棉铃虫发育历期的地理变异
2016-08-23陈元生涂小云
陈元生,涂小云
(1. 江西环境工程职业学院,江西赣州 341000;2. 江西师范大学生命科学学院, 南昌 330022)
棉铃虫发育历期的地理变异
陈元生*,涂小云2
(1. 江西环境工程职业学院,江西赣州 341000;2. 江西师范大学生命科学学院, 南昌 330022)
为探明棉铃虫HelicoverpaarmigeraHübner不同地理种群发育历期及其地理变异,通过对棉铃虫不同地理种群在不同温度和光周期下幼虫和蛹发育历期的研究,本论文系统比较了来自中国的4个地理种群,广东广州(23.08°N, 113.14°E)、江西永修(29.04°N, 115.82°E)、山东泰安 (36.15°N,116.59°E)、辽宁喀佐(41.34°N, 120.27°E)在20℃、22℃、25℃和28℃恒温下的幼虫、非滞育蛹和滞育蛹发育历期及其与栖息地纬度的关系。结果表明,棉铃虫幼虫发育历期随栖息地纬度的升高而缩短, 在25℃下,与地理纬度存在明显的负相关关系,其它温度下呈不显著的负相关关系,雌雄幼虫发育历期相似,差异不显著;在20℃下,蛹历期(包括滞育蛹和非滞育蛹)与栖息地纬度呈显著负相关,其它温度下的蛹历期与栖息地纬度呈正相关,雄蛹历期均要略长于雌蛹历期,但差异不显著。棉铃虫幼虫和蛹发育历期随着纬度的变化呈现一种渐变的趋势,存在地理变异;北方种群的幼虫发育历期较南方种群的短;适温(22℃ -28℃)范围内,北方种群的非滞育蛹发育历期比南方种群的更长些;不同地理种群间滞育蛹的历期亦存在较大的差别。这些结果进一步揭示了即使在同一种类昆虫中,不同实验条件,其各个虫态发育历期的地理变异也可能不同。
棉铃虫;发育历期;地理变异;滞育蛹;地理种群
由于气候条件(如温度、日照长度)呈现明显的纬度梯度,不同的生物具有不同的发育策略,以应对这种环境条件的变化。有趣的是,这种发育策略的多样性不仅表现在不同生物体或生物种群之间,也表现在同种生物的不同发育时期(Folgueraetal., 2010)。许多分布广泛的昆虫种类可调节其生活史以适应栖息地的条件变化,栖息于不同纬度的种群间生活史特征常表现显著的差异,即在生活史特征(如滞育、发育速率、体型大小等)方面出现地理变异,以保持其各项活动与栖息地的环境(如光照、气温、食料等)一致(Danilevskii, 1965; Masaki, 1967; Tauber and Tauber, 1981; Danks, 1987)。自Danilevskii(1965)首次报道了来自3个不同地理种群(苏肯米43°N,贝尔格拉德50°N和列宁格勒60°N)梨剑纹夜蛾AcronyctarumicisLinnaus蛹的发育历期是随纬度的上升而稍有延长并呈现出地理变异以来,近些年对不同昆虫地理种群生活史特征的研究逐渐成为国内外研究热点。大量的研究显示,在相同温度下,同种昆虫不同地理种群的发育历期往往存在显著的差异,但其发育历期长短与纬度高低的关系却因昆虫种类不同而不同。有些昆虫的发育历期与其栖息地纬度呈正相关,即高纬度的种群比低纬度种群发育历期长,如大豆蚜AphisglycinesMatsumura 15℃下的成虫历期(杨帅, 2009),舞毒蛾LymantriadisparLinnaus的蛹期(Lazarevietal., 2008),草地血黑蝗Melanoplussanguinipes/devastator(Fabricius)的胚胎发育历期 (Dingle and Mousseau, 1994),中华真地鳖EupolyphagasinensisWalker若虫发育历期在纬度32-39°N (江苏-天津)随纬度升高而延长(胡玉伟等,2008)等;而另些昆虫发育历期随纬度升高而缩短,呈负相关关系,如一化性蟋蟀modicogryllussiamensisChopard的若虫期(Masaki, 1996; 赵吕权等, 2005),甘蓝夜蛾MamestrabrassicaLinnaus在光周期L15 ∶D9下的幼虫期 (Masaki, 1968),黄脸油葫芦Teleogryllusemma(Ohmachi and Matsumura, 1951) (Masaki, 1996)和蜜蜂Exoneurarobusta的幼蜂(Cronin and Schwarz, 1999)等均是南方种群发育历期长;但也有一些昆虫的发育历期与栖息地纬度不存在相关性,如大眼长蝽GeocorispunctipesCosta (Rubersonetal., 2001)、普通草蛉ChrysoperlacarneaStephens (Changetal., 2000)、莎草粘虫SpodopteraexemptaWalker (Wilson and Gatehouse, 1993)和小红蚁MyrmicarubrLinnaus (Kipyatkovetal., 2005)等。从这些结果可见,不同的昆虫具有不同的生态适应性,同种昆虫不同地理种群也呈现出生活史对策的多样性。
棉铃虫HelicoverpaarmigeraHübner广泛分布于亚洲、欧洲、非洲和澳洲,寄主植物有200多种,是一种分布广泛的世界性重大害虫,给农业生产造成了严重影响,棉铃虫能在全球农业生态系统中占据重要的地位与其具有适应多种生境的生理行为及生态特性有着密切的关系(吴孔明和郭予元, 1997, 2007; 陈元生等,2012)。吴孔明等(2007)将我国棉铃虫分为热带型、亚热带型、温带型和新疆型4 个地理型,各地理型分别对华南、长江流域、黄河流域和新疆地区的气候环境具有高度专化适应性。目前对棉铃虫生活史特征的地理变异的研究,多关注在滞育诱导方面的地理变异(吴孔明和郭予元, 1997; Shimizu and Fujisaki, 2006)。棉铃虫发育历期的研究是了解此害虫田间种群动态的先决条件(Jallow and Matsumura, 2001)。有关棉铃虫发育历期的研究报道不少,但多为零星报道且多为单一种群的研究,棉铃虫不同地理种群间发育历期差异的研究鲜有报道。棉铃虫发育历期是否存在地理变异,与栖息地纬度是否存在相关性?尚未见报道。为此,本试验期望通过对棉铃虫广东、江西、山东和辽宁地理种群在不同温度和光周期下幼虫和蛹发育历期的研究,探讨棉铃虫幼虫和蛹不同地理种群在发育历期上的差异及原因,为进一步探讨不同地理种群棉铃虫滞育与发育的关系、为准确预测预报棉铃虫种群动态的变化提供理论依据,为棉铃虫种群的遗传分化研究奠定基础。
1 材料与方法
1.1供试虫源
供试棉铃虫分别于2010 年6-8 月采自广东省广州市(以下简写为“GZ”, 23.08°N, 113.14°E)、江西省永修县(以下简写为“YX”, 29.04°N, 115.82°E)、山东省泰安市(以下简写为“TA”, 36.15°N,116.59°E)、辽宁省喀佐县(以下简写为“KZ”, 41.34°N, 120.27°E)。幼虫在室内用人工饲料(参照Wu and Gong(1997)的方法)、在25℃、L16 ∶D8的光周期条件下饲养,3 龄前在24孔板内群养,3 龄后在21 孔冰格板内单养,成虫用复合维生素糖水(梁革梅等,1999)饲喂,备用。
1.2试验方法
光照设置:主要设计两个光周期,一个是滞育诱导的光周期L12 ∶D12,另一个是不能诱导滞育的光周期L15 ∶D9。
温度设置:实验在恒温下进行,设置20℃、22℃、25℃和28℃恒温。
将初孵幼虫移入相应光周期和温度的培养箱中,观察记录各组幼虫的生长发育及化蛹情况。以上实验均在新苗光照培养箱GZX-250BS-Ⅲ中进行,光照强度为500 -700 lx,箱内的温度变化幅度为±0.5℃。
滞育蛹的判断:棉铃虫滞育蛹的判断依据蛹的眼点移动情况判断,化蛹后10-15 d 眼点位置仍无变化的蛹判定为滞育个体(Cullen and Browning, 1978)。
数据分析处理:应用SPSS 130统计软件进行方差分析(one-way ANOVA)和线性回归分析(Linear regression)。
2 结果与分析
2.1不同地理种群棉铃虫幼虫发育历期
不同地理种群在不同温度和光周期下的幼虫发育历期见表1。从表1可见,在相同温度下,同一种群雌雄幼虫发育历期相似,差异不显著;在相同温度下,同一种群在光周期L12 ∶D12下的幼虫期比L15 ∶D9下的幼虫期均更长,但差异未达显著水平。将这两个光周期下的幼虫历期平均值与地理纬度的关系绘成图1。由图1可见, 25℃下,棉铃虫幼虫历期与地理纬度存在明显的负相关关系(R2= 0.5816,P< 0.05),其它温度下呈弱的负相关关系(R2均小于0.11,P> 0.05),但总的趋势是随纬度升高幼虫历期缩短。从图1还可见,如果辟开GZ种群不算,这种趋势就更明显,即在纬度29.04 -41.34°N(江西-辽宁)范围内,在各温度下幼虫历期随纬度升高而缩短,呈显著负相关关系(回归分析结果见表2)。
表1 不同地理种群棉铃虫幼虫发育历期
续上表
温度(℃)Temperature光周期L∶DPhotoperiod性别Sex幼虫发育历期(d)Larvaldevelopmentduration(Mean±SD)GZYXTAKZ22L15∶D9L12∶D12♀23.28±2.87a26.88±1.93b23.06±2.08a21.31±1.98a♂23.68±2.21a24.80±1.79a24.57±1.27a21.72±2.01a♀+♂23.49±2.52Ba26.41±2.06Ca23.52±1.97Ba21.53±1.99Aa♀+♂22.67±2.06Aa28.60±2.30Ca24.79±2.40Ba22.98±2.34Aa25L15∶D9L12∶D12♀19.43±1.43a19.04±1.48a18.14±2.39a18.56±2.66a♂19.43±1.26a19.62±2.46a17.53±2.10a18.63±1.59a♀+♂19.43±1.32Ba19.29±1.96Ba17.82±2.25Aa18.59±2.23ABa♀+♂19.43±1.32Ba20.09±2.76BCa20.90±2.75Ca18.23±0.67Aa28L15∶D9L12∶D12♀14.31±0.86a17.71±1.68a15.12±1.74a13.52±1.09a♂14.46±1.04a17.29±1.21a15.69±1.26a13.64±1.19a♀+♂14.38±0.94Ba17.48±1.44Da15.44±1.50Ca13.58±1.13Aa♀+♂14.33±0.95Aa17.69±2.13Da16.08±1.85Ba16.83±1.51Ca
注:同一行数据后相同大写字母表示差异不显著(Duncan多重比较,P>0.05),在相同温度下,同一列数据后相同小写字母差异不显著(Duncan多重比较,P>0.05)。各处理样本数为37-112. 表3-4同。Note:Values in the same row followed by the same capital letters are not significantly different by Duncan’s multiple range test and one-way analysis of variance (ANOVA,P>0.05). Values in the same column followed by the same lowercase are not significantly different. Each treatment sample was 37-112. The same below for Table 3 and 4.
图1 棉铃虫幼虫发育历期的地理变异Fig.1 Geographic variation in larval development duration of Helicoverpa armigera
温度(℃)Temperature相关系数R自由度dfF值Ft值tP值Sig.回归方程Regreessionequation200.23471,39022.7255-4.76710.000y=-0.5699x+30.4883220.34971,36650.9903-7.14080.000y=-0.9469x+26.6208250.21491,51725.0387-5.00390.000y=-0.3723x+19.9857280.20241,59325.32055.03190.000y=0.3251x+14.5652
2.2不同地理种群棉铃虫蛹发育历期
2.2.1非滞育蛹发育历期
在光周期L15 ∶D9、不同温度下,不同地理种群非滞育蛹发育历期见表3。从表3可见,同一条件下,非滞育蛹历期雄蛹要长于雌蛹,在25℃、28℃下,雌雄蛹历期差异达显著水平(P<0.05),而在20℃、22℃下这种差异却不显著(P>0.05)。不同地理种群非滞育蛹历期差异显著,从图2更能直观地看出,在20℃下,雌雄蛹历期均与其栖息地纬度呈显著的负相关,非滞育蛹历期随地理纬度升高而呈缩短的趋势,而其它温度(22℃、25℃、28℃)下,非滞育蛹历期却呈现随地理纬度升高而升高的趋势,呈正相关关系,且温度越低,这种趋势越明显(图2)。
2.2.2滞育蛹发育历期
在光周期L12 ∶D12、不同温度下,不同地理种群非滞育蛹发育历期见表4。从表4可见,同一条件下,滞育蛹历期雄蛹要长于雌蛹,但差异不显著(除GZ种群外);在20℃下,雌雄蛹历期均与其栖息地纬度呈显著的负相关(图3)。各种群总的趋势是,随温度升高,滞育蛹历期逐渐缩短。有趣的是,22℃下TA种群和KZ种群滞育蛹历期(分别为66.93 d, 94.47 d)反而要比25℃的(分别为102.42 d, 107.90 d)低很多,特别是TA种群比28℃的蛹历期(80.14 d)还低;25℃与20℃的历期相近,且差异均不显著。
表3 不同地理种群棉铃虫非滞育蛹发育历期(L15 ∶D9)
图2 棉铃虫非滞育蛹发育历期的地理变异Fig.2 Geographic variation in non-diapaused pupal development duration of Helicoverpa armigera
图3 棉铃虫滞育蛹发育历期的地理变异(20℃)Fig.3 Geographic variation in diapaused pupal development duration of Helicoverpa armigera at 20℃
温度(℃)Temperature性别Sex滞育蛹发育历期Diapausepupaldevelopmentduration(d)(Mean±SD)GZYXTAKZ20♀121.47±54.18a123.60±39.18a104.64±16.58a111.66±20.68a♂146.67±59.16b131.88±54.60b106.77±18.33a112.87±28.04a♀+♂130.19±56.11B130.00±50.75B(B)105.70±17.30A(C)112.32±24.85A(C)22♀-86.09±20.99a67.45±16.17a95.96±20.35a♂-89.19±27.19a66.38±12.84a93.71±16.15a♀+♂-87.93±24.46B(A)66.93±14.47A(A)94.47±17.57B(B)25♀--102.07±19.41a112.03±28.63a♂--108.87±16.81a105.40±32.46a♀+♂--102.42±17.96A(C)107.90±31.05A(C)28♀--87.57±29.69a57.67±9.46a♂--72.71±23.59a62.00±28.51a♀+♂--80.14±26.89A(B)59.40±18.04A(A)
注:表中“-”代表该种群在对应温度下无滞育蛹。Note: “-”is non-diapaused pupa.
3 结论与讨论
本研究通过对棉铃虫GZ、YX、TA和KZ 4个种群在不同温度和光周期条件下幼虫和蛹发育历期的研究,发现不同地理种群棉铃虫幼虫和蛹发育历期随着纬度的变化呈现渐变的趋势,存在地理变异。北方种群的幼虫比南方种群的发育快, 发育历期短(图1);在适温(22℃-28℃)范围内,北方种群的非滞育蛹比南方种群的发育慢, 发育历期长(图2);不同地理种群间滞育蛹的历期亦存在较大的差别(表4)。
广布种昆虫其生活史对策具有多样性,这些昆虫发育历期的地理变异具有不同的模式,并不是全生活史都具有相同的模式,而只是在发育的某一虫期呈现出与地理纬度的关系,其它时期并不表现相同的关系,而且实验条件(特别是温度和光周期)对其影响极大,一些昆虫只有在特定的温度或光周期或特定地域范围内下才呈现发育历期与地理纬度的相关性。例如,大豆蚜只有在15℃下其成虫历期才随纬度升高而延长,其他三个温度(20℃、25℃、30℃)下,各地理种群间若虫历期和成虫历期均变化不大(杨帅, 2009);甘蓝夜蛾只在光周期L15 ∶D9下,南方种群的幼虫期才明显长于北方种群 (Masaki, 1968);中华真地鳖若虫发育历期只在纬度32 -39°N (江苏-天津)才随纬度升高而延长(胡玉伟等,2008)。本实验也得到类似的结果:棉铃虫幼虫历期具有随栖息地纬度升高而缩短的趋势,但这种趋势只在25℃下才表现明显(图1),或者只在纬度29.04-41.34°N(江西-辽宁)范围内,才呈较显著的负相关(表2);非滞育历期在20℃时,与随栖息地纬度呈负相关关系,其它温度呈正相关(表3,图2);滞育蛹历期具有与非滞育蛹历期相似的变异。这些结果进一步揭示实验条件对昆虫发育历期的地理变异影响极大,棉铃虫不同地理种群间幼虫和蛹历期虽然存在显著的地理变异,但这种变异极易受到实验条件的影响。
有趣的是,22℃下棉铃虫所有种群的滞育蛹历期均要比20℃和25℃下的低,造成这种现象的原因尚不清楚,可能与滞育蛹的蛹重有关,因为22℃下的蛹重均要比20℃和25℃下的低(陈元生等,2012),但这一现象仍需进一步的研究与探索。
References)
Chang YF, Maurice J, Tauber CA,etal. Interpopulation variation inChrysoperlacarneareproduction: Implications for mass-rearing and storage[J].EntomologiaExperimentalisetApplicata, 2000, 95: 293-302.
Chen YS, Duan DK, Chen C,etal. Influence of the photoperiod and temperature on developmental periods and pupal weight of the cotton bollworm,HelicoverpaarmigeraHübner[J].JournalofEnvironmentalEntomology, 2012, 34(4): 407-414. [陈元生, 段德康, 陈超, 等. 光周期和温度对棉铃虫发育历期及蛹重的影响[J]. 环境昆虫学报, 2012, 34(4): 407-414]
Cronin AL, Schwarz MP. Latitudinal variation in the life cycle of allodapine bees (Hymenoptera:Apidae)[J].CanadianJournalofZoology, 1999, 77(6): 857-864.
Cullen JM, Browning TO. The influence of photoperiod and temperature on the induction of diapause in pupae ofHeliothispunctigera[J].JournalofInsectPhysiology, 1978, 24(8-9): 595-601.
Danilevskii AS. Photoperiodism and Seasonal Development of Insects[M]. Edinburgh and London: Oliver and Boyd, 1965, 114-172.
Danks HV. Insect Dormancy: An Ecological Perspective[M]. Ottawa: Biological Survey of Canada, 1987.
Dingle H, Mousseau TA. Geographic variation in embryonic development time and stage of diapause in grasshopper[J].Oecologia, 1994, 97: 179 -185.
Folguera G, Mensch J, Muňoz JL,etal. Ontogenetic stage-dependent effect of temperature on developmental and metabolic rates in a holometabolous insect[J].JournalofInsectPhysiology, 2010, 56: 1679-1684.
Jallow MFA, Matsumura M. Influence of temperature on the rate of development ofHelicoverpaarmigera(Hübner) (Lepidoptera: Noctuidae)[J].AppliedEntomologyandZoology, 2001, 36(4): 427-430.
Hu YW, Zhu F, Xie YJ,etal. Deveolpment characteristics of nymph of six geographic populations ofEupolyphagasinensisWaker (Blattaria: Corydiidae)[J].JournalofEnvironmentalEntomology, 2008, 30(2): 153-158. [胡玉伟, 朱芬, 谢永坚, 等. 中华真地鳖六地理种群若虫生长发育研究[J]. 环境昆虫学报, 2008, 30(2): 153-158]
Kipyatkov V, Lopatina E, Imamgaliva A.Duration and thermal reaction norms of development are significantly different in winter and summer brood pupae of the antsMyrmicarubraLinnaeus, 1758 andM.ruginodisNylander, 1846 (Hymenoptera: Formicidae)[J].MyrmecologischeNachrichten, 2005, 7: 69-76.
Lazarevi J, Nenadovi V, Jankovi-Tomani M,etal. Genetic variation and correlations of life-history traits in gypsy moths (LymantriadisparL.) from two populations in Serbia[J].ArchivesofBiologicalSciences, 2008, 60(4): 619-627.
Liang GM, Tan WJ, Guo YY.Technical improvement of cotton bollworm in artificial rearing[J].PlantProtection, 1999, 25(2): 15-17. [梁革梅,谭维嘉,郭予元. 人工饲养棉铃虫技术的改进[J]. 植物保护,1999, 25(2): 15-17]
Masaki S. Geographic variation and adaptation in a field cricket (Orthoptera: Gryllidae)[J].Evolution, 1967, 21: 725-741.
Masaki S. Geographic adaption in the seasonal life cycle ofMamestrabrassice(Linné)(Lepidoptera: Noctuidae)[J].BulletinofFacultyofAgricultrualHirosakiUniversity, 1968, 14: 16-26.
Masaki S. Geographical variation of life cycle in crickets (Ensifera: Grylloidea)[J].EuropeanJournalofEntomology, 1996, 93: 281-302.
Ruberson JR, Yeargan KV, Newton BL. Variation in diapause responses between geographic populations of the predatorGeocorispunctipes(Heteroptera: Geocoridae)[J].AnnalsoftheEntomologicalSocietyofAmerican, 2001, 94(1): 116-122.
Shimizu K, Fujisaki K.Geographic variation in diapause induction under constant and changing conditions inHelicoverpaarmigera[J].EntomologiaExperimentalisetApplicata, 2006, 121(3): 253-260.
Tauber CA, Tauber MJ. Insect seasonal cycles: Genetics and evolution[J].AnnalReviewofEcologyandSystematics, 1981, 12: 281-308.
Wilson K, Gatehouse AG. Seasonal and geographical variation in the migratory potential of outbreak populations of the African armyworm moth,Spodopteraexempta[J].JournalofAnimalEcology, 1993, 62: 169-181.
Wu KJ, Gong PY. A new and practical artificial diet for the cotton bollworm[J].EntomologiaSinica, 1997, 14(3): 277-282.
Wu KM, Guo YY. Investigations on the migration and diapause inHelicoverpaarmigera-Diapause responses of different geographical populations of cotton bollwormHelicoverpaarmigeraHübner[J].ScientiaAgriculturaSinica, 1997, 30(3): 1-6. [吴孔明,郭予元. 棉铃虫迁飞与滞育的研究—我国各棉区棉铃虫滞育诱导的光温反应特点[J]. 中国农业科学, 1997, 30(3): 1-6]
Wu KM, Guo YY. Geotype differentiation and regional migratory regularity ofHelicoverpaarmigerain China[J].PlantProtection, 2007, 33(5): 6-11. [吴孔明, 郭予元. 棉铃虫种群的地理型分化和区域性迁飞规律[J]. 植物保护, 2007, 33(5): 6-11]
Yang S.Study of the Ecological Adaptability in the Different Geographical Populations of Soybean Aphid[D]. Master’s Degree Thesis of Northeast Agricultural University, 2009,26. [杨帅. 大豆蚜(AphisglycinesMatsumura)不同地理种群生态适应性研究[J]. 东北农业大学硕士学位论文, 2009, 26]
Zhao LQ, Chen RP, Zhu DH. Photoperiodism and diapause: Seasonal adaptation in crickets of Japanese islands[J].JournalofCentralSouthForestryUniversity, 2005, 25(3): 117-121. [赵吕权, 陈瑞屏, 朱道弘. 光周性和滞育-日本列岛蟋蟀的季节适应[J]. 中南林学院学报, 2005, 25(3): 117-121]
Geographic variationin developmental duration of the cotton bollworm,HelicoverpaarmigeraHübner (Lepidoptera: Noctuidae)
CHEN Yuan-Sheng1*, TU Xiao-Yun2
(1. Jiangxi Environmental Engineering Vocational College, Ganzhou 341000, Jiangxi Province, China; 2. College of Life Sciences,Jiangxi Normal University, Nanchang 330022, China)
To understand the geographic variation in developmental duration of different populations of the cotton bollworm,HelicoverpaarmigeraHübner, studies on the developmental duration of larvae and pupa in different geographical populations ofH.armigerawere conducted. In different temperature and light cycle, we systematically investigated the developmental duration of larvae, non-diapaused pupae and diapaused pupae ofH.armigerafrom 4 different geographic populations (Guangzhou population, 23.08°N, 113.14°E; Yongxiu population, 29.04°N, 115.82°E; Taian population, 36.15°N, 116.59°E; Kazuo population, 41.34°N, 120.27°E) under 20℃, 22℃, 25℃ and 28℃ constant temperature. The relationship between their developmental duration and latitude was analyzed. The results showed that the developmental duration of larvae increased with increasing geographical latitude. Larval duration is significantly negatively correlated with latitude at 25℃, but at the other constant temperature, the larval duration is not significantly negatively correlated with latitude, and the development duration of female and male larvae is similar, there is no significant difference. At 20℃, there is significant negative correlation between pupal duration and latitude, but at the other constant temperature, there is positive correlation, and male pupal duration is slightly longer than female pupal duration, but the difference is not significant. The developmental duration of larvae and pupa ofH.armigerashowed a gradual trend as the change of latitude, and there is a geographical variation. The developmental duration of larvae of the northern populations is shorter than that of the southern populations. In suitable temperature range (22℃-28 ℃), the developmental duration of the non-diapaused pupa of the northern population is longer than that of the southern population. There is also a big difference among different geographical populations with the developmental duration of the diapaused pupa. These results further suggest that the geographic variation in developmental duration may be different in different stage and different experiment conditions in the same specie of insects.
Helicoverpaarmigera; developmental duration; geographic variation; diapaused pupae; geographic population
国家自然科学基金项目(31060243)
陈元生,男,1967年生,江西信丰人,教授,博士,从事昆虫生物学和滞育生理生态研究,E-mail: cys0061@163.com
Author for correspondence,E-mail:cys0061@163.com
2015-08-21;接受日期Accepted: 2015-10-12
Q968.1;S433.5
A
1674-0858(2016)04-0771-08