甲强龙在儿童体外循环辅助下心脏手术中应用价值的系统评价和Meta分析
2016-08-01舒仕瑜
谢 羚 许 燕 舒仕瑜
·论著·
甲强龙在儿童体外循环辅助下心脏手术中应用价值的系统评价和Meta分析
谢 羚1许 燕1舒仕瑜2
目的 评估儿童体外循环辅助下心脏手术围术期应用甲强龙的价值。方法 纳入体外循环辅助下行心脏手术年龄<16岁的患儿、英文RCT、试验组预防性应用甲强龙、对照组为安慰剂或空白对照的文献。检索PubMed、Embase、Medline和 Cochrane图书馆数据库,以PubMed为例,检索式:methylprednisolone AND cardiopulmonary bypass OR CPB。检索时间均为建库至2016年5月13日。主要结局指标为术后出院时病死率,并根据甲强龙给药方式(术前静脉给药和术中膜肺给药)行分层分析。采用Cochrane协作网推荐的偏倚风险评估工具评价文献质量。结果 系统检索后6篇文献中的486例体外循环辅助下心脏手术患儿进入本文分析,其中甲强龙组253例,对照组233例。5篇文献描述了随机序列产生方法,2篇文献采用了分配隐藏,6篇文献均采用了盲法并描述了脱落或失访,5篇文献未选择性报告研究结果,其他偏倚来源均为不确定。2篇静脉给药的文献术后病死率为 9.6%(13/135),甲强龙组与对照组术后病死率[1.5%(2/67)vs8.1%(11/68)],差异有统计学意义(固定效应模型,RR =0.22,95%CI:0.06~0.83,P=0.03)。次要结局指标中体外循环(CPB )时间(固定效应模型,MD=-10.67,95% CI:-17.82~-3.53,P=0.003)和术前静脉给药亚组ICU住院时间(固定效应模型,MD=-0.72,95%CI:-1.33~-0.12,P=0.02)与对照组比较差异均有统计学意义。术中膜肺给药亚组ICU住院时间以及甲强龙组机械通气时间和阻断时间与对照组比较差异均无统计学意义。结论 在有限证据下,儿童体外循环辅助下心脏手术围术期预防性静脉使用甲强龙可降低术后病死率,术前静脉给药可以缩短CPB时间和ICU住院时间。
甲强龙; 儿童 ; 体外循环; 心脏手术; 特异度; 系统评价; meta分析
在体外循环(CPB)辅助下开胸行心脏畸形矫治仍然是目前治疗先天性心脏病最主要的方法[1]。但CPB技术已被证明可以导致全身炎症反应发生[2],主要机制是损伤血管内皮细胞、上调黏附分子的表达、活化中性粒细胞和启动凝血级联反应[3,4],从而导致患者在CPB过程中发生缺血-再灌注损伤、肺功能障碍、低心输出量和多器官衰竭甚至死亡[5,6,7]。为减少CPB不良反应的发生,研究人员采取了很多措施,包括术中不用CPB技术[8,9]、应用生物相容电路及减轻系统反应的药物[10]等,其中最常应用的是糖皮质激素,甲强龙使用最广泛。糖皮质激素作为一种廉价的抗炎药物,已有研究证明其可以减轻CPB后全身炎症反应,还可降低患者术后病死率、缩短住院时间和减少术后并发症的发生[12,13,15,17,18,20],但也有研究表明糖皮质激素应用于CPB益处不大,且不良反应不容忽视,因此相关临床结果饱受争议[11,14,16,19]。
2011年国内1篇Meta分析[21]对皮质类固醇在CPB下儿童心脏手术中的作用做了评价,结果显示围术期应用皮质类固醇不能缩短患儿ICU停留时间和机械通气时间,但可降低直肠温度峰值;由于使用的皮质类固醇药物不同等原因,可能造成结果的偏倚。本文进一步检索了在CPB辅助下行心脏手术的儿童中应用甲强龙的RCT和NRCT,慎重评价其应用价值。
1 方法
1.1 文献的纳入和剔除标准 ①RCT或NRCT文献;②英文文献;③研究对象为年龄<16岁的CPB辅助下行心脏手术的患儿;④干预措施:试验组CPB+甲强龙预防性抗炎,对照组为CPB+安慰剂或空白或其他的试验。剔除重复发表的文献、明显不相关文献和非干预性研究文献。甲强龙预防性抗炎是指:术前无相关炎性感染依据,为预防CPB所致炎症反应综合征而应用。
1.2 文献检索策略
1.2.1 检索数据库及时间 由谢羚及许燕检索英文数据库:PubMed、Embase、Medline和 Cochrane图书馆;检索时间为建库至2016年5月13日。同时回溯纳入文献的参考文献。
1.2.2 检索策略 英文检索词:“methylprednisolone”、“ cardiopulmonary bypass”、 “CPB”;以PubMed为例,检索式:methylprednisolone AND cardiopulmonary bypass OR CPB。
1.3 结局指标 主要结局指标:术后病死率(即术后住院期间因各种原因的死亡);次要结局指标:CPB时间、ICU住院时间(患者术后转入ICU停留时间)、阻断时间(升主动脉夹闭到开放的时间)、机械通气时间。
1.4 文献质量评价 采用Cochrane协作网推荐的偏倚风险评估工具(共6条)进行,包括序列是否随机产生,是否做到分配隐藏,参与者、研究者和结果评价是否运用盲法,数据结果是否完整,是否选择性报告结果和其他偏倚。以“高”、“低”、“不确定”作为风险评价,任意1条被评为高偏倚风险时,则该文献被认为存在高偏倚风险;每条都被评为低风险时,则该文献被认为偏倚风险低;余认为偏倚风险不确定。
1.5 数据提取原则 由谢羚和许燕分别独立按设计表格提取资料,当意见不一致时协商,仍无法确定时由舒仕瑜决定。
1.6 统计学分析 采用 RevMan 5.3分析软件,将资料进行定量综合。二分类变量使用相对危险度(RR)及其相应的95%CI来评价,连续型变量当数据单位相同时,使用加权均数差(WMD)及其相应的95%CI评价,当数据单位不相同时,使用标准均数差(SMD)及其相应的95%CI评价。多组比较时根据 Cochrane手册的指导将各组数据合并为可比较的干预组与对照组。 使用I2检验来评价数据的异质性,当I2≥50%时,使用随机效应模型,当I2<50%时,使用固定效应模型。
2 结果
2.1 文献检索过程 根据本文文献检索策略,共检出相关文献518篇,PubMed 155篇,Embase 116篇,Medline 149篇,Cochrane 98篇,符合本文剔除标准文献512篇, 6篇文献[12,13,14,20,22,23]486例CPB辅助下心脏手术患儿进入本文分析,纳入分析文献的参考文献中未回溯到相关文献,其中甲强龙组253例,对照组233例。
2.2 文献特征 表1显示纳入的6篇文献的基本特征,文献[14]和[20]由芬兰同一研究组在不同时间完成。文献[20]甲强龙组中分为术前静脉给药亚组和术中膜肺给药亚组,与同一对照组比较。
2.3 质量评价 图1显示,4篇文献[12,16,18,22]描述了随机序列产生方法,2篇文献[16,18]采用了分配隐藏,5篇文献对试验实施者施盲[12,16,18,22,23],5篇文献[11,12,16,18,23]未选择性报告研究结果,6篇文献均描述了脱落或失访,其他偏倚来源均为不确定。
图1 纳入文献偏倚风险
注 1:随机序列产生(选择偏倚);2:分配隐藏(选择偏倚);3:实施者和参与者双盲(实施偏倚);4: 结局评估中的盲法 (测量偏倚);5: 不全结局数据(失访偏倚);6:选择性报道(发表偏倚);7: 其他偏倚
表1 纳入研究的基本特征
注 T:甲强龙组;C:对照组;ASD:房间隔缺损;VSD:室间隔缺损;TOF:法洛四联征;AVSD:房室间隔缺损;CPB:体外循环;阻断时间:升主动脉夹闭到开放的时间
2.4 Meta分析结果
2.4.1 主要结局指标 图2显示,2篇文献报告了术后病死率[12,18]为 9.6%(13/135),甲强龙组术后病死率1.5%(2/67),对照组术后病死率8.1%(11/68)。文献[12]和[18]均为静脉给药,文献[12]为术前、术中和术后同时给药6次,文献[18]为术前给药1次。 文献间具同质性,固定效应模型Meta分析结果显示,两组术后病死率差异有统计学意义,RR=0.22,95%CI:0.06~0.83,P=0.003。
图2 甲强龙组与对照组术后病死率比较Meta分析
2.4.2 次要结局指标
2.4.2.1 CPB 时间 图3显示,5篇文献[11,16,18,22,23]报道了CPB 时间。文献间具同质性,固定效应模型Meta分析结果显示,两组CPB 时间差异有统计学意义,MD=-10.67,95% CI:-17.82~-3.53,P=0.003。其中2篇文献[16,23]描述术中膜肺给药,3篇文献[11,16,18]描述术前静脉给药,1篇文献[22]描述术前及术后联合静脉给药。术前静脉给药亚组CPB时间与对照组差异有统计学意义,固定效应模型合并MD=-13.33,95%CI:-23.46~-3.19,P=0.01。术中膜肺给药亚组CPB时间与对照组差异无统计学意义,固定效应模型合并MD=-7.94,95%CI:-18.07~2.19,P=0.12。
图3 甲强龙组与对照组CPB时间比较Meta分析
2.4.2.2 ICU住院时间 图4显示, 4篇文献报道了ICU住院时间[11,16,18,23]。文献间具异质性,随机效应模型Meta分析结果显示,两组ICU住院时间差异无统计学意义,SMD=-0.04,95% CI:-0.49~0.42,P=0.88。其中2篇文献[16,23]描述术中膜肺给药,3篇文献[11,16,18]描述术前静脉给药。根据给药方式不同行亚组分析,术前静脉给药亚组ICU住院时间与对照组差异有统计学意义,固定效应模型合并MD=-0.72,95%CI:-1.33~-0.12,P=0.02。术中膜肺给药亚组ICU住院时间与对照组差异无统计学意义,固定效应模型合并 SMD=0.27,95%CI:-0.24~-0.78,P=0.29。 需要说明的是,文献[16]同时做了术前静脉应用甲强龙与安慰剂、术中膜肺应用甲强龙与安慰剂的随机对照试验,故图中显示2次。
图4 甲强龙组与对照组ICU住院时间比较Meta分析
2.4.2.3 机械通气时间 图5显示,4篇文献[11,16,18,23]报道了机械通气时间。文献间具异质性,随机效应模型Meta分析结果显示两组机械通气时间差异无统计学意义,SMD=-0.10,95% CI:-1.01~1.21,P=0.86。术前静脉给药亚组和术中膜肺给药亚组机械通气时间与对照组差异均无统计学意义,随机效应模型合并SMD分别为-0.66和1.36,95%CI分别为-1.48~0.16和-1.36~4.07,P>0.05。
图5 甲强龙组与对照组机械通气时间比较Meta分析
2.4.2.4 阻断时间 图6显示,4篇文献[11,16,18,23]报道了阻断时间。文献间具同质性,固定效应模型Meta分析结果显示两组阻断时间差异无统计学意义,MD=-4.64,95%CI:-11.21~1.94,P=0.17。
图6 甲强龙组与对照组阻断时间比较Meta分析
3 讨论
本Meta分析纳入6篇文献总体质量较好,结果显示,在儿童CPB辅助下心脏手术围术期预防性使用甲强龙可以降低患儿的术后病死率,术前静脉给药可以缩短CPB时间和ICU住院时间。
甲强龙是一种合成的抗炎作用很强的短效糖皮质激素,能通过扩散透过细胞膜,并与特殊的细胞内受体相结合,进入细胞核内与 DNA 结合,并启动 mRNA 的转录和 翻译,继而合成各种酶蛋白。这些酶能阻止各类炎性介质的释放,阻止CPB时氧自由基对组织细胞的氧化损伤,对肺组织及其他组织起到一定的保护作用,从而减轻CPB过程中全身炎症反应[2,17]。
早在21世纪初,研究人员就已经开始关注糖皮质激素治疗在CPB所致全身炎症反应的作用,并进行了相关的RCT[24,25],证明了糖皮质激素在药物品种不同、剂量不同和给药时间不同的情况下均可减少炎症介质的产生,改变患儿的血流动力学效应,最终减少全身炎症反应的发生。然而,最近有Meta分析或大样本观察性研究表明,预防性使用糖皮质激素并没有益处,反而会增加低风险患儿的术后并发症的发生率[13,14,20,25-27]。
对于术前应用甲强龙是否优于术中,静脉使用是否优于膜肺给药,目前认识不一致。Keski-Nisula等[16]的研究对比了术前麻醉诱导时应用甲强龙与术中CPB时应用甲强龙的效果,提示术前麻醉诱导时应用甲强龙抗炎效果更优。本文通过对术前静脉给药(术前静脉亚组)和术中膜肺给药(术中膜肺亚组)行分层分析,结论与Keski-Nisula等的研究相似,术前静脉给药方式可能优于术中膜肺给药,但鉴于文献数量和样本量有限,仍需要两种给药方式的RCT予以验证。
关于甲强龙的剂量及使用频率目前亦无明确结论。Soltani等[28]的研究对比了术前应用单一剂量甲强龙与术前、术中联合重复应用甲强龙的效果,提示二者的临床结果并无差异。Schroeder等[24]的研究证明联合应用甲强龙与术中单一剂量甲强龙相比,能提高患儿的氧输送,减轻心肌损害和减少全身炎症介质的释放。目前仍以30 mg·kg-1剂量为标准。
在有限证据下,儿童CPB辅助下心脏手术围术期预防性静脉使用甲强龙可降低术后病死率,术前静脉给药可以缩短CPB时间和ICU住院时间。
[1]Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics-2012 update: a report from the American Heart Association. Circulation, 2012, 125(1): e2-e220
[2]Pasquali SK, Hall M, Li JS, et al. Corticosteroids and outcome in children undergoing congenital heart surgery: analysis of the Pediatric Health Information Systems database. Circulation, 2010, 122(21): 2123-2130
[3]Kirklin JK, Westaby S, Blackstone EH, et al. Complement and the damaging effects of cardiopulmonary bypass. J Thorac Cardiovasc Surg, 1983, 86(6): 845-857
[4]Lefer AM, Campbell B, Scalia R, et al. Synergism between platelets and neutrophils in provoking cardiac dysfunction after ischemia and reperfusion. Circulation, 1998, 98(13): 1322-1328
[5]Haddad R, El-Hassan D, Araj A, et al. Some inflammation-related parameters in patients following normo- and hypothermic cardio-pulmonary bypass. Immunopharmacol Immunotoxicol, 2001, 23(2): 291-302
[6]De Greef KE, Ysebaert DK, Ghielli M. Neutrophils and acute ischemia-reperfusion injury. J Nephrol, 1998, 11(3): 110-122
[7]Holmes JH, Connolly NC, Paull DL, et al. Magnitude of the inflammatory response to cardiopulmonary bypass and its relation to adverse clinical outcomes. Inflamm Res, 2002, 51(12): 579-586
[8] Ascione R, Lloyd CT, Underwood MJ, et al. Inflammatory response after coronary revascularization with or without cardiopulmonary bypass. Ann Thorac Surg, 2000, 69(4): 1198-1204
[9] Gulielmos V, Menschikowski M, Dill H, et al. Interleukin-1, interleukin-6 and myocardial enzyme response after coronary artery bypass grafting-a prospective randomized comparison of the conventional and three minimally invasive surgical techniques. Eur J Cardiothorac Surg, 2000, 18(5): 594-601
[10]Rubens FD, Mesana T. The inflammatory response to cardiopulmonary bypass: a therapeutic overview. Perfusion, 2004, 19(Suppl 1): S5-S12
[11] Poyrazoglu HH, Duman Z, Demir, et al. Investigating the impacts of preoperative steroid treatment on tumor necrosis factor-alpha and duration of extubation time underwent ventricular septal defect surgery. Balkan Med J, 2016, 33: 158-163
[12]Toledo-Pereyra LH, Lin CY, Kundler H, et al. Steroids in heart surgery: A clinical double-blind and randomized study. Am Surg, 1980, 46: 155-160
[13]Graham EM, Atz AM, Butts RJ, et al. Standardized preoperative corticosteroid treatment in neonates undergoing cardiac surgery: Results from a randomized trial. J Thorac Cardiovasc Surg, 2011, 142: 1523-1529
[14]Pasquali SK, Hall M, Li JS, et al. Corticosteroids and outcome in children undergoing congenital heart surgery: analysis of the Pediatric Health Information Systems database. Circulation, 2010, 122(21): 2123-2130
[15]Gessler P, Hohl V, Carrel T, et al. Administration of steroids in pediatric cardiac surgery: Impact on clinical outcome and systemic inflammatory response. Pediatr Cardiol, 2005, 26(5): 595-600
[16] Keski-Nisula J, Suominen PK, Olkkola KT, et al. Effect of timing and route of methylprednisolone administration during pediatric cardiac surgical procedures. Ann Thorac Surg, 2015, 99(1): 180-185
[17] Chaney MA, Durazo-Arvizu RA, Nikolov MP, et al. Methylprednisolone does not benefit patients undergoing coronary artery bypass grafting and early tracheal extubation. J Thorac Cardiovasc Surg, 2001, 121(3): 561-569
[18]Keski-Nisula J, Pesonen E, Olkkola KT, et al. Methylprednisolone in neonatal cardiac surgery: Reduced inflammation without improved clinical outcome. Ann Thorac Surg, 2013, 95: 2126-2132
[19]Mastropietro CW, Barrett R, Davalos MC, et al. Cumulative corticosteroid exposure and infection risk after complex pediatric cardiac surgery. Ann Thorac Surg, 2013, 95: 2133-2139
[20]Robertson-Malt S, Afrane B, Elbarbary M. Prophylactic steroids for pediatric open heart surgery. Cochrane Database Syst Rev, 2007, (4): CD005550
[21]贾鹤龄, 张彬, 张斌飞, 等. 皮质类固醇在体外循环下小儿心脏手术中的作用的meta分析. 兰州大学学报, 2011, 37(4): 50-53
[22] Mott AR, Fraser CD Jr, Kusnoor AV, et al. The effect of short-term prophylactic methylprednisolone on the incidence and severity of postpericardiotomy syndrome in children undergoing cardiac surgery with cardiopulmonary bypass. J Am Coll Cardiol, 2001, 37(6): 1700-1706
[23]Liu JP, Ji BY, Long C, et al. Comparative effectiveness of methylprednisolone and zero-balance ultrafiltration on inflammatory response after pediatric cardiopulmonary bypass. Artif Organs, 2007, 31(7): 571-575
[24]Schroeder VA, Pearl JM, Schwartz SM, et al. Combined steroid treatment for congenital heart surgery improves oxygen delivery and reduces postbypass inflammatory mediator expression. Circulation, 2003, 107(22): 2823-2828
[25]Graham EM, Atz AM, McHugh KE, et al: Preoperative steroid treatment does not improve markers of inflammation after cardiac surgery in neonates: Results from a randomized trial. J Thorac Cardiovasc Surg 2014, 147(3): 902-908
[26]Pasquali SK, Li JS, He X, et al: Perioperative methylprednisolone and outcome in neonates undergoing heart surgery. Pediatrics, 2012, 129(2): e385-e391
[27] Ando M, Park IS, Wada N, et al. Steroid supplementation: a legitimate pharmacotherapy after neonatal open heart surgery. Ann Thorac Surg, 2005, 80(5): 1672-1678
[28]Soltani G, Abbasi Tashnizi M, Moeinipour AA, et al. Comparing the effect of preoperative administration of methylprednisolone and its administration before and during surgery on the clinical outcome in pediatric open heart surgeries. Iranian Red Crescent Medical Journal, 2013, 15(6): 483-487
(本文编辑:张崇凡,孙晋枫)
Thevalueofmethylprednisoloneusedinchildrenundergoingcardiacsurgerywithcardiopulmonarybypass:asystematicreviewandmeta-analysis
XIELing1,XUYan1,SHUShi-yu2
(1Children'sHospital,ChongqingMedicalUniversity,Chongqing400362,China;2Anesthesiologydepartment,Children'sHospital,FudanUniversity,Shanghai201102,China)
Corresponding Author:SHU Shi-yu,E-mail:shushiyu@hotmail.com
ObjectiveTo evaluate the effects of perioperative administration of methylprednisolone in pediatric patients undergoing cardiac surgery together with cardiopulmonary bypass.MethodsRandomized controlled trials published in English language involving pediatric patients aged under 16 years undergoing cardiac surgery together with cardiopulmonary bypass, which prophylactic perioperative methylprednisolone administrated during cardiac surgery was compared with placebo or blank control were included.The PubMed, Embase, Medline,and the Cochrane Library were searched systematically up to May 2016. The search strategy was "methylprednisolone" AND "cardiopulmonary bypass" OR "CPB". The primary outcome to evaluate the efficacy of methylprednisolone in pediatric cardiac surgery with cardiopulmonary bypass was all-cause in-hospital mortality. The meta-analysis was performed by RevMan 5.3 software. A subgroup analysis about delivery method was made between intravenous administration before surgery (subgroup A) and CPB circuit in CPB prime(subgroup B). ResultsSix RCTs with 486 patients were included into this meta-analysis, including 253 patients with methylprednisolone and 233 patients with placebo or blank control. Five RCTs reported the information of random sequence generation, 2 RCTs reported adequate information about allocation concealment. All of the included RCTs reported blinding of outcome assessment and described off or lost, 5 RCTs didn't report selective results, other bias were uncertain. Compared with placebo patients, methylprednisolone administration was associated with significant reduction of postoperative mortality (RR=0.22, 95% CI: 0.06 to 0.83,P= 0.03). The results of meta-analysis showed that the CPB time was decreased in experimental groups (MD=-10.67,95% CI:-17.82 to -3.53,P=0.003),and similar trend was found in subgroup A,the MD(95%CI) was -0.72 (95%CI: -1.33 to -0.12,P=0.02).There was no relation with decreased cross-clamp time, mechanical ventilation time and length of ICU stay in subgroup B.ConclusionUnder the limited evidence, the delivery method of intravenous administration before surgery may be better than CPB circuit in CPB prime to decrease ICU stay and CPB time.
Methylprednisolone; Children; Cardiopulmonary bypass; Cardiac surgery; Specificity; Systematic review; Meta-analysis
1 重庆医科大学附属儿童医院麻醉科 重庆,400362;2复旦大学附属儿科医院麻醉科 上海,201102
舒仕瑜,E-mail: shushiyu@hotmail.com
10.3969/j.issn.1673-5501.2016.06.004
2016-11-06
2016-12-18)