APP下载

熵加权多视角核獽—means算法

2016-06-28邱保志贺艳芳申向东

计算机应用 2016年6期
关键词:聚类

邱保志 贺艳芳 申向东

摘 要:在基于视角加权的多视角聚类中,每个视角的权重取值对聚类结果的精度都有着重要的影响。针对此问题,提出熵加权多视角核Kmeans(EWKKM) 算法,通过给每个视角分配一个合理的权值来降低噪声视角或无关视角对多视角聚类的影响,进而提高聚类的精度。 EWKKM算法中,首先用核矩阵表示不同的视角,给每个视角分配一个权重;然后,利用信息熵计算出各个视角的熵权重;最后,按照定义的目标函数对各个视角的权重进行优化,使用核Kmeans进行多视角聚类。在UCI数据集及人工数据集进行实验,实验结果表明熵加权多视角核Kmeans算法能够为每个视角分配一个最优的权重值,聚类的精确度优于已有的聚类算法,具有更稳定的聚类结果。

关键词:聚类;多视角聚类;核Kmeans; 熵

中图分类号: TP181 文献标志码:A英文标题

猜你喜欢

聚类
K-means算法概述
K-means聚类方法在图像色彩中的应用
基于模糊聚类和支持向量回归的成绩预测
一种基于广域测量信息的在线同调分群方法
针对Kmeans初始聚类中心优化的PCATDKM算法
基于流形学习的自适应反馈聚类中心确定方法
交通监控中基于模糊聚类的无线传感网MAC协议
基于密度的自适应搜索增量聚类法
数据挖掘的主要技术
K—means算法研究综述