APP下载

褐煤基改良剂对石灰性土壤复合体镉赋存形态的影响

2016-07-19赵珂杨秋云化党领王代长赵颖刘芳张亚丽刘世亮河南农业大学资源与环境学院450002郑州

中国水土保持科学 2016年3期
关键词:结合态褐煤复合体

赵珂,杨秋云,化党领,王代长,赵颖,刘芳,张亚丽,刘世亮(河南农业大学资源与环境学院,450002,郑州)



褐煤基改良剂对石灰性土壤复合体镉赋存形态的影响

赵珂,杨秋云,化党领†,王代长,赵颖,刘芳,张亚丽,刘世亮
(河南农业大学资源与环境学院,450002,郑州)

摘要:为筛选和评估褐煤基材料对镉污染的修复效果,降低通过垂直入渗进入地下水或通过地面径流污染更大面积水土的镉通量,通过将3%各种材料均匀混入污染土壤并培养120 d,提取其胶散分组复合体并测定镉化学形态变化。结果表明:1)各改良剂处理的离子交换态、碳酸盐结合态、铁锰氧化物结合态镉质量分数在复合体中分布均为 G0>G1>G2,而弱有机态、强有机态质量分数分布的顺序相反。残渣态镉质量分数具有 G0组复合体低于 G1组和G2组复合体内镉质量分数的趋势,除钙化处理,其他处理3组复合体中残渣态之间均无显著差异。2)施用褐煤基材料普遍提高土壤中弱有机结合态镉质量分数,主要提高水稳性复合体中弱有机态镉,G0、G1和 G2中施用材料的比对照分别提高5.27%、20.74%和17.82%。褐煤、硝化褐煤、腐植酸显著提高水稳性复合体强有机态镉质量分数,平均分别提高27.26%、23.90%和40.05%,显著降低交换态镉质量分数和水稳性复合体碳酸盐态镉质量分数,平均降低幅度分别为14.63% ~22.79%和14.31% ~34.56%。硝化褐煤和腐植酸显著降低G1和G2中铁锰氧化物结合态镉的质量分数。3)褐煤改性后多数提高了交换态镉和碳酸盐态镉质量分数,以碱化、钙化、去矿化和活性炭在改性后提高交换态镉质量分数的幅度较大,较褐煤提高幅度最大值分别是29.41%、34.03%、33.82%和43.32%。改性后所有材料普遍降低土壤弱有机结合态镉的质量分数,除腐植酸外,强有机态镉质量分数均比改性前降低。残渣态镉质量分数有向易利用态转化的趋势。总之,非水稳性复合体主要由离子交换态和碳酸盐结合态等易效性镉赋存,水稳性复合体中主要由有机态和残渣态等难效性镉赋存。褐煤、硝化、腐植酸处理显著降低污染土复合体中离子交换态、碳酸盐态、铁锰氧化物态镉质量分数,显著提高水稳性 G1和 G2复合体强有机态镉质量分数,腐植酸还提高残渣态镉质量分数,起到对镉的钝化作用,但改性后多数是削弱了钝化效果。

关键词:改性褐煤;有机改良剂;石灰性土壤;胶散复合体;镉污染;化学形态转化;钝化;固定

项目名称:国家自然科学基金“褐煤基改性材料转化石灰性土壤重金属形态的机理和其对重金属时空变异的影响”(41371311),“硫素对稻根表面铁锰胶膜形成及水稻吸收Cd和As有效性的影响”(41271471)

河南省济源市年均降水量为600 mm。某铅冶炼企业排放环境中的砷、镉、铅等重金属已经造成局部地区土壤重金属严重超标。污染物控制与生态重建是该地区解决环境问题的迫切任务[1]。土壤中重金属全量无助于理解其在土壤中的存在风险,想了解其潜在影响和移动的复杂性,必须研究重金属的存在形态,包括重金属的各种化学相如交换态、碳酸盐态、铁锰氧化态、有机态和残留态中的定量分布[2 3]。重金属在固相中的结合形态与金属释放到液相中的强度有关,因而影响其重新移动和生物有效性[4]。重金属进入土壤后进一步转化为非溶解态,通过各种机制(主要是吸附、离子交换、共沉淀和络合为复合体)与土壤组分结合[5]。土壤有机矿质复合体的生成是土壤发生与肥力形成的重要过程之一[6],也是重金属在土壤中赋存的重要形态。在中国南方酸性土壤上,蒙脱、伊利等层状黏土矿物较少,多采用添加黏土矿物的方式钝化重金属[7],或者直接施用石灰[8 9]和磷肥[10]固定重金属,而在北方石灰性土壤上,硅酸盐层状粘土矿物是土壤矿物质的主要成分,pH较高也使得添加石灰的作用效果差,研究有机材料在石灰性土壤上的钝化修复非常必要。褐煤具有强吸附性能,是储量非常丰富的天然富含腐植酸类物质,含有羧基、醌基、羰基、甲氧基等活性基团,是良好的天然有机离子交换剂。褐煤的高氧质量分数使其能从溶液中由羧基和酚羟基功能团的离子交换移去金属离子,褐煤的甲氧基、羟基、脂肪、酚和羰基,是其活性位点,有极强的专性吸附性能[11 12]。将褐煤及褐煤基改性材料用于工业污水处理和工业钻井材料的多[13 14],用于土壤修复和农业环境保护的少;褐煤的农业利用仍集中在腐植酸的提取和肥料应用及作为土壤结构改良基质,少量研究了其对磷和钾的吸附,而利用改性技术直接使褐煤转化为良好的土壤生态修复材料和褐煤用于土壤重金属污染修复的研究尚属空白,尤其是用于石灰性土壤上的尚未发现。本研究将褐煤及其多种改性材料施用于镉重度污染的土壤上,经过一定时间后测定不同材料对镉化学形态在有机无机复合体中的分布,以评估各改良材料对镉形态的转化效果,更好地将褐煤资源用于退化土壤生态修复领域,为废弃地的生态重建与污染修复提供科学依据。

1 材料与方法

1.1供试材料

土壤与褐煤基改性材料的制备:供试土壤为河南省济源市克井镇青多村某铅冶炼企业周围200 m处多金属污染的0~20 cm土壤,黏壤质褐土,土壤pH 8.05,有机质、有效磷、速效钾、碱解氮、全铅和全镉的质量分数分别为 27.13 g/kg以及 28.45、145.30、190.65、1 985.76和29.35 mg/kg。根据GB 15618—1995《土壤环境质量标准》,pH>7.5的土壤中镉1 mg/kg和铅 350 mg/kg的二级标准临界值,供试石灰性土壤(试验对照)已受铅、镉重度污染。

选取云南昭通褐煤进行改性:钙化褐煤[15],磺化褐煤[16],碱化褐煤[16],硝化褐煤[17],褐煤制活性炭[18],去矿化褐煤[19],褐煤基腐植酸[20]。各改性产品均用去离子水洗为中性,干燥备用。

有机无机复合体的分组提取:根据先行开展的生菜盆栽试验效果,确定土壤中添加3%质量分数的褐煤基改性材料,每个处理用塑料盆装土500 g,与土壤混合均匀培养,每处理重复3次。培养温度为9—12月的自然室温,用称量法控制相对含水量75%,培养120 d,风干后土壤取样40.00 g,过20目筛,按胶散法[21]提取G0、G1、G2组有机无机复合体,并对各组复合体进行Cd化学形态测定。胶散复合体为<10 μm的胶体颗粒,G0组是水可分散复合体,G1组是钠质可分散复合体,可以用中性氯化钠溶液拆开,G2组是钠质研磨可分散复合体[6]。

1.2镉形态分级及测定分析方法

镉形态分级采用 Tessier连续提取法[22],火焰原子吸收分光光度计测定;土壤基本理化性质测定采用鲁如坤方法[23]。采用 Microsoft Excel 2007、SPSS 20.0和 GraphPad Prism 5.0对所得数据进行处理分析,方差分析采用Duncan新复极差法。

2 结果与分析

2.1对交换态镉质量分数的影响

如图1所示,未改性的褐煤导致G0中交换态镉质量分数下降,褐煤、硝化、腐植酸导致G1和G2中镉交换态显著下降。G1中褐煤、硝化、腐植酸、磺化处理的镉质量分数也分别比对照显著低 23.00%、18.94%、13.67%和15.43%。G2复合体中,褐煤、硝化、腐植酸处理的离子交换态镉质量分数分别比对照显著降低22.57%、15.84%和15.59%。说明这几种有机材料对镉起到钝化作用,碱化、钙化、去矿化和活性炭对土壤胶散复合体中交换态镉质量分数的影响与对照均未达到显著差异。各改性材料与未改性褐煤相比,改性后G0中交换态镉质量分数除腐植酸处理外,均比改性前显著提高,钙化、碱化、硝化、腐植酸、活性炭、去矿化和磺化分别比原褐煤提高 22.08%、19.55%、24.76%、7.30%、13.14%、17.94%和13.89%;G1中改性后褐煤、钙化、碱化、腐植酸、活性炭和去矿化分别比改性前的褐煤显著提 高28.69%、24.60%、12.13%、28.25%和23.37%;G2中改性后钙化、碱化、活性炭、去矿化和磺化处理复合体中交换态镉质量分数分别提高29.41%、34.03%、33.82%、43.32%和23.67%。

2.2对碳酸盐结合态镉质量分数的影响

如图2所示,与对照相比,G0组复合体中,硝化处理复合体的碳酸盐结合态镉质量分数显著升高13.88%,其余比对照有降低有升高但未有显著差异;G1复合体中,褐煤、腐植酸、去矿化、磺化处理的镉质量分数分别比对照显著低12.68%、26.18%、16.42%和14.90%;G2复合体中,褐煤、硝化、腐植酸、去矿化和磺化处理的镉质量分数比对照显著低14.31%、22.73%、34.56%、16.71% 和 15.45%。G1和G2组中均以腐植酸处理降低最多。G1和G2复合体中主要是褐煤、腐植酸、去矿化、磺化和硝化处理的碳酸盐态镉质量分数降低显著。

图1 G0、G1和G2复合体的离子交换态镉变化Fig.1 Content of exchangeable Cd in the complex G0,G1and G2

图2 G0、G1和G2复合体碳酸盐结合态镉变化Fig.2 Content of carbonate-bound Cd in the complex G0,G1and G2

改性前后相比,G0中改性后均比褐煤处理的碳酸盐结合态质量分数高,钙化、碱化、硝化、腐植酸、活性炭、去矿化分别提高 5.18%、15.76、21.23%、8.64%、14.14%、4.69%;G1中活性炭处理的升高12.89%;G2中钙化、碱化和活性炭处理的碳酸盐态镉质量分数显著提高 11.98%、10.00%和9.55%。G1和G2中腐植酸处理比褐煤显著降低15.47%和23.64%。说明改性后除腐植酸是钝化作用外,多数是促进转变为具有活化作用的碳酸盐态镉。

2.3对铁锰氧化物结合态镉质量分数的影响

如图3所示,与对照相比,施用有机改良材料除G2中硝化和腐植酸处理外,多数提高3组复合体中铁锰氧化物态镉的质量分数。与未改性褐煤相比,G0中各处理的铁锰氧化物态镉质量分数变化差异不显著,G1和G2中硝化和腐植酸处理比褐煤显著降低,G2中碱化、钙化有升高趋势;因此硝化和腐植酸无论与对照相比还是与褐煤相比,均降低铁锰氧化物态镉质量分数。

2.4对弱结合镉质量分数的影响

如图4所示:G0复合体中腐植酸处理的弱有机结合态镉质量分数显著高于对照13.18%;G1复合体中褐煤、硝化、腐植酸处理的镉质量分数分别高于对照34.12%、31.23%和32.13%;G2复合体中各处理的弱有机态镉质量分数均显著高于对照,碱化、钙化、褐煤、硝化、腐植酸、去矿化、活性炭和磺化分别提高10.63%、13.40%、28.77%、18.14%、31.46%、12.67%、14.42%和13.04%。说明施用褐煤基材料普遍提高了土壤中弱有机结合态镉质量分数,且水稳性G1和G2复合体中的提高辐度较大。褐煤改性后,3组复合体均表现为降低弱有机结合态镉质量分数,G2复合体中,碱化、钙化、硝化、去矿化、活性炭和磺化分别比褐煤处理的下降 14.08%、11.93%、8.26%、12.50%、11.14%和 12.22%;G1中活性炭和磺化的下降达到显著水平,分别下降17.50%和19.38%;G0中改性后与改性前差异不显著。

图3 G0、G1和G2复合体的铁锰氧化物结合态镉变化Fig.3 Content of Fe-Mn-oxide-bound Cd in the complex G0,G1and G2

图4 G0、G1和G2复合体的弱有机态镉变化Fig.4 Content of organics-weakly-bound Cd in the complex G0,G1and G2

2.5对强有机结合态镉质量分数的影响

图5示出,G0只有褐煤处理的强有机结合态镉质量分数显著高于对照;G1和 G2中腐植酸、硝化、褐煤处理的强有机结合态镉质量分数显著高于对照37.16%、24.36%和22.62%,G2分别提高42.93%、23.44%和31.90%。与改性前的原褐煤相比,G0碱化、钙化、硝化、腐植酸、去矿化、活性炭和磺化显著下降24.71%、26.99%、12.80%、22.35%、34.88%、 32.18%和21.80%。3组复合体中改性后除腐植酸外均降低强有机态镉质量分数。

图5 G0、G1和G2复合体的强有机结合态镉变化Fig.5 Content of organics-strongly bound Cd in the complex G0,G1and G2

2.6对残渣态镉质量分数的影响

如图6所示,G1和G2中腐植酸处理的残渣态镉比对照显著提高,其他处理与对照均无显著差异。改性后对G0残渣态镉质量分数的影响大于对G1和G2的影响。腐植酸提高土壤残渣态镉质量分数,这与腐植酸在影响其他几个形态方面的趋势一致,即它主要是稳定地对镉起钝化剂的作用。

图6 G0、G1和G2复合体的残渣态镉变化Fig.6 Content of residual Cd in the complex G0,G1and G2

3 结论与讨论

1)胶散复合体类型与镉形态分布:各改良剂处理的离子交换态、碳酸盐结合态、铁锰氧化物结合态等易效态镉质量分数均在水散性 G0复合体中质量分数较高,而在水稳性复合体G1和G2中质量分数逐渐降低;弱有机态、强有机态和残渣态镉等难效态镉质量分数分布的顺序正好相反,多存在于水稳性复合体中。根据BCR连续提取法[24],交换态为可迁移态,交换态和碳酸盐结合态为有效态,铁锰氧化物结合态和有机结合态为潜在有效态,残渣态是一种生物不可利用的状态[25 26]。笔者将各种褐煤基材料添加到镉污染土壤中培养足够长时间,引起镉形态在不同胶散复合体中分布的改变,易效态多存在于水不稳定复合体中,增大了环境风险。效果良好的钝化剂应该使易效态重金属向稳定性复合体中转变,以被复合体稳定“俘获”。褐煤基材料促使镉与有机物质复合的机制需要进一步研究。

2)褐煤基材料对镉形态在不同类型复合体中赋存的影响:施用褐煤基材料均提高土壤弱或强有机态镉质量分数,降低交换态隔质量分数,在碳酸盐态、铁锰氧化物态和有机态之间进行转化时,各有机材料的作用不同。重金属进入土壤后,通过溶解、沉淀、凝聚、络合吸附等各种反应,形成不同的化学形态,并表现出不同的活性[26]。根据腐植质能提供电子具有还原能力[27],并且具有弱酸性质,在加了褐煤基材料后,对离子交换态、碳酸盐结合态和铁锰氧化物结合态的作用是促进其从G2向 G1和G0复合体中转化,因而 G0中质量分数最高;而有机态和残渣态很难在土壤中转化,为难效态,多存在于水稳性G2和 G1中。饱和导水率是水循环和土壤侵蚀模型中的重要参数,也是土壤结构改善的重要指标,土壤饱和导水率随有机质质量分数的增加呈降低趋势[28],饱和导水率降低可以减缓重金属在土壤中的运移速率,减缓环境风险。褐煤基材料是有机材料,除了影响重金属的化学形态外,还影响土壤的物理性质,施用褐煤基材料显然可以降低饱和导水率。

3)褐煤改性对镉形态在不同类型复合体中赋存的影响:改性后总的效果是与改性前相反。改性后的表现可能暗示更多小分子量腐植酸[29]的形成和官能团的改变。褐煤改性后均提高交换态镉质量分数,降低土壤有机结合态镉的质量分数,可能因为改性很大程度影响了褐煤基腐植酸的官能团种类和数量,使得那些官能团或小分子腐植物质容易形成更多可交换态的镉 腐植质复合体,而减少大分子难溶性镉 腐植质复合体。改性削弱原材料褐煤的钝化作用。褐煤经硝酸氧化后总的腐植酸质量分数增加[30 31],其小分子量腐植酸比天然褐煤含有丰富的含氧功能团,增加离子交换能力;笔者研究表明,改性后硝化褐煤显著提高了交换态镉质量分数,与其结论一致。

4 参考文献

[1]林文杰.土法炼锌区生态退化与重金属污染[J].生态环境学报,2009,18(1):149.Lin Wenjie.Ecological degeneration and heavy metals pollution in zinc smelting areas[J].Ecology and Environmental Sciences,2009,18(1):149.(in Chinese)

[2]Banat K M,Howari F M,To'mah M M.Chemical fractionationandheavymetal distributioninagricultural soils,north of Jordan Valley[J].Soil&Sediment Contamination,2007,16(1):89.

[3]韩春梅,王林山,巩宗强,等.土壤中重金属形态分析及其环境学意义[J].生态学杂志,2005,24(12):1499.Han Chunmei,Wang Linshan,Gong Zongqiang,et al.Chemical forms of soil heavy metals and their environmental significance[J].Chinese Journal of Ecology,2005,24(12):1499.(in Chinese)

[4]Tack F M G,Verloo M G.Chemical speciation and fractionation in soil and sediment heavy metal analysis:A review[J].International Journal of Environmental Analytical Chemistry,1995,59(2):225.

[5]Orroño D I,Lavado R S.Distribution of extractable heavy metals in different soil fractions[J].Chemical Speciation and Bioavailability,2009,21(4):193.

[6]徐建民,袁可能.土壤有机矿质复合体研究.V.胶散复合体组成和生成条件的剖析[J].土壤学报,1993,30(1):43.Xu Jianmin,Yuan Keneng.Studies on organo-mineral complexes in soil,V.distribution of organo-mineral complexes in zonal soils of China[J].Acta Pedologica Sinica,1993,30(1):43.(in Chinese)

[7]曾燕君,周志军,赵秋香.蒙脱石ORSH复合体材料对土壤镉的钝化及机制[J].环境科学,2015,36(6): 2314.Zeng Yanjun,Zhou Zhijun,Zhao Qiuxiang.Mechanism Study of the smectite--OR--SH compound for reducing cadmium uptake by plants in contaminated soils[J].Environmental Science,2015,36(6):2314.(in Chinese)

[8]张茜,李菊梅,徐明岗.石灰用量对污染红壤和黄泥土中有效态铜锌含量的影响[J].中国土壤与肥料,2007 (4):68.Zhang Qian,Li Jumei,Xu Minggang.Effects of lime application rate on available copper and zinc content in single and complex polluted red and paddy soils[J].Soils and Fertilizers Sciences in China,2007(4):68.(in Chinese)

[9]施春婷.土壤改良剂对广西岩溶地区污染土壤重金属生物有效性的影响[D].南宁:广西大学,2012:13.Shi Chunting.Effect of soil amendments on heavy metal bioavailability in polluted soil in Guangxi Karst area[D].Nanning:Guangxi University,2012:13.(in Chinese)

[10]王朋超,孙约兵,徐应明,等.施用磷肥对南方酸性红壤镉生物有效性及土壤酶活性影响[J].环境化学,2016,35(1):150.Wang Pengchao,Sun Yuebing,Xu Yingming,et al.Effects of phosphorous fertilizers on Cd bioavailability and soil enzyme activities in south acidic red soil[J].Environmental Chemistry,2016,35(1):150.(in Chinese)

[11]Gode F,Pehlivan E.Chromium(VI)adsorption by brown coals[J].Energy Sources,Part A,Recovery,Utilization,and Environmental Effects,2006,28:447.

[12]Rengaraj S,Yeon K H,Moon S H.Removal of chromium from water and wastewater by ion exchange resins [J].Journal of Hazardous Materials,2001,87(1/3): 273.

[13]Uçurum M.A study of removal of Pb heavy metal ions from aqueous solution using lignite and a new cheap adsorbent(lignite washing plant tailings)[J].Fuel,2009,88(8):1460.

[14]Pehlivan E,Arslan G.Removal of metal ions using lignite in aqueous solution:low cost biosorbents[J].Fuel Processing Technology,2007,88(1):99.

[15]Jochová M,Punˇcocháˇr M,Horáˇcek J,et al.Removal of heavy metals from water by lignite-based sorbents[J].Fuel,2004,83(9):1197.

[16]刘建华,王瑞祥,曾婕.褐煤制备磺化煤的方法[J].洁净煤技术,2004,10(3):48.Liu Jianhua,Wang Ruixiang,Zeng Jie.Preparing sulphonated coal method by usinglignite[J].Clean Coal Technology,2004,10(3):48.(in Chinese)

[17]王鲁敏,邓昌亮,殷军港,等.硝化褐煤对铬离子溶液的吸附研究[J].环境化学,2001,20(1):54.Wang Lumin,Deng Changliang,Yin Jungang,et al.Study on adsorption of nitrify lignite for chromium-ion solution[J].Environmental Chemistry,2001,20(1): 54.(in Chinese)

[18]罗道成,郑李辉.用褐煤活化一步法制备活性炭的研究[J].煤化工,2009,37(5):25 Luo Daocheng,Zheng Lihui.Study on the preparation of activated carbon by one-step method of carbonization-activation with lignite coal[J].Coal Chemistry Industry,2009,37(5):25.(in Chinese)

[19]Yaˇgmur E,爦im爧ek E H,Akta爧Z,et al.Effect of demineralization process on the liquefaction of Turkish coals in tetralin with microwave energy:determination of particle size distribution and surface area[J].Fuel,2005,84 (18):2316.

[20]黄金凤,赵义龙,赵金香,等.腐植酸的提取及其成分含量测定[J].四川畜牧兽医,2007,34(5):27.Huang Jinfeng,Zhao Yilong,Zhao Jinxiang,et al.The extraction and determination of composition of humic acid[J].Sichuan Animal&Veterinary Science,2007,34(5):27.(in Chinese)

[21]化党领,张一平.觩土不同施肥条件下土壤胶散复合体研究[J].土壤肥料,1999(1):9.Hua Dangling,Zhang Yiping.Study on soil organo-mineral complex on Lou-soil[J].Soil and Fertilizer,1999(1):9.(in Chinese)

[22]Tessier A,Campbell P G C,Bisson M.Sequential extraction procedure for the speciation of particulate trace metals[J].Analytical Chemistry,1979,51(7):844.

[23]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:12 282.Lu Rukun.Analysis methods of soil agrochemistry[M].Beijing:ChinaAgricultureScienceandTechnique Press,2000:12282.(in Chinese)

[24]Jamali M K,Kazi T G,Afridi H I,et al.Speciation of heavy metals in untreated domestic wastewater sludge by time saving BCR sequential extraction method[J].Journal of Environmental Science and Health,Part A,2007,42(5):649.

[25]王美青,章明奎.杭州市城郊土壤重金属含量和形态的研究[J].环境科学学报,2002,22(5):603.Wang Meiqing,Zhang Mingkui.Concentrations and chemical associations of heavy metals in urban and suburban soils of the Hangzhou city,Zhejiang Province[J].Acta Scientiae Circumstantiae,2002,22(5):603.(in Chinese)

[26]Pueyo M,López-Sánchez J F,Rauret G.Assessment of CaCl2,NaNO3and NH4NO3extraction procedures for the study of Cd,Cu,Pb and Zn extractability in contaminated soils[J].Analytica Chimica Acta,2004,504 (2):217.

[27]Aiken G,Leenheer J.Isolation and chemical characterization of dissolved and colloidal organic matter[J].Chemistry and Ecology,1993,8(3):135.

[28]郭慧超,邵明安,樊军.有机肥质量分数对土壤导水率稳定性的影响[J].中国水土保持科学,2013,11 (6):7.Guo Huichao,Shao Mingan,Fan Jun.Effects of the organic matter content on the stability of the soil hydraulic conductivity[J].Science of Soil and Water Conservation,2013,11(6):7.(in Chinese)

[29]Hartley N R,Tsang D C W,Olds W E,et al.Soil washing enhanced by humic substances and biodegradable chelating agents[J].Soil and Sediment Contamination,2014,23(23):599.

[30]Liu Fangchun,Xing Shangjun,Du Zhenyu.Nitric acid oxidation for improvement of a Chinese lignite as soil conditioner[J].Communications in Soil Science and Plant Analysis,2011,42(15):1782.

[31]李宗梅.煤系减水剂的研制及其性能研究[D].大连:大连理工大学,2005:81.Li Zongmei.Research on coal series water reducing admixture and properties[D].Dalian:Dalian University of Technology,2005:81.(in Chinese)

Effects of lignite-based amendments on cadmium chemical speciation in calcareous soil complexes

Zhao Ke,Yang Qiuyun,Hua Dangling,Wang Daichang,Zhao Ying,Liu Fang,Zhang Yali,Liu Shiliang
(Resources and Environment College,Henan Agricultural University,450002,Zhengzhou,China)

Abstract:[Background]This work is for screening and evaluating the remediation effect of lignitebased materials on cadmium pollution,and for reducing cadmium flux into the ground water through vertical infiltration or to large water and soil area by surface runoff pollution.[Methods]The soil samples were from 200 m surroundings of a lead metallurgical factory at 0-20 cm depth contaminated with heavy metals.The lignite from Zhaotong city of Yunnan was modified to be alkalization,calciumloaded,nitrified,humic acid,demineralization,activated carbon,and sulphonated ones,and the 3%of each of them was evenly mixed with contaminated soil and incubated for 120 days.The organo-mineralcomplexes(G0:water-dispersing complex,G1:NaCl-dispersing complex,and G2:NaCl-grindingdispersing complex)were extracted,and the determination of cadmium content was conducted by Tessier sequential extraction method,flame atomic absorption spectrophotometer determination;soil physical and chemical properties were determined by Lu Rukun method.Microsoft Excel 2007,SPSS 20.0 and Graphpad Prism 5.0 were used to process and analyze the acquired data and Duncan's method for ANOVA.[Results]1)The content distribution of ion exchange,carbonate-bound,Fe-Mn-oxide-bound cadmium in the complexes was as G0>G1>G2in all ameliorator treatments,however,the content distributions of organics-weakly-bound and organics-strongly-bound cadmium were in opposite order.Residual Cd in G0complex had no significant differences with that in G1and G2complex except for calcification lignite.2)The application of lignite-based materials generally increased the organicsweakly-bound cadmium content of soil,compared with raw polluted soil.And mainly the organicsweakly-bound Cd in the water-stable complexes increased,i.e.,in the complex G0,G1and G2by 5.27%,20.74%and 17.82%compared to the control,respectively.The use of lignite,nitrified lignite,and humic acid significantly resulted in the increase of organics-strongly-bound Cd content in water-stable complex by the average value of 27.26%,23.90%and 40.05%respectively,and significantly reducing the content of exchangeable and carbonate fractions content in water-stable complex in the range of 14.63% -22.79%and 14.31% -34.56%.Residual fraction was slightly improved by lignite,nitrified lignite and humic acid than other treatments.The nitrified lignite and humic acid remarkably decreased the content of Fe-Mn-oxide-bound Cd,and alkalization,calcium-loaded,lignite,demineralization,sulphonated and activated carbon increased the content of Fe-Mn-oxide-bound fraction.Alkalization,calcification,demineralization and activated carbon presented no obvious effect on the exchangeable Cd.3)Modified lignite mainly improved the content of exchangeable and carbonate-bound Cd.In addition to the humic acid,modified lignite generally reduced the soil organics-weakly-bound and organics-strongly-bound Cd content compared with that before modification,and residual fraction content showed a trend of transformation to the available form.[Conclusions] In short,non-water-stable complexes contain mainly ion exchangeable and carbonate-bound fraction,water-stable complex is mainly composed of organics-bound and residual form.Some lignite-based materials could change Cd availability to unavailable speciation by inactivation or immobilization.In general,modified lignite mostly weakened the passivation or immobilization effect.

Keywords:modified lignite;organic amendments;calcareous soil;organo-mineral complex;Cd pollution;chemical speciation transformation;passivation;immobilization

中图分类号:S156.2

文献标志码:A

文章编号:1672-3007(2016)03-0093-08

DOI:10.16843/j.sswc.2016.03.012

收稿日期:2015 12 21修回日期:2016 05 05

第一作者简介:赵珂(1988—),女,硕士。主要研究方向:土壤重金属污染修复。E-mail:1060048917@qq.com

通信作者†简介:化党领(1964—),男,博士,教授。主要研究方向:土壤学与植物营养学。E-mail:collegehua@163.com

猜你喜欢

结合态褐煤复合体
不同烘干温度下褐煤可磨性指数研究
膝关节创伤性多发韧带损伤中后外复合体重建的临床疗效
湖北省利川市表层土壤中硒元素形态的受控因素研究
结合态雌激素在堆肥过程中的降解与转化研究
湿地生境下土壤砷形态转化与微环境因子的关系
RAB37直接与ATG5相互作用并通过调控ATG5-12-16复合体装配促进自噬体形成
老年人颧骨复合体骨折20例临床分析
污泥掺混褐煤水热制固体燃料的理化特性
煤粒度对褐煤生物气生成的影响特征
荔枝果皮的结合态POD及其在果实生长发育过程中的变化