小学数学概念教学初探
2016-05-30杨淑丽
杨淑丽
中图分类号:G623.5 文献标识码:A 文章编号:1002-7661(2016)12-0039-02
小学数学是由许多概念、法则、性质等组成的确定体系。每一个法则、性质等实际上都是一个判断,而且离不开概念。可以说,判断是概念与概念的联合。因此,要使小学生掌握所学的数学知识和计算技能,并且能够实际应用,首先要使他们掌握好所学的数学概念。按概念的抽象水平可以将概念分为描述性概念和定义性概念两类。描述性概念是可以直接通过观察获得的概念,如“长方形”等;定义性概念的本质性特征不能通过直接观察获得,必须通过下定义来揭示,如“偶数”就是通过定义“能被2整除的数叫做偶数”来揭示偶数的本质特征的。不管是哪一类概念,都是小学生掌握数学基本知识和基本技能的基石,都将直接影响以后继续学习及思维能力的发展。在实际教学过程中,我常常利用以下几种方法进行概念教学。
一、联系生活,进行概念引入
数学源于现实生活,小学生生活周围处处有数学,结合生活实际引入概念是一个有效的途径。小学生从扳手指到简单的运用计算机,都是在生活中不断总结而学习获得的。要从生活实际出发,深化小学生的概念基础,就必须熟悉小学生的生活环境。如在学习比较数值大小时,“2”和“5”的大小,可以把“2颗花生”和“5颗花生”放在学生面前,让学生选择,当学生选择5颗花生时,可以问为什么会选择“5”,这样让他们在实际生活中真正体会到比较大小的概念。
其次,还可利用小学生在生活实际中比较熟悉的一些知识,概括出新的概念。例如:在引入平行四边形概念时,先出示两组不同长度的四根小木棒,教师进行演示,让学生观察后,然后把这四根小棒钉成一个长方形。又让学生观察这个长方形,然后,教师又进行演示,把它向其中一头拉斜,让学生观察教师演示后的形状,引导学生说说这时的长方形变形后有什么特点。这时学生可以说出:两组对边的木条长度相等,但四个角又不是直角,因此这样就在小学生思维中形成了平行四边形的概念。
例如,在教学互质数时,教师在引导学生对几组数,如“3和8”“10和9”“27和13”的公约数的观察的基础上,引入互质数“公约数只有1的两个数叫做互质数”的概念。然后,老师要引导学生认真推敲,对互质数的这个概念要弄清:(1)它是两数之间的一种关系。(2)它是从公约数的个数这个角度提出来的。(3)关键词“只有”的含义。从这三个方面揭示出互质数的本质属性。教学中只有抓住这些属性,逐项剖析,才能使互质数的特征活脱脱地展现出来。教师通过对“互质数”的详细解读,既抽象概括出“互质数”这个概念,又能为学生深刻理解掌握互质数奠定了基础。
二、实物演示,深化数学概念
由于小学生认识程度的限制,在教材中大部分概念没有下准确,但是这些概念对于解决实际数学问题又是非常重要的。因此,这就给教者留下了一项非常艰巨的任务。在概念教学难以入手时,不妨尝试利用直观的具体形象,帮助学生认识概念的本质属性。如小学生认识“米”的概念时,首先通过观察米尺初步直观认识1米有多长,接着将米尺与铅笔、身高、课桌面的长进行比较,进一步直观认识1米的大约长度,然后让学生与同桌合作,用米尺量教室的长,这既是对米的概念的进一步强化,又是对学生动手能力的一次锻炼。
对于小学生来说,数学概念还是抽象的,他们形成数学概念,一般都要有相应的感性经验为基础,而且要经历一番把感性材料在脑子里来回往复。从模糊到逐渐分明,从许多有一定联系的材料中,通过自己操作,思维活动逐步建立起事物的一般表象。在教学中,更要加强演示、操作。让学生通过摸一摸、摆一摆、拼一拼来让学生体会这些概念,理解概念和掌握概念。例如,在教学“长方体”表面积时让学生动手操作和观察长方体实物,又拿出一个长方体纸盒,先让学生观察它的构造。然后把纸盒沿着棱剪开,教师接着展开。让学生注意,展开前长方体的每个面,在展开后是哪个面,为了便于对照,可以在展开前的每个面上,分别用“上”“下”“前”“后”“左”“右”标明它们分别是原来长方体的哪个面。然后,提问:长方体有几个面?哪些面的面积是相等的?引导学生把这些感性材料加以分析、整合,概括长方体6个面的总面积。这样学生就能抓住长方体本质特征,形成概念。
这样教师借助于直观教学,运用学生原有的基础知识,逐步抽象,环环紧扣,层次清楚,通过实物演示,使学生建立表象,从而解决了数学知识的抽象性与儿童思维形象性。
三、化抽象为具体,强化数学概念
在教学中有很多数量关系都是从具体生活中表现出来的,因此,在教学中要充分利用学生的生活实际,运用恰当的方式进行具体与抽象的连贯。把抽象的内容转变成具体的生活知识,在学生思维过程中强化抽象概念。
如:在学习“体积”概念时,教师可以取三个同样的水杯,里面放适量的同样多的水,把桃、荔枝、红枣依次放在三个杯中,然后观察三个水杯水的高度来展现桃、荔枝、红枣体积的大小。这样将抽象的体积概念就转变为了水具体的高度,对于尚未形成抽象思维方式的小学生来说就更容易掌握。
(责任编辑 陈 利)