cm深处土壤水势。每天12:00记录土壤水势, 当读数达到阈值时, 灌1~2 cm水层。在进水管安装水表(LXSG-50流量计, 上海水分仪表制造厂)用以监测用水量。全生育期施用尿素折合纯氮240 kg hm–2, 按基肥∶分蘖肥∶促花肥∶保花肥 = 4∶2∶2∶2施用。基施过磷酸钙(含P2O513.5%) 300 kg hm–2。移栽前1 d和穗分化始期施用氯化钾(含K2O 62.5%) 90 kg hm–2和60 kg hm–2。全生育期严格防治病虫草害。

1.2取样与测定

1.2.1叶片形态与生理特性的测定 分别于移栽后77 d与89 d (武运粳24)、80 d与92 d (扬两优6号) 和70 d与83 d (甬优2640), 即当AWD小区水稻抽穗后土壤水势第1次与第2次达到-15 kPa时,从6:00至18:00, 每隔2 h采用压力室法测定剑叶水势(Model 3000, 土壤水分仪器公司, 美国), 每个处理重复测定8张叶片。分别于分蘖中期、穗分化始期、抽穗期、成熟期, 考察每个小区100穴植株的分蘖数, 按照平均茎蘖数取8穴植株, 采用美国LI-COR公司生产的Li-Cor 3050型叶面积仪测定水稻叶片总叶面积, 并于抽穗期测定有效分蘖上的叶面积, 以此计算总叶面积指数与有效叶面积指数;测定叶面积后将植株分解为绿叶、枯叶、茎、鞘和穗(抽穗以后), 烘干测定干物质重。于抽穗后第1次土壤落干期(武运粳24为移栽后77 d, 扬两优6号为80 d, 甬优2640为70 d)与第2次土壤落干期(武运粳24为移栽后89 d, 扬两优6号为92 d, 甬优2640为83 d), 此时AWD处理小区土壤水势达到-15 kPa,以及抽穗后第1次土壤复水期(武运粳24为移栽后79 d, 扬两优6号为82 d, 甬优2640为72 d)和第2次土壤复水期(武运粳24为移栽后91 d, 扬两优6号为94 d, 甬优2640为85 d), 选择晴朗无风的上午,于9:00采用美国LI-COR公司生产的LI-6400便携式光合测定仪测定稻株最上展开叶的光合速率。叶室CO2浓度为380 μmol mol–1, 使用红蓝光源, 光量子通量密度(PFD)为1400 μmol m–2s–1, 温度28~30℃, 各处理重复测定8张叶片。

1.2.2根系形态与生理特性的测定 分别于分蘖中期、穗分化始期、抽穗期、成熟期, 取每小区6穴稻株, 每穴稻株以基部为中心, 挖取16 cm × 25 cm × 20 cm的土块, 每个土块被一分为二, 切割成上下两部分, 每部分土块为16 cm × 25 cm × 10 cm,分别装于70目的筛网袋中, 先用流水冲洗, 然后用农用压缩喷雾器将根冲洗干净, 烘干后称干重。抽穗后2次土壤落干期与复水期, 用上述取根方法,从各小区取6穴根系, 3穴用于测定根系氧化力, 参照杨建昌等[24]方法测定。另3穴根系与叶片样品经液氮冷冻1 min后保存在-70℃冰箱, 用于激素的测定。参照陈远平等[25]的高效液相色谱法并作改进,提取、纯化和定量分析根系与叶片中玉米素(Z)+玉米素核苷( ZR)。用石油醚萃取去除样品中的叶绿素和脂肪等物质, 经Sep-Pak C18柱过滤以减少样品中杂质; 色谱条件改用Dubhe C184.6×250, 5 μm, 流动相为5% (v/v)乙腈、50% (v/v)甲醇、0.6% (v/v)冰乙酸, 流速为0.8 mL min–1, 采用梯度洗脱法, 检测波长254 nm; 柱温30℃, 进样量20 μL。样品回收率为84.8%±3.2%, 每一个样品至少重复4次。以外标法定量。另分别于上述时期, 各小区取代表性植株6穴, 于18:00在各茎离地10 cm处剪去地上部分植株, 将预先称重的脱脂棉放于茎的剪口处, 包上塑料薄膜, 于第2天早上6:00取回带有伤流液的脱脂棉并称重。

1.2.3籽粒中酶活性的测定 分别于抽穗后2次土壤落干期与复水期, 从各小区取30~40粒去壳籽粒, 加3~5 mL 100 mmol L–1Tricine-NaOH提取液[pH 8.0, 含有10 mmol L–1MgCl2, 2 mmol L–1EDTA、50 mmol L–12-mercaptoethanol、12% (v/v) glycerol、5%(w/v) PVP 40]于研钵中研磨(温度保持在0℃),15 000 × g离心5 min (4℃), 上清液(粗酶液)用于各酶活性测定。参照Yang等[26-27]方法测蔗糖合酶、腺苷二磷酸葡萄糖焦磷酸化酶和淀粉合酶活性。

1.2.4考种与计产 取成熟期各小区50穴考察每穴穗数, 10穴观察结实率(水漂法, 沉入水底者为饱粒)和千粒重。去除边行后, 剩余稻株实收计产。

1.3数据处理

采用Microsoft Excel 2003、SPSS 16.0和SAS统计软件分析试验数据, 用SigmaPlot 10.0绘图。

表1 不同灌溉模式下的水稻产量及其构成因素Table 1 Grain yield and its yield components under different water managements

2 结果与分析

2.1产量及其构成因素

由表1可知, 在AWD处理下, 武运粳24、扬两优6号与甬优2640的产量分别为10.10、9.72和10.50 t hm–2, 分别较各自对照(CI)增加了5.34%、5.85%和6.62%。就产量构成因素而言, 两种灌溉模式下的单位面积穗数与每穗粒数无显著差异。与CI相比,AWD显著增加了结实率与千粒重。AWD处理下3个供试品种的结实率分别较对照增加4.8、5.4和5.1个百分点, 千粒重则较对照增加2.24%、2.62%和2.47% (表1)。

2.2 灌溉用水量与水分利用效率

AWD减少了3个供试品种的灌溉用水量, 武运粳24、扬两优6号与甬优2640分别较CI降低18.2%、16.8%和17.1% (图1-A); 灌溉水分利用效率(产量/灌溉用水量)分别较CI增加28.9%、25.3%和27.6% (图1-B)。

图1 干湿交替灌溉对灌溉用水量(A)与灌溉水利用效率(B)的影响Fig. 1 Effects of alternate wetting and soil drying on the amount of irrigation water (A) and irrigation water use efficiency (B)WYJ-24: 武运粳24; YLY-6: 扬两优6号; YY-2640: 甬优2640; CI: 常规灌溉; AWD: 干湿交替灌溉。同品种不同处理间比较, 标以不同字母的柱值差异显著。WYJ-24: Wuyunjing 24; YLY-6: Yangliangyou 6; YY-2640: Yongyou 2640; CI: conventional irrigation; AWD: alternate wetting and soil drying. Bars subscripted by different letters are significantly different at the 0.05 probability level between two treatments and within the same cultivar.

2.3分蘖数与分蘖成穗率

两种灌溉模式对分蘖中期3个供试水稻品种的分蘖数无影响(表2)。AWD处理下的分蘖数在穗分化始期与抽穗期显著低于CI, 而在成熟期则与CI无显著差异。AWD处理下的3个供试品种的分蘖成穗率(成熟期分蘖数/穗分化始期分蘖数)分别为79.6%、80.3%和78.2%, 均显著高于CI, 表明在生育中后期AWD更有利于水稻的生长。

2.4叶面积指数

分蘖中期, 2种灌溉模式对3个水稻品种的叶面积指数无影响(表3)。AWD处理下水稻的叶面积指数与CI相比, 穗分化始期显著降低, 抽穗期无显著性差异, 成熟期显著提高, 抽穗期AWD的有效叶面积指数显著提高(表3)。

表2 干湿交替灌溉对水稻分蘖数与分蘖成穗率的影响Table 2 Effects of alternate wetting and soil drying on number of tillers and percentage of productive tillers of rice

2.5叶片水势

图2是在3个水稻品种抽穗后第1次(A~C)与第2次(D~F) AWD小区土壤水势为-15 kPa时, 不同灌溉模式下水稻叶片水势的日变化。由图可知, 两次土壤落干期水稻叶片水势的日变化趋势较为一致,但第2次土壤落干期水稻叶片的水势在日变化中相同时间均低于第1次。两次土壤落干期, AWD显著降低了12:00的叶片水势, 而6:00到8:00叶片水势与CI无显著性差异, 表明当土壤低限水势为-15 kPa时, AWD处理植株的水分状况会在夜间恢复到正常。

表3 干湿交替灌溉对水稻叶面积指数的影响Table 3 Effects of alternate wetting and soil drying on leaf area index (LAI) of rice

2.6地上部干物重、根干重与根冠比

分蘖中期与抽穗期, AWD处理水稻地上部干物重与CI无显著差异, 穗分化始期显著低于CI,而成熟期则高于CI, 3个供试品种表现出相同的变化趋势(图3-A~C)。从分蘖中期至成熟期, 根干重表现出先增后降的趋势, 峰值出现在抽穗期, 在分蘖中期与穗分化始期, AWD处理下水稻根干重与CI无显著性差异, 而在抽穗期与成熟期均要显著高于对照(图3-D~F)。不同灌溉模式下水稻浅层根系的干物重(0~10 cm)在整个生育期无显著性差异, 而AWD处理的水稻深层根系的干物重(10~20 cm)在整个生育期均显著高于CI (表4)。自分蘖中期至成熟期, 3个供试品种的根冠比均呈现下降的趋势。在分蘖中期与成熟期, AWD处理根冠比与CI无显著性差异, 在穗分化始期与抽穗期显著高于CI (图3-G~I)。

图2 干湿交替灌溉对水稻叶片水势(A~C)的影响Fig. 2 Effects of alternate wetting and soil drying on diurnal changes in leaf water potentials (A-C) of riceWuyunjing 24: 武运粳24; Yangliangyou 6: 扬两优6号; Yongyou 2640: 甬优2640; D1和D2: 土壤落干期; CI: 常规灌溉; AWD: 干湿交替灌溉。*表示与对照在P = 0.05水平上差异显著。D1 and D2, the soil drying period; CI: conventional irrigation; AWD: alternate wetting and soil drying.*Significantly different at the 0.05 probability level compared with the CI.

2.7剑叶净光合速率与叶片中Z+ZR的含量

在2次土壤落干期(D1, D2), AWD处理下3个供试水稻品种的剑叶净光合速率与CI无显著性差异, 而在土壤复水期(W1, W2)则显著高于CI (图4-A~C)。AWD在土壤落干期对水稻叶片并没有伤害,相反在复水后会提高光合速率, 表明AWD更有利于叶片的光合作用。叶片中Z+ZR含量变化的趋势与剑叶净光合速率的变化趋势相一致(图4-D~F)。

图3 干湿交替灌溉对水稻地上部干物重(A~C)、根干重(D~F)与根冠比(G~I)的影响Fig. 3 Effects of alternate wetting and soil drying on shoot dry weight (A-C), root dry weight (D-F), and root-shoot ratio (G-I) of riceWYJ-24: 武运粳24; YLY-6: 扬两优6号; YY-2640: 甬优2640; MT: 分蘖中期; PI: 穗分化始期; HD: 抽穗期; MA: 成熟期; CI: 常规灌溉; AWD: 干湿交替灌溉。同期不同处理间比较, 标以不同字母的柱值差异显著。WYJ-24: Wuyunjing 24; YLY-6: Yangliangyou 6; YY-2640: Yongyou 2640; MT: mid tillering; PI: panicle initiation; HD: heading time; MA: maturity; CI: conventional irrigation; AWD: alternate wetting and soil drying. Bars subscripted by different letters are significantly different at the 0.05 probability level between two treatments and within the same growth period.

表4 干湿交替灌溉对水稻根干重的影响Table 4 Effects of alternate wetting and soil drying on root dry weight of rice (g m–2)

图4 干湿交替灌溉对水稻剑叶净光合速率(A~C)以及叶片中玉米素(Z)+玉米素核苷(ZR)含量(D~F)的影响Fig. 4 Effects of alternate wetting and soil drying on photosynthetic rate of the flag leaf (A-C) and zeatin (Z) + zeatin riboside (ZR)content in leaves (D-F) of riceWYJ-24: 武运粳24; YLY-6: 扬两优6号; YY-2640: 甬优2640; D1和D2: 土壤落干期; W1和W2: 复水期; CI: 常规灌溉;AWD: 干湿交替灌溉。同期不同处理间比较, 标以不同字母的柱值差异显著。WYJ-24: Wuyunjing 24; YLY-6: Yangliangyou 6; YY-2640: Yongyou 2640; D1 and D2, the soil drying period; W1 and W2, the re-watering period; CI: conventional irrigation; AWD: alternate wetting and soil drying. Bars subscripted by different letters are significantly different at the 0.05 probability level between two treatments and within the same growth period.

2.8根系氧化力、根系中Z+ZR含量以及根系伤流量

与剑叶净光合速率(图4-A~C)的变化趋势相一致, 在2次土壤落干期(D1, D2), AWD处理下3个供试品种的根系氧化力(图5-A~C)、根系伤流液强度(图5-D~F)以及根系中Z+ZR的含量(图5-G~I)均与CI无显著差异, 而在2次土壤复水期(W1, W2),AWD处理下上述指标均显著高于CI (图5)。

2.9籽粒中酶活性

与剑叶净光合速率(图4-A~C)的变化趋势相一致, 在土壤落干期(D1, D2), AWD处理下3个供试水稻品种籽粒中蔗糖合酶(图6-A~C)、腺苷二磷酸葡萄糖焦磷酸化酶(图6-D~F)以及淀粉合酶(图6-H~I)活性均与CI无显著差异, 而在2次土壤复水期(W1,W2)籽粒中这3种酶的活性, AWD处理均显著高于CI。

相关分析表明, 在不同的水分处理下, 3个供试品种根系氧化力、根系中Z+ZR含量以及根系伤流液强度与叶片中Z+ZR含量、剑叶净光合速率、籽粒中蔗糖合酶(SuSase)、腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)以及淀粉合酶(StSase)活性均呈极显著正相关(r =0.691**~0.952**)。

3 讨论

干湿交替灌溉技术可以减少稻田灌溉用水量,目前已经形成较为统一的认识, 但是否能够增产,还存在较多的争议[1-4,21-22,24]。本研究结果表明, 与CI相比, AWD不仅可以提高水分利用效率, 而且还可以显著提高水稻产量。造成本研究结果与以往研究结果不同的原因有很多, 如不同的土壤与水文条件, 水稻生长季节不同的气象因素等。在本研究中AWD之所以能够提高产量, 主要是设置的土壤落干程度较轻。这种AWD在土壤落干期不会明显降低光合作用, 在复水期可以显著提高叶片光合速率和增加籽粒中蔗糖-淀粉代谢途径关键酶活性, 进而提高结实率和粒重。因此, 我们认为, 土壤落干程度是AWD影响产量高低的一个关键因素, 建议将-15 kPa作为在水稻干湿交替灌溉中土壤落干程度的安全土壤水势指标。

图5 干湿交替灌溉对水稻根系氧化力(A~C)、根系伤流液强度(D~F)以及根系中玉米素(Z)+玉米素核苷(ZR)含量(G~I)的影响Fig. 5 Effects of alternate wetting and soil drying on root oxidation activity (A-C), root bleeding rate (D-F), and zeatin (Z) + zeatin riboside (ZR) content in roots (G-I)WYJ-24: 武运粳24; YLY-6: 扬两优6号; YY-2640: 甬优2640; D1和D2: 土壤落干期; W1和W2: 复水期; CI: 常规灌溉;AWD: 干湿交替灌溉。同期不同处理间比较, 标以不同字母的柱值差异显著。WYJ-24: Wuyunjing 24; YLY-6: Yangliangyou 6; YY-2640: Yongyou 2640; D1 and D2, the soil drying period; W1 and W2, the re-watering period; CI: conventional irrigation; AWD: alternate wetting and soil drying. Bars subscripted by different letters are significantly different at the 0.05 probability level between two treatments and within the same growth period.

表5 水稻根系氧化力、根系中Z+ZR含量以及根系伤流液强度与叶片中Z+ZR含量、光合速率、籽粒中蔗糖合酶、腺苷二磷酸葡萄糖焦磷酸化酶以及淀粉合酶活性之间的相关系数Table 5 Correlation coefficients of root oxidation activity (ROA), Z+ZR in roots and root bleeding rate with Z+ZR in leaves, photosynthetic rate, the activities of sucrose synthase (SuSase), adenosine diphosphoglucose pyrophosphorylase (AGPase), and starch synthase (StSase) in grains

根系作为水稻水分、养分吸收和运输的主要器官, 其功能的发挥与根系形态和生理特性密切相关。前人研究发现, 长期淹水会导致土壤中某些有毒还原性产物的积累, 如Fe2+、H2S等[28], 对根系的生长发育造成负面影响。AWD则可有效改善土壤的氧化还原性并去除土壤中具有毒性的还原性产物,有利于水稻根系的生长[29-31]。本研究表明, AWD可以促进水稻深层根系(10~20 cm)的生长, 强大的深层根系有利于土壤水分的保持, 提高干旱条件下植株水势, 从而提高水稻产量与水分利用效率[29,32-33]。根系氧化力的高低直接影响水稻对水分养分的吸收利用、地上部生长发育和产量[34-36], 本研究表明在AWD处理下, 灌浆期水稻根系氧化力显著提高, 根系氧化力的增强可以提高根系从土壤中吸收水分与养分的能力, 为地上部生长提供更多的营养, 改善地上部分的生长发育。在本研究中, 作者观察到AWD可以显著提高灌浆期根系与叶片中细胞分裂素(Z+ZR)的含量。有研究表明, 细胞分裂素在促进细胞分裂和延迟衰老方面发挥重要作用[37]。在AWD下Z+ZR含量增加, 可以促进水稻籽粒胚乳等细胞的分裂, 并延缓植株的衰老。

图6 干湿交替灌溉对籽粒中蔗糖合酶(A~C)、腺苷二磷酸葡萄糖焦磷酸化酶(D~F)以及淀粉合酶(G~I)活性的影响Fig. 6 Effects of alternate wetting and soil drying on the activities of sucrose synthase (SuSase)(A-C), adenosine diphosphoglucose pyrophosphorylase (AGPase) (D-F), and starch synthase (StSase)(G-I) in grainsWYJ-24: 武运粳24; YLY-6: 扬两优6号; YY-2640: 甬优2640; D1和D2: 土壤落干期; W1和W2: 复水期; CI: 常规灌溉; AWD: 干湿交替灌溉。同期不同处理间比较, 标以不同字母的柱值差异显著。WYJ-24: Wuyunjing 24; YLY-6: Yangliangyou 6; YY-2640: Yongyou 2640; D1 and D2, the soil drying period; W1 and W2, the re-watering period; CI: conventional irrigation; AWD: alternate wetting and soil drying. Bars subscripted by different letters are significantly different at the 0.05 probability level between two treatments and within the same growth period.

本研究结果表明, 根系生长与地上部的生长发育紧密相关, 根系氧化力、根系中Z+ZR含量与叶片中Z+ZR含量、剑叶净光合速率、籽粒中蔗糖合酶、腺苷二磷酸葡萄糖焦磷酸化酶、淀粉合酶的活性呈极显著正相关关系。说明活跃的根系可为地上部提供充足的营养、水分和植物激素, 进而促进地上部生长。另一方面, 地上部良好的生长又可以保证充足的碳水化合物向根部输送, 从而保持和促进根系的功能。

水稻源器官制造的光合同化物以蔗糖形式输入籽粒中, 在籽粒中经过一系列酶催化作用, 将蔗糖转化为淀粉[38-39]。在此过程中, 蔗糖合酶、腺苷二磷酸葡萄糖焦磷酸化酶和淀粉合酶起关键性作用[40],这3种酶的活性与禾谷类作物籽粒灌浆速率或淀粉积累速率呈显著正相关[27]。本研究表明, AWD可以显著提高灌浆期水稻籽粒中这3种酶的活性, 从而促进籽粒灌浆, 提高粒重与结实率, 进而提高产量。我们还观察到, 与CI相比, AWD可以显著提高分蘖成穗率、抽穗期有效叶面积指数与成熟期叶面积指数。我们推测, AWD通过改善水稻根系和地上部的生长发育, 最终提高产量与水分利用效率。

4 结论

与常规灌溉相比, 全生育期干湿交替灌溉可以显著提高水稻产量与水分利用效率。较好的根系性能(整个生育期较大的深层根系生物量, 灌浆期较高的根系氧化力、根系伤流液强度与根系中Z+ZR含量)和地上部植株强大的生理活性(抽穗期较大的有效叶面积指数、灌浆期较高的剑叶净光合速率、叶片中Z+ZR含量、籽粒中较高的蔗糖合酶、腺苷二磷酸葡萄糖焦磷酸化酶和淀粉合酶活性)是全生育期干湿交替灌溉可以获得高产与水分高效利用效率的重要生理基础。

References

[1] Bouman B, Tuong T. Field water management to save water and increase its productivity in irrigated lowland rice. Agric Water Manage, 2001, 49: 11–30

[2] Belder P, Bouman B, Cabangon R, Guoan L, Quilang E, Li Y,Spiertz J, Tuong T. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agric Water Manage, 2004, 65: 193–210

[3] Bouman B. A conceptual framework for the improvement of crop water productivity at different spatial scales. Agric Syst, 2007, 93: 43–60

[4] Devkota K, Hoogenboom G, Boote K, Singh U, Lamers J,Devkota M, Vlek P. Simulating the impact of water saving irrigation and conservation agriculture practices for rice–wheat systems in the irrigated semi-arid drylands of central Asia. Agric For Meteorol, 2015, 214: 266–280

[5] Ockerby S, Fuka S. The management of rice grown on raised beds with continuous furrow irrigation. Field Crops Res, 2001,69: 215–226

[6] Shao G, Deng S, Liu N, Yu S, Wang M, She D. Effects of controlled irrigation and drainage on growth, grain yield and water use in paddy rice. Eur J Agron, 2015, 53: 1–9

[7] Tao H, Brueck H, Dittert K, Kreye C, Lin S, Sattelmacher B. Growth and yield formation for rice (Oryza sativa L.) in the water-saving ground cover rice production system (GCRPS). Field Crops Res, 2006, 95: 1–12

[8] Lampayan R, Rejesus R, Singleton G, Bouman B. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Res, 2015, 170: 95–108

[9] Ye Y, Liang X, Chen Y, Liu J, Gu J, Guo R, Li L. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation,yield, water and nitrogen use. Field Crops Res, 2013, 144: 212–224

[10] Arjun P, Van T, Duong Q, Thi P, Thi L, Lars S, Andreas N. Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam. Agric Ecosyst Environ, 2014, 196: 137–146

[11] Liu L, Chen T, Wang Z, Zhang H, Yang J, Zhang J. Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice. Field Crops Res, 2013, 154: 226–235

[12] Zhang H, Xue Y, Wang Z, Yang J, Zhang J. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Sci, 2009, 49: 2246–2260

[13] Yang J, Zhang J. Crop management techniques to enhance harvest index in rice. J Exp Bot, 2010, 61: 3177–3189

[14] Tabbal D, Bouman B, Bhuiyan S, Sibayan E, Sattar M. On-farm strategies for reducing water input in irrigated rice: case studies in the Philippines. Agric Water Manag, 2002, 56: 93–112

[15] 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011, 44: 36-46 Yang J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Sci Agric Sin, 2011, 44: 36-46 (in Chinese with English abstract)

[16] 陈达刚, 周新桥, 李丽君, 刘传光, 张旭, 陈友订. 华南主栽高产籼稻根系形态特征及其与产量构成的关系. 作物学报,2013, 39: 1899–1908 Chen D G, Zhou X Q, Li L J, Liu C G, Zhang X, Chen Y D. Relationship between root morphological characteristics and yield components of major commercial indica rice in south China. Acta Agron Sin, 2013, 39: 1899–1908 (in Chinese with English abstract)

[17] 褚光, 刘洁, 张耗, 杨建昌. 超级稻根系形态生理特征及其与产量形成的关系. 作物学报, 2014, 40: 850–858 Chu G, Liu J, Zhang H, Yang J C. Morphology and physiology of roots and their relationships with yield formation in super rice. Acta Agron Sin, 2014, 40: 850–858 (in Chinese with English abstract)

[18] 李洪亮, 孙玉友, 曲金玲, 魏才强, 孙国宏, 赵云彤, 柴永山.施氮量对东北粳稻根系形态生理特征的影响. 中国水稻科学,2012, 26: 723–730 Li H L, Sun Y Y, Qu J L, Wei C Q, Sun G H, Zhao Y T, Chai Y S. Influence of nitrogen levels on morphological and physiological characteristics of root system in japonica rice in northeast China. Chin J Rice Sci, 2012, 26: 723–730 (in Chinese with English abstract)

[19] 李杰, 张洪程, 常勇, 龚金龙, 胡雅杰, 龙厚元, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 高产栽培条件下种植方式对超级稻根系形态生理特征的影响. 作物学报, 2011, 37: 2208–2220 Li J, Zhang H C, Chang Y, Gong J L, Hu Y J, Long H Y, Dai Q G,Huo Z Y, Xu K, Wei H Y, Gao H. Influence of planting methods on root system morphological and physiological characteristics of super rice under high-yielding cultivation condition. Acta Agron Sin,2011, 37: 2208-2220 (in Chinese with English abstract)

[20] 褚光, 周群, 薛亚光, 颜晓元, 刘立军, 杨建昌. 栽培模式对杂交粳稻常优5号根系形态生理性状和地上部生长的影响.作物学报, 2014, 40: 949-955 Chu G, Zhou Q, Xue Y G, Yan X Y, Liu L J, Yang J C. Effects of cultivation patterns on root morph-physiological traits and aboveground development of japonica hybrid rice cultivar Changyou 5. Acta Agron Sin, 2014, 40: 949-955 (in Chinese with English abstract)

[21] Zhang H, Li H, Wang Z, Yang J, Zhang J. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice. J Exp Bot, 2012, 63: 215–227

[22] 陈婷婷, 许更文, 旸钱希, 王志琴, 张耗, 杨建昌. 花后轻干湿交替灌溉提高水稻籽粒淀粉合成相关基因的表达. 中国农业科学, 2015, 48: 1288–1299 Chen T T, Xu G W, Qian X Y, Wang Z Q, Zhang H, Yang J C. Post-anthesis alternate wetting and moderate soil drying irrigation enhance gene expressions of enzymes involved in starch synthesis in rice grains. Sci Agric Sin, 2015, 48: 1288–1299 (in Chinese with English abstract)

[23] 付景, 刘洁, 曹转勤, 王志琴, 张耗, 杨建昌. 结实期干湿交替灌溉对2个超级稻品种结实率和粒重的影响. 作物学报,2014, 40: 1056-1065 Fu J, Liu J, Cao Z Q, Wang Z Q, Zhang H, Yang J C. Effects of alternate wetting and drying irrigation during grain filling on the seed-setting rate and grain weight of two super rice cultivars. Acta Agron Sin, 2014, 40: 1056-1065 (in Chinese with English abstract)

[24] 杨建昌, 王志琴, 朱庆森. 不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究. 中国农业科学, 1996, 29: 58–66 Yang J C, Wang Z Q, Zhu Q S. Effect of nitrogen nutrition on rice yield and its physiological mechanism under different status of soil moisture. Sci Agric Sin, 1996, 29: 58–66 (in Chinese with English abstract)

[25] 陈远平, 杨文钰. 卵叶韭休眠芽中GA3、IAA、ABA和ZT的高效液相色谱法测定. 四川农业大学学报, 2005, 23: 498-500 Chen Y P, Yang W Y. Determination of GA3, IAA, ABA and ZT in dormant buds of Allium ovalifolium by HPLC. J Sichuan Agric Univ, 2005, 23: 498-500 (in Chinese with English abstract)

[26] Yang J, Zhang J, Wang Z, Zhu Q, Liu L. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Res, 2003, 81: 69-81

[27] Yang J, Zhang J, Wang Z, Xu G, Zhu Q. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol, 2004, 135: 1621-1629

[28] Ramasamy S, Berge H, Purushothaman S. Yield formation in rice in response to drainage and nitrogen application. Field Crops Res,1997, 51: 65–82

[29] Chu G, Chen T, Wang Z, Yang, J, Zhang J. Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice. Field Crops Res, 2014, 162: 108-119

[30] Li H, Liu L, Wang Z, Yang J, Zhang J. Agronomic and physiological performance of high-yielding wheat and rice in the lower reaches of Yangtze River of China. Field Crops Res, 2012, 133: 119-129

[31] Yao F, Huang J, Cui K, Nie L, Xiang J, Liu X, Wu W, Chen M,Peng S. Agronomic performance of high-yielding rice variety grown under alternate wetting an drying irrigation. Field Crops Res, 2012, 126: 16-22

[32] Chu G, Wang Z, Zhang H, Liu L, Yang J, Zhang J. Alternate wetting and moderate drying increases rice yield and reduces methane emission in paddy field with wheat straw residue incorporation. Food & Energy Security, 2015, 4: 238-254

[33] Ju C, Buresh R, Wang Z, Zhang H, Liu L, Yang J, Zhang J. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res, 2015, 175: 47–55

[34] 郑华斌, 姚林, 刘建霞, 贺慧, 陈阳, 黄璜. 种植方式对水稻产量及根系性状的影响. 作物学报, 2014, 40: 667-677 Zheng H B, Yao L, Liu J X, He H, Chen Y, Huang H. Effect of ridge and terraced cultivation on rice yield and root trait. Acta Agron Sin, 2014, 40: 667-677 (in Chinese with English abstract)

[35] Chu G, Wang Z, Zhang H, Yang J, Zhang J. Agronomic and physiological performance of rice under integrative crop management. Agron J, 2016, 108: 1–12

[36] 戢林, 李廷轩, 张锡洲, 余海英. 氮高效利用基因型水稻根系形态和活力特征. 中国农业科学, 2012, 45: 4770-4781 Ji L, Li T X, Zhang X Z, Yu H Y. Root morphological and activity characteristics of rice genotype with high nitrogen utilization efficiency. Sci Agric Sin, 2012, 45: 4770-4781 (in Chinese with English abstract)

[37] Yang J, Zhang J, Wang Z, Zhu Q, Wang W. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol, 2001, 127: 315-323

[38] Nakamura Y, Yuki K, Park S. Carbohyrate metabolism in the developing endosperm of rice grains. Plant Cell Physiol, 1989,30: 833-839

[39] Nakamura Y, Yuki K. Changes in enzyme activities associated with carbohydrate metabolism during development of rice endosperm. Plant Sci, 1992, 82: 15-20

[40] Kato T. Change of sucrose synthase activity in developing endosperm of rice cultivars. Crop Sci, 1995, 35: 827-831

Effects of Alternate Wetting and Drying Irrigation on Yield and Water Use Efficiency of Rice

CHU Guang, ZHAN Ming-Fei, ZHU Kuan-Yu, WANG Zhi-Qin, and YANG Jian-Chang*
Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China

Alternate wetting and drying (AWD) irrigation has been widely adopted to replace conventional irrigation (CI) for saving water and increasing water use efficiency (WUE) in irrigated rice systems in China. However, there is limited information about how AWD affects yield, WUE, and root and shoot growth and development. To fill this knowledge gap, we conducted the experiment using three local high-yielding rice cultivars, Wuyunjing 24 (japonica), Yangliangyou 6 (two-line indica hybrid rice),and Yongyou 2640 (three-line indica/japonica hybrid rice) under the two water managements, CI and AWD, during the whole growing season. The results showed that, when compared with CI, AWD increased grain yield by 5.34%, 5.85%, and 6.62% and WUE by 28.9%, 25.3%, and 27.6%, respectively which mainly attributed to greater root oxidation activity, amount of root bleeding sap, content of cytokinins (zeatin + zeatin riboside) in roots and leaves, highten photosynthetic rate of flag leaf, deeper root distribution, increased productive tillers and leaf area, and enhanced activities of enzymes involved in sucrose-to-starch conversion in grains during grain filling. The results demonstrate that AWD is an effective practice to increase grain yield and water use efficiency through enhancing root and shoot growth and development.

Rice; Yield; Root; Water use efficiency; Alternate wetting and drying

10.3724/SP.J.1006.2016.01026

本研究由国家自然科学基金项目(31271641, 31461143015, 31471438), 江苏省农业三新工程项目(SXGC[2014]313), 江苏高校优势学科建设工程资助项目(PAPD), 江苏省普通高校研究生科研创新计划项目(KYZZ_0364)和扬州大学高端人才支持计划项目(2015-01)资助。The research was supported by the National Natural Science Foundation of China (31461143015, 31271641, 31471438), Jiangsu“Three-innovation” Agricultural Project (SXG2014313), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Innovation Research Program for Graduate Students for Higher Education of Jiangsu Province (KYZZ_0364), and the Top Talent Supporting Program of Yangzhou University (2015-01).

(Corresponding author): 杨建昌, E-mail: jcyang@yzu.edu.cn, Tel: 0514-87979317

联系方式:E-mail: chuguang19880210@163.com

Received(): 2015-12-29; Accepted(接受日期): 2016-05-09; Published online(网络出版日期): 2016-05-12.

URL: http://www.cnki.net/kcms/detail/11.1809.S.20160512.1103.002.html

猜你喜欢

武运合酶分蘖
四种中药单体选择性抑制环氧合酶-2活性的评价
分蘖对玉米农艺性状和产量的影响
浅析水稻分蘖与产量
提高冬小麦有效分蘖的技术措施研究
直播水稻不同品种氮、磷吸收利用特性和产量的差异试验小结
溧阳市2016年水稻新品种比较试验初报
“武运粳31号”在江阴市的引种表现及高产优质栽培技术
水稻旱育秧、温室两段育秧在分蘖与成穗上的差异
寻常型银屑病皮损组织环氧合酶2(COX-2)的表达研究
一氧化氮合酶抑制剂治疗实验性自身免疫性心肌炎的研究