APP下载

生草对果园土壤理化性状的影响研究进展

2016-09-14曹铨沈禹颖王自奎张小明杨轩

草业学报 2016年8期
关键词:生草土壤有机牧草

曹铨,沈禹颖,王自奎,张小明,杨轩

(草地农业生态系统国家重点实验室,兰州大学草地农业科技学院,甘肃 兰州 730020)



生草对果园土壤理化性状的影响研究进展

曹铨,沈禹颖*,王自奎,张小明,杨轩

(草地农业生态系统国家重点实验室,兰州大学草地农业科技学院,甘肃 兰州 730020)

果园生草栽培模式对土壤理化性状的影响是果园集约、高效、生态、可持续生产的重要基础。生草栽培可降低土壤容重4.7%~13.0%,提高水稳性土壤团聚体含量,进而改善土壤的导水性能和保水性能,也有助于拦截降雨,提高雨水的利用率;干旱少雨的季节可能会出现牧草与果树争水的现象,需要通过选择适宜的草种及加强田间管理等措施来减小争水对果树造成的不利影响;生草有助于土壤有机碳的积累,连续生草6年可使土壤表层有机碳增加19.6%~27.8%,有机碳的累积量会随生草年限的增加而增加;生草覆盖可调节果园土壤温度,增加土壤微生物的多样性和酶活性;生草还可以促进土壤养分的有效性,同时豆科牧草也可通过固氮作用提高氮素利用效率,总体而言,果园多年种植牧草对土壤养分的积累具有正效应。本研究可为有关的研究工作和生草模式的进一步推广应用提供依据。

生草模式;土壤水分;土壤养分;土壤有机碳;微生物多样性;土壤酶活性

果园生产模式与作物生产相比具有投入高、产出高的特点,有效的果园管理有助于降低成本、提高产出[1]。我国果园地面的管理模式仍以清耕加除草剂除草为主,这不仅会导致水土流失、生物多样性降低及环境污染等问题的产生[2-4],且在多雨的季节不利于田间机械操作。果园生草是指对果园实施全园或行间生草覆盖,每年割草1~2次覆于树盘下或用于发展养殖业,亦可常年不刈割的一种果园土壤耕作管理模式[5-6],其已经成为北美[7]和欧洲地区[8-9]果园建设的主流模式。与清耕模式相比,其有利于构建良好的果园生产体系、改善果园环境、提高果园生产力[7,10]。

果园生草具有改良土壤理化性质、调节果园生态环境、抑制杂草和病害、促进果树生长发育的生产生态效应,所以被认为是一种可持续的果园管理模式[11-13]。该模式自20世纪90年代被引入中国,率先在福建、广东、山东等地开始应用,但直至目前我国果园土壤耕作管理措施仍以清耕法为主,其主要原因一方面受到 “除草务尽”、“与果争水肥”等传统观念的影响,另一方面因各果产区气候、立地条件等差异较大,在草种选择与田间管理方面缺乏相应的规范化技术[14-16]。近几年有关果园生草的综述文章也比较多,王艳廷等[3]综述了生草对果园土壤、小气候、病虫害、树体生长及果实品质等的影响,李发林等[4]综述了果园生草模式的水土保持效应,杜丽清等[14]主要分析了生草栽培的果园环境效应及果树生理效应。本研究侧重分析生草对果园土壤理化性状的影响效果及造成这些影响的原因,旨在为果园生草模式有关的研究工作和进一步推广应用提供依据。

1 土壤结构、容重和保水能力

国内大量研究表明果园生草可使土壤结构得到改善、增加孔隙度、降低容重,且能增强土壤水分的入渗能力和持水能力。黄土高原渭北苹果(Malusdomestica)园间作白三叶(Trifoliumrepens) 7年以后改变了土壤团聚体有机碳含量与分布,增加了果园土壤水稳性团聚体平均重量直径,降低了团聚体破坏率,显著提高了0~20 cm土层>0.25 mm水稳性团聚体的含量及其稳定性[17]。生草区比清耕区土壤平均容重降低6.51%,其中0~20 cm土层土壤容重降低6.93%,20~40 cm土层土壤容重降低6.05%[18]。在山西平定县的研究表明果园生草覆盖区与对照相比,直径1.0 mm以上的土壤团聚体增加了10.2%~12.2%,土壤容重下降4.7%~10.8%,土壤孔隙度增加2.5%~5.5%[19]。茶园间作牧草后,与清耕相比其土壤结构和物理性状得到了明显改善,土壤团聚体数量增加,通透性改善,容重下降,持水能力增强[20]。国外也有一些研究表明果园种草可改善土壤结构,降低土壤板结发生的可能性,提高土壤渗水能力和保水能力[13,21]。还有研究指出生草使得果园及橄榄(Oleaeuropaea)园土壤的容重增加,饱和导水率降低,这主要是频繁使用割草机造成的[22-24]。综上,在清耕果园种草可以改善土壤结构,增强其保水能力,但不合理的牧草刈割模式反而可能会破坏土壤结构,所以应针对不同牧草品种采取适宜的管理措施。

2 土壤水分

果园生草后果树和草之间的水分竞争一直是学者和果农最关注的问题之一,相关的研究结果因研究地区以及覆盖草种的不同而出现差异[25-28]。

果园生草既具有保水的效应,也有争水的效应(表1)。保水主要体现在以下两个方面。首先,与清耕相比,生草能够增加对降雨的拦截,减少地表径流,特别是在降雨较多的区域或季节。其次,生草能够优化土壤结构,提高土壤的贮水能力,在多雨季节能显著增加深层土壤的贮水量。Palese等[23]指出,生草使秋冬雨季过后橄榄园100~200 cm之间的土壤水分提高17%~45%,能够有效缓解春季和夏季的干旱。生草与果树之间的水分竞争与降雨量的丰欠关系密切。根据Ritchie[34]的蒸发理论可知,第一阶段的土壤蒸发主要和土表的湿润频率有关。多雨季节,清耕果园土表蒸发剧烈,生草可大幅度减少地表的太阳辐射进而降低土壤蒸发,起到保水作用;而在少雨季节,清耕果园土表蒸发较为微弱,生草果园牧草的耗水量大于土壤蒸发量,所以生草的争水效应明显[28-32]。在生产实践中,应选择适宜的草种,加强生草的管理,促进生草的保水效应,抑制其争水效应。例如,在Oliveira等[22]的研究中,他们每两周刈割一次紫羊茅(Festucarubra),以防止其对土壤水分的过度消耗。需要注意的是,不能片面的因为种草争水而否定生草模式,因为生草对土壤有机质积累、养分积累、增加微生物多样性及酶活性等还有重要的促进作用,下面几部分将予以综述。

3 土表温度

果园生草由于增加了地表覆盖,在高温季节可减少太阳光对地面的直接照射,减缓热量向深层的传递,使得地表温度升高较慢,有效降低水分蒸发。在寒冷的冬季和夜晚,生草对地面可起到保温作用,有助于缩小果园土壤的年温差和日温差,增强果园的抗逆能力[35-37]。例如,葡萄(Vitisvinifera)园行间种植白三叶可使夏季高温时地表温度显著降低,特别是在中午12:00时,降幅高达21.1%[38];桔(Platycodongrandiflorus)园采取生草覆盖后,夏季高温干旱前期的气温比清耕对照低1.0~10.0 ℃,高温干旱期气温较清耕低1.0~9.0 ℃[39];茶园间作白三叶草能降低土壤日温差,增强同一层次土壤温度的相对稳定性,有利于茶树稳产高产[20];在高原沟壑果园,覆草法在春、夏季对土壤具有明显的降温作用,在秋末覆草比清耕法提高地温1.5 ℃,具有一定的保温作用,有利于果树根系的生长和养分积累[40];桃(Amygdaluspersica)树行间种植白三叶,在温度低时起保温作用,在温度高时对桃园有降温作用,在春季干旱时较清耕区明显地提高相对湿度,从而为桃树提供适宜的环境条件[41];幼龄桔园间作黑麦草或黑麦草和紫云英(Astragalussinicus)混播具有冬季保暖作用,有利于幼龄桔园免受冻害,保证产量[42]。果园生草对土壤温度的调节是生草措施影响生态效应的重要基础。通过覆盖的措施降低土壤温差不仅能减少土壤水分的无效蒸发,也有利于土壤微生物的繁殖和活动,从而促进有机质的分解及土壤养分的积累等过程。

4 土壤有机碳

Neilsen等[43]指出发展果园生草模式的主要原因是其可以增加土壤有机碳含量,进而提高土壤肥力,增加土壤微生物多样性,减少农药和化肥的使用,生产出优质的水果。生草后土壤有机碳含量的增加与生草年限紧密相关。加拿大不列颠哥伦比亚省有灌溉条件的苹果园种植苜蓿(Medicagosativa)两年后,土壤有机碳与清耕处理相比无显著增加,4年后增加9.2%,6年后增加27.8%[1]。陕西渭北旱塬苹果园连续6年种植白三叶使土壤有机碳含量增加19.6%,果实产量增加14.4%,单果重增加10.2%[44]。不同草种对果园土壤有机碳的影响效果也有所不同。Qian等[51]在陕西洛川旱作果园的研究结果表明,种植白三叶、小冠花和多年黑麦草3年后,土壤有机碳分别提高19.6%,25.4%和9.5%。山西万荣县有灌溉条件果园种植不同牧草使土壤有机碳都大幅度提高,但提高幅度差异不显著,在27%~31%之间[45]。新疆南部阿克苏地区果园人工生草和自然生草两种措施都使土壤有机碳有所提高,但人工生草的提高幅度更大;人工生草和自然生草条件下0~10 cm土层有机碳分别比清耕提高了10.7%和1.8%,10~20 cm土层有机碳增加了10.1%和3.1%[46]。也有研究指出牧草混播比单播提高土壤有机碳的效果更加显著[47]。土壤有机碳近年来越来越受到人们关注,有机碳的增加意味着土壤固定了更多的温室气体CO2,所以果园生草是一种绿色环保的生产方式。但是不同生草种类对土壤有机碳状况的影响存在一定的差异,有机碳的积累程度还和各地的气候条件、土壤类型和生草年限等因素有关。

5 土壤养分

不同研究得出的牧草对土壤养分的影响效应不尽相同(表2)。果园生草后,牧草主要通过以下几个机制影响土壤的养分。首先,牧草的生长会消耗土壤的养分,与果树存在养分竞争。其次,种植牧草后土壤的微生物数量可能会大幅度增加,从而促进有机碳的分解,增加土壤矿质养分含量;再者,豆科牧草具有固氮作用,种植豆科牧草亦可提高氮素利用效率[48-50]。果园生草下,牧草对养分的消耗与促进作用之间存在一个临界点,且与果园的基础养分关系密切;如果其正效应大于负效应,则表现出养分的积累,否则表现出牧草与果树之间的养分竞争。表2列出的结果差异较大,但总体上牧草对土壤养分积累显示出正效应。李会科等[52]指出,生草的前期4年,土壤养分消耗大于积累,苹果与牧草存在养分竞争,在第 5 年全氮、全磷、全钾呈现恢复性增长,出现这种结果可能与试验地的基础养分较差有关。

牧草品种对土壤养分的影响效应差异较大。例如Qian等[51]指出,白三叶、小冠花和黑麦草都显著提高了土壤速效钾和速效磷含量,以白三叶的效果最为显著;种植小冠花和黑麦草的果园土壤速效氮显著低于清耕,表明它们与果树之间存在氮的竞争,而种植豆科牧草白三叶的果园土壤的速效氮显著高于清耕处理。葡萄园行间种植白三叶草和紫花苜蓿使土壤速效氮、全氮含量显著升高,高羊茅使碱解氮和全氮含量显著降低[53]。Jerie等[55]的研究表明种植豆科牧草可提高土壤硝态氮和铵态氮的含量,同时可降低土壤的含水量,有助于减少雨季氮素的深层渗漏。

表2 生草对果园养分的影响效应

6 土壤微生物和酶活性

李会科等[18]对黄土高原旱地生草果园土壤微生物的研究得出,与清耕相比,生草后各样地细菌、真菌和放线菌的数目均有提高,说明生草后有利于提高土壤微生物的数量。葡萄园生草可显著提高土壤微生物数量,较清耕处理固氮菌与纤维素分解菌数量升高的幅度较大,放线菌数量升高的幅度最小[53]。Shishido等[56]认为果园土地的不同利用方式,可改变果园微生物群落结构,St. Laurent等[57]的研究也证明果园生草有助于增加土壤微生物的数量。微生物生物量代表参与土壤能量和养分循环以及有机物质转化所对应的微生物的数量,其多少是决定有机物分解﹑养分循环和能量流动的重要因素。通过种草的方式改善微生物群落结构是防治果园土壤退化、提高果园生态涵养水平的有效措施。

李会科等[58]研究表明在0~60 cm土层,果园生草区及清耕区过氧化氢酶﹑尿酶及碱性磷酸酶活性变化趋势是上层明显高于下层,随土壤深度增加而减少;果园生草区生草第3和第5年土壤过氧化氢酶﹑尿酶及碱性磷酸酶活性都显著高于清耕区,并随生草年限的增加,3种酶活性趋于增加;同时,不同的果园生草对过氧化氢酶﹑尿酶、碱性磷酸酶活性影响存在差异。生草栽培提高了梨园土壤碱性磷酸酶、蔗糖酶和过氧化氢酶的活性[59]。葡萄园行间种植的紫花苜蓿、白三叶和高羊茅等土壤酶活性研究测定结果表明,行间播种紫花苜蓿使土壤的脲酶、磷酸酶及纤维素酶活性明显高于其他处理,而过氧化氢酶在各处理中变化不大[60]。土壤酶是微生物及植物根系等产生的生物活性物质,与土壤肥力状况和土壤环境质量密切相关,土壤酶活性增加也表明种草改善了土壤的质量。

7 结论及建议

生草栽培可改善果园土壤结构,提高土壤的导水性能和保水性能,但频繁的机械操作可能会压实土壤,降低土壤导水性能,所以在实践中应采取适度的割草频率或改进锄草技术。生草增加了地表覆盖,有助于拦截降雨,减少地表径流[61],雨季增加深层土壤贮水,从而减少旱季缺水对果树生长的抑制,提高雨水的利用率。旱季土壤水分亏缺常常会出现牧草与果树争水的现象,需要通过选择适宜的草种及加强田间管理等措施来减小争水对果树造成的不利影响。生草覆盖不仅有助于土壤有机碳的积累,也可调节果园土壤温度,进而增加土壤微生物的多样性和酶活性,微生物多样性和酶活性的提高能够促进有机碳的分解,提高土壤肥力。虽然牧草的生长会消耗土壤养分,但微生物数量的增多会促进有机碳的分解,从而增加土壤养分,同时豆科牧草也可通过固氮作用增加土壤养分,种植牧草多年在多数情况下对土壤养分的积累会产生正效应。

果园地面管理对于提高水肥等农业资源的高效利用、改善果实品质及减少CO2和N2O等温室气体排放有着重要的影响。很多研究表明果园地面覆盖地膜、秸秆或者硬质木屑也具有改善土壤结构、减少土壤蒸发、减少温室气体排放及改善果实品质的效应[1,10,22-23,51,62-63]。干旱半干旱雨养农业区水分是限制果树生长的关键因子,果园生草可能会促进果园水分亏缺,所以可以尝试地膜覆盖、秸秆覆盖等模式。目前所开展的研究主要局限在生草后对土壤理化性状、果园小气候及果树生长等方面,对果草系统光、水、肥等传输过程方面的研究较少。因此,今后应当加强这方面的观测和模拟,并以地上果草的生长和地下根系的发展为纽带,将水、肥、气、热等的传输利用过程结合起来建立模拟果草系统资源利用和生长果草的模拟模型,用以指导果园生产管理。

References:

[1]Neilsen G, Forge T, Angers D,etal. Suitable orchard floor management strategies in organic apple orchards that augment soil organic matter and maintain tree performance. Plant and Soil, 2014, 378(1): 325-335.

[2]Mason J L. Effect of cultivation and nitrogen on fruit quality, yield and color of Mcintosh apples grown in irrigated grass sod cover crop. Canadian Journal of Plant Science, 1969, 49(2): 149-154.

[3]Wang Y T, Ji X H, Wu Y S,etal. Research progress of cover crop in Chinese orchard. Chinese Journal of Applied Ecology, 2015, 26(6): 1892-1900.

[4]Li F L, Zheng Y R, Zheng T,etal. Research advances on soil and water conservation effect of pasture-planting in orchard. Chinese Agricultural Science Bulletin, 2013, 29(34): 34-39.

[5]Meng L. Orchard Prataculture Technology[M]. Beijing: Chemical Industry Press, 2004.

[6]Ma G H, Zeng M, Wang Y Y,etal. Research progress on orchard sod culture. Chinese Agricultural Science Bulletin, 2005, 21(7): 273-277.

[7]Peck G M, Merwin I A, Thies J E,etal. Soil properties change during the transition to integrated and organic apple production in a New York orchard. Applied Soil Ecology, 2011, 48(1): 18-30.

[8]Celano G, Palese A M, Ciucci A,etal. Evaluation of soil water content in tilled and cover-cropped olive orchards by the geoelectrical technique. Geoderma, 2011, 163(3-4): 163-170.

[9]Ramos M E, Benítez E, García P A,etal. Cover crops under different managements vs. frequent tillage in almond orchards in semiarid conditions: effects on soil quality. Applied Soil Ecology, 2010, 44(1): 6-14.

[10]Wang P, Wang Y, Wu Q S. Effects of soil tillage and planting grass on arbuscular mycorrhizal fungal propagules and soil properties in citrus orchards in southeast China. Soil and Tillage Research, 2016, 155: 54-61.

[11]Milgroom J, Auxiliadora Soriano M, Garrido J M,etal. The influence of a shift from conventional to organic olive farming on soil management and erosion risk in southern Spain. Renewable Agriculture and Food Systems, 2007, 22(1): 1-10.

[12]Wardle D A, Yeates G W, Bonner K I,etal. Impacts of ground vegetation management strategies in a kiwifruit orchard on the composition and functioning of the soil biota. Soil Biology and Biochemistry, 2001, 33(7-8): 893-905.

[13]Hoyt G D, Hargrove W L. Legume cover crops for improving crop and soil management in the southern United States. HortScience, 1986, 21(3): 397-402.

[14]Du L Q, Wu H, Zheng L Y. Review of eco-enviromental effect of orchard sod culture. Chinese Agricultural Science Bulletin, 2015, 31(11): 217-221.

[15]Lv D G, Qin S J, Du G D,etal. The research on eco-physiologic effects and application of orchard sod culture. Journal of Shenyang Agriculture University, 2012, 43(2): 131-136.

[16]Kou J C, Yang W Q, Han M Y,etal. Research progress on interplanting grass in orchard in China. Pratacultural Science, 2010, 27(7): 154-159.

[17]Wang Y J, Li T C, Zhang D Y,etal. Effects of intercropping white clover on soil aggregates and soil organic carbon of aggregates in apple-white clover intercropping system. Acta Agrestia Sinica, 2013, 21(3): 485-493.

[18]Li H K, Zhao Z Y, Zhang G J. Effects of planting different herbage on soil fertility of apple orchard in weibei areas. Journal of Northwest Forestry University, 2004, 19(2): 31-34.

[19]Hao S Y, Liu H D, Niu J L,etal. Effects of herbage-mulching to the apple yield and soil water and other soil physical properties in the loess plateau. Soils and Fertilizers, 2003, (1): 25-27.

[20]Song T Q, Xiao R L, Peng W X,etal. Effects of straw mulching and white clover intercropping on soil environment and the production of tea in young tea plantation in subtropical hilly region. Transactions of the CSAE, 2006, 22(7): 60-64.

[21]Bugg R L, Waddington C. Influence of understory cover and surrounding habitat on interactions between beneficial arthropods and pets in orchards using cover crops to manage arthropod pests of orchards: a review. Agriculture, Ecosystems & Environment, 1994, 50(1): 11-28.

[22]Oliveira M T, Merwin I A. Soil physical conditions in a New York orchard after eight years under different groundcover management systems. Plant and Soil, 2001, 234(2): 233-237.

[23]Palese A M, Vignozzi N, Celano G,etal. Influence of soil management on soil physical characteristics and water storage in a mature rainfed olive orchard. Soil and Tillage Research, 2014, 144: 96-109.

[24]Merwin I A, Stiles W C, van Es H M. Orchard groundcover management impacts on soil physical properties. Journal of the American Society for Horticultural Science, 1994, 119(2): 216-222.

[25]Zhao Z Y, Li H K. The effects of interplant different herbage on soil water in apple orchards in the area of weibei plateau. Acta Horticulturae Sinica, 2006, 33(3): 481-484.

[26]Li G H, Yi H L. Influences of sod culture on the soil water content, effect of soil nutrients, fruit yield and quality in citrus orchard. Chinese Journal of Eco-agriculture, 2005, 13(2): 161-163.

[27]Monteiro A, Lopes C M. Influence of cover crop on water use and performance of vineyard in Mediterranean Portugal. Agriculture, Ecosystems & Environment, 2007, 121(4): 336-342.

[28]Li G C, Wang B Y, Wang M X. Effects of grass on orchard soil water and evapotranspiration. China Fruits, 1996, (1): 18-19.

[29]Hui Z M, Li H, Zhang Z W,etal. Effect of green coverings on soil water content in vineyards. Agricultural Research in the Arid Areas, 2004, 22(4): 123-126.

[30]Li T C, Li H K, Guo H,etal. Soil moisture characteristics of different herbages on soil water in apple orchard in the area of weibei plateau in dry season. Research of Soil and Water Conservation, 2014, 21(1): 29-33.

[31]Li H K, Zhang G J, Zhao Z Y,etal. Effects of growing different herbages on soil water-holding of a non-irrigated apple orchard in the weibei area of the Loess Plateau. Acta Agrestia Sinica, 2007, 15(1): 76-81.

[32]Xu M G, Wen S L, Gao J S. Effects of different forage planting model on soil and water conservation and environments in red hilly regions. Journal of Soil and Water Conservation, 2001, 15(1): 77-80.

[33]Wang Q J, Cheng F H, Zhao Z J. Effects of grassing and mulching on soil water and structure of pear orchard. Chinese Agricultural Science Bulletin, 2010, 26(9): 259-262.

[34]Ritchie J T. Model for predicting evaporation from row crop with incomplete cover. Water Resource Research, 1972, 8(5): 1204-1213.

[35]Chen X, Tang J J, Fang Z G,etal. Ecological role of weeds conserved in orchard in red soil hilly area during hot-dry season. Chinese Journal of Ecology, 2003, 22(6): 38-42.

[36]Meng L, Yu L H, Mao P C,etal. Effects of inter-planting cocksfoot and white clover as cover crops on the microclimate of apple orchard. Pratacultural Science, 2009, 26(8): 132-136.

[37]Qi X S, Ding W J, Wang R Q,etal. Effects of interplantation ofTrifoliumrepensin orchards on soil ecology and apple tree production. Rural Eco-Environment, 2005, 21(2): 13-17.

[38]Wei Z F, Guo J N, Gao D T,etal. The effect of green cover on tree and soil physical properties of red globe vineyards. Journal of Henan Agricultural Sciences, 2012, 41(2): 122-125.

[39]Zhang M F. Effects of bio-mulching on soil temperature, humidity and nutrients in orangerie. Fujian Fruits, 1988, (1): 60-62.

[40]Li H Y. Test of different kinds micro-irrigation for apple trees in gully areas in the plateau. Agricultural Research in the Arid Areas, 2001, 19(4): 32-37.

[41]Mao P C, Meng L, Zhang G F,etal. Effect of planting white clover as a cover crop on the microclimate of a peach orchard and the peach quality. Acta Agrestia Sinica, 2006, 14(4): 360-364.

[42]Wu J J, Li Q S, Yan L J. Soil ecological effects of intercropping forage crops in young citrus plantation and its influence on growth of the trees. Chinese Journal of Ecology, 1996, 15(4): 10-14.

[43]Neilsen G H, Lowery D T, Forge T A,etal. Organic fruit production in British Columbia. Canadian Journal of Plant Science, 2009, 89(4): 677-692.

[44]Deng F C, An G Y, Yu J Y,etal. Research on growing grass in apple orchard in weibei upland. Journal of Fruit Science, 2003, 20(6): 506-508.

[45]Liu H D, Hao S Y, Cao Q,etal. Effect of grass cover on soil nutrient and yield and quality of apple. Chinese Journal of Soil Science, 2003, 34(3): 184-186.

[46]Sun X, Chai Z P, Jiang P A,etal. Effects of growing grass on soil fertility of the arid land apple orchard in the south of xinjiang. Chinese Agricultural Science Bulletin, 2011, 27(7): 177-181.

[47]Chen Q X, Liao J S, Zheng G H,etal. Effects of sown grass mulch on soil fertility and tree growth of young longan orchard. Journal of Fujian Agricultural University, 1996, 25(4): 44-47.

[48]Hoagland L, Carpenter-Boggs L, Granatstein D,etal. Orchard floor management effects on nitrogen fertility and soil biological activity in a newly established organic apple orchard. Biology and Fertility of Soils, 2008, 45(1): 11-18.

[49]Yao S, Merwin I A, Bird G W,etal. Orchard floor management practices that maintain vegetative or biomass groundcover stimulate soil microbial activity and alter soil microbial community composition. Plant and Soil, 2005, 271(1): 377-389.

[50]Kamh M, Horst W J, Amer F,etal. Mobilization of soil and fertilizer phosphate by cover crops. Plant and Soil, 1999, 211(1): 19-27.

[51]Qian X, Gu J, Pan H,etal. Effects of living mulches on the soil nutrient contents, enzyme activities, and bacterial community diversities of apple orchard soils. European Journal of Soil Biology, 2015, 70: 23-30.

[52]Li H K, Zhang G J, Zhao Z Y,etal. Effects of interplanted herbage on soil properties of non-irrigated apple orchards in the loess plateau. Acta Prataculturae Sinica, 2007, 16(2): 32-39.

[53]Hui Z M, Li H, Long Y,etal. Variation of soil microbial populations and relationships Between microbial factors and soil nutrients in cover cropping system of vineyard. Acta Horticulturae Sinica, 2010, 37(9): 1395-1402.

[54]Fan Y Z. The Influence of interplanting white clover in the liyuan on soil nutrient and microorganism’s. Northern Horticulture, 2010, 37(6): 72-73.

[55]Jerie P H, Stork P R. Initial studies of the growth, nitrogen sequestering, and de-watering potential of perennial grass selections for use as nitrogen catch crops in orchards. Australian Journal of Agricultural Research, 2003, 54(1): 27-37.

[56]Shishido M, Sakamoto K, Yokoyama H,etal. Changes in microbial communities in an apple orchard and its adjacent bush soil in response to season, land-use, and violet root rot infestation. Soil Biology and Biochemistry, 2008, 40(6): 1460-1473.

[57]St. Laurent A, Merwin I A, Thies J E. Long-term orchard groundcover management systems affect soil microbial communities and apple replant disease severity. Plant and Soil, 2008, 304(1): 209-225.

[58]Li H K. Eco-environmental Effect and Integrated Technical System of Green Cover in Apple Orchard in Weibei Dryland Farming Areas[D]. Yang Ling: Journal of Northwest A & F University, 2008 .

[59]Xu L F, Han Q F, Wu Z Y,etal. Spatial variability of soil enzyme activity in pear orchard under clean and sod cultivation models. Scientia Agricultura Sinica, 2010, 43(23): 4977-4982.

[60]Long Y, Hui Z M, Chen J M,etal. Ecological distributing of soil microorganisms and activity of soil enzymes in vineyard green covering. Journal of Northwest A & F University (Natural Science Edition), 2007, 35(6): 99-103.

[61]Gao X Y, Zhang X X, Zhu J G,etal. A comparison of the effect of three grass species on controlling non-point pollution in orchard. Acta Prataculturae Sinica, 2015, 24(2): 49-54.

[62]Meyer A H, Wooldridge J, Dames J F. Effect of conventional and organic orchard floor management practices on arbuscular mycorrhizal fungi in a ‘Cripp’s Pink’/M7 apple orchard soil. Agriculture, Ecosystems & Environment, 2015, 213: 114-120.

[63]Guerra B, Steenwerth K. Influence of floor management technique on grapevine growth, disease pressure, and juice and wine composition: a review. American Journal of Enology and Viticulture, 2012, 63(2): 149-164.

[3]王艳廷, 冀晓昊, 吴玉森, 等. 我国果园生草的研究进展. 应用生态学报, 2015, 26(6): 1892-1900.

[4]李发林, 郑域茹, 郑涛, 等. 果园生草栽培水土保持效应研究进展. 中国农学通报, 2013, 29(34): 34-39.

[5]孟林. 果园草业技术[M]. 北京: 化学工业出版社, 2004.

[6]马国辉, 曾明, 王羽玥, 等. 果园生草制研究进展. 中国农学通报, 2005, 21(7): 273-277.

[14]杜丽清, 吴浩, 郑良永. 果园生草栽培的生态环境效应研究进展. 中国农学通报, 2015, 31(11): 217-221.

[15]吕德国, 秦嗣军, 杜国栋, 等. 果园生草的生理生态效应研究与应用. 沈阳农业大学学报, 2012, 43(2): 131-136.

[16]寇建村, 杨文权, 韩明玉, 等. 我国果园生草研究进展. 草业科学, 2010, 27(7): 154-159.

[17]王英俊, 李同川, 张道勇, 等. 间作白三叶对苹果/白三叶复合系统土壤团聚体及团聚体碳含量的影响. 草地学报, 2013, 21(3): 485-493.

[18]李会科, 赵政阳, 张广军. 种植不同牧草对渭北苹果园土壤肥力的影响. 西北林学院学报, 2004, 19(2): 31-34.

[19]郝淑英, 刘蝴蝶, 牛俊玲, 等. 黄土高原区果园生草覆盖对土壤物理性状、水分及产量的影响. 土壤肥料, 2003, (1): 25-27.

[20]宋同清, 肖润林, 彭晚霞, 等. 覆盖与间作对亚热带丘陵幼龄茶园土壤环境和生产的影响. 农业工程学报, 2006, 22(7): 60-64.

[25]赵政阳, 李会科. 黄土高原旱地苹果园生草对土壤水分的影响. 园艺学报, 2006, 33(3): 481-484.

[26]李国怀, 伊华林. 生草栽培对柑橘园土壤水分与有效养分及果实产量, 品质的影响. 中国生态农业学报, 2005, 13(2): 161-163.

[28]李光晨, 王炳义, 王茂兴. 生草对灌溉果园土壤水分及其蒸散的影响. 中国果树, 1996, (1): 18-19.

[29]惠竹梅, 李华, 张振文, 等. 西北半干旱地区葡萄园生草对土壤水分的影响. 干旱地区农业研究, 2004, 22(4): 123-126.

[30]李同川, 李会科, 郭宏, 等. 渭北黄土高原果园生草地旱季土壤水分特征研究. 水土保持研究, 2014, 21(1): 29-33.

[31]李会科, 张广军, 赵政阳, 等. 黄土高原旱地苹果园生草对土壤贮水的影响. 草地学报, 2007, 15(1): 76-81.

[32]徐明岗, 文石林, 高菊生. 红壤丘陵区不同种草模式的水土保持效果与生态环境效应. 水土保持学报, 2001, 15(1): 77-80.

[33]王庆江, 程福厚, 赵志军. 生草和覆盖对梨园土壤水分和结构的影响. 中国农学通报, 2010, 26(9): 259-262.

[35]陈欣, 唐建军, 方治国, 等. 高温干旱季节红壤丘陵果园杂草保持的生态作用. 生态学杂志, 2003, 22(6): 38-42.

[36]孟林, 俞立恒, 毛培春, 等. 苹果园间种鸭茅和白三叶对园区小环境的影响. 草业科学, 2009, 26(8): 132-136.

[37]齐鑫山, 卫建, 王仁卿, 等. 果园间种白三叶草对土壤生态及果树生产的影响. 农村生态环境, 2005, 21(2): 13-17.

[38]魏志峰,郭景南,高登涛,等. 行间生草对红地球葡萄园树体及土壤物理性状的影响. 河南农业科学, 2012, 41(2): 122-125.

[39]张名福. 生物覆盖对改善柑园温、湿度和营养物质的效应. 福建果树, 1988, (1): 60-62.

[40]李怀有. 高塬沟壑区果园土壤管理制度试验研究. 干旱地区农业研究, 2001, 19(4): 32-37.

[41]毛培春, 孟林, 张国芳, 等. 白三叶对桃园小气候和桃品质的影响. 草地学报, 2006, 14(4): 360-364.

[42]吴建军, 李全胜, 严力蛟. 幼龄桔园间作牧草的土壤生态效应及其对桔树生长的影响. 生态学杂志, 1996, 15(4): 10-14.

[44]邓丰产, 安贵阳, 郁俊谊, 等. 渭北旱塬苹果园的生草效应. 果树学报, 2003, 20(6): 506-508.

[45]刘蝴蝶, 郝淑英, 曹琴, 等. 生草覆盖对果园土壤养分、果实产量及品质的影响. 土壤通报, 2003, 34(3): 184-186.

[46]孙霞, 柴仲平, 蒋平安, 等. 生草对新疆南部干旱区苹果园土壤肥力的影响. 中国农学通报, 2011, 27(7): 177-181.

[47]陈清西, 廖镜思, 郑国华, 等. 果园生草对幼龄龙眼园土壤肥力和树体生长的影响. 福建农业大学学报, 1996, 25(4): 44-47.

[52]李会科, 张广军, 赵政阳, 等. 生草对黄土高原旱地苹果园土壤性状的影响. 草业学报, 2007, 16(2): 32-39.

[53]惠竹梅, 李华, 龙妍, 等. 葡萄园行间生草体系中土壤微生物数量的变化及其与土壤养分的关系. 园艺学报, 2010, 37(9): 1395-1402.

[54]范玉贞. 梨园间种白三叶草对土壤养分与微生物的影响. 北方园艺, 2010, (6): 72-73.

[58]李会科. 渭北旱地苹果园生草的生态环境效应及综合技术体系构建[D]. 杨凌: 西北农林科技大学, 2008.

[59]徐凌飞, 韩清芳, 吴中营, 等. 清耕和生草梨园土壤酶活性的空间变化. 中国农业科学, 2010, 43(23): 4977-4982.

[60]龙妍, 惠竹梅, 程建梅, 等. 生草葡萄园土壤微生物分布及土壤酶活性研究. 西北农林科技大学学报 (自然科学版), 2007, 35(6): 99-103.

[61]高小叶, 张兴兴, 朱建国, 等.生草栽培对果园面源污染的控制: 三种牧草的比较研究. 草业学报, 2015, 24(2): 49-54.

Effects of living mulch on soil physical and chemical properties in orchards: a review

CAO Quan, SHEN Yu-Ying*, WANG Zi-Kui, ZHANG Xiao-Ming, YANG Xuan

StateKeyLaboratoryofGrasslandAgro-ecosystems,CollegeofPastoralAgricultureScienceandTechnology,LanzhouUniversity,Lanzhou730020,China

A review has been undertaken to provide a basis for further research on and the application of living mulch practices in orchards. The effects of living mulch on soils’ physical and chemical properties make an important contribution to intensive, efficient, ecological and sustainable production. Forage cultivation can reduce soil bulk density by 4.7%-13.0% and improve the content of soil aggregates, thus enhancing hydraulic properties and water retention capacity. Forage cultivation can also help to raise rainfall interception and improve water use efficiency. Forage grass will compete for water with fruit trees in drought seasons, though adverse effects can be reduced by selecting appropriate grass varieties and strengthening field management. Forage grass cover can improve soil organic carbon (SOC) content. SOC can be improved by 19.6%-27.8% after planting forage grass for 6 years. The accumulation of SOC increases as the duration of forage planting increases. Living mulch can help to adjust soil temperature, which enhances microbial diversity and enzymatic activity. Living mulch will directly deplete soil nutrients, but the increase in the number of microorganisms can promote the decomposition of organic matter that increases nutrients. Moreover, legumes add nutrients through nitrogen fixation. Living mulch usually has a positive effect on soil nutrient accumulation.

living mulch; soil moisture; soil nutrient; soil organic carbon; microbial diversity; soil enzymatic activity

10.11686/cyxb2015500http://cyxb.lzu.edu.cn

曹铨, 沈禹颖, 王自奎, 张小明, 杨轩. 生草对果园土壤理化性状的影响研究进展. 草业学报, 2016, 25(8): 180-188.

CAO Quan, SHEN Yu-Ying, WANG Zi-Kui, ZHANG Xiao-Ming, YANG Xuan. Effects of living mulch on soil physical and chemical properties in orchards: a review. Acta Prataculturae Sinica, 2016, 25(8): 180-188.

2015-11-03;改回日期:2015-12-28

国家科技支撑计划-西部城郊生态涵养高效农业模式研究与示范项目(2014BAD14B006)资助。

曹铨(1989-),男,甘肃张掖人,在读博士。E-mail:qcao14@lzu.edu.cn

Corresponding author.E-mail:yy.shen@lzu.edu.cn

猜你喜欢

生草土壤有机牧草
果园自然生草及培肥技术
养兔牧草品种咋选择
国审牧草品种
——黔南扁穗雀麦
“冷季型草+秋播”生草模式总结
秸秆还田的土壤有机碳周转特征
橘园生草栽培的生态学效应
土壤有机碳转化研究及其进展
AMDIS在土壤有机污染物鉴别中表征性统计量的探究
适宜藏北“窝圈”栽培的牧草筛选研究
沂蒙山区果园生草技术