APP下载

拟南芥莲座叶芥子油苷组成和含量对缺硫胁迫的响应

2016-04-23钟海秀

安徽农业科学 2016年6期
关键词:拟南芥

钟海秀

(1.黑龙江省科学院自然与生态研究所,黑龙江哈尔滨 150040;2.东北林业大学盐碱地生物资源环境研究中心,黑龙江哈尔滨 150040)



拟南芥莲座叶芥子油苷组成和含量对缺硫胁迫的响应

钟海秀1,2

(1.黑龙江省科学院自然与生态研究所,黑龙江哈尔滨 150040;2.东北林业大学盐碱地生物资源环境研究中心,黑龙江哈尔滨 150040)

摘要[目的]探讨缺硫胁迫下拟南芥(Arabidopsis thaliana)生长到12片莲座叶时芥子油苷组成和含量的变化规律。[方法]以模式植物拟南芥为原材料,通过水培方法进行缺硫胁迫处理,采用高效液相色谱-质谱联用(HLPC-MS)法分析芥子油苷的组成和含量。[结果]缺硫胁迫处理48 h,拟南芥莲座叶中检测出7种脂肪族芥子油苷、4种吲哚族芥子油苷。缺硫胁迫对吲哚族芥子油苷含量影响不显著,对脂肪族芥子油苷含量影响显著。[结论]试验结果为探索缺硫胁迫下芥子油苷的代谢途径提供了理论依据。

关键词缺硫胁迫;拟南芥;芥子油苷

Response of Glucosinolate Composition and Content inArabidopsisthalianaRosette Leaves to Sulphur Deficiency

ZHONG Hai-xiu1,2

(1. Institute of Natural Resources and Ecology, Heilongjiang Academy of Science, Harbin, Heilongjiang 150040; 2. Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, Heilongjiang 150040)

Abstract[Objective] To discuss the change rule of glucosinolate composition and content under sulphur deficiency in rosette leaves ofArabidopsisthalianaduring the vegetative stage. [Method] TakingA.thalianaasas experimental materials, hydroponic method was used for sulfur deficiency treatment. Composition and content of glucosinolate were analyzed by HLPC-MS. [Result] Seven kinds of aliphatic glucosinolates and four kinds of indole glucosinolates were detected in rosette leaves ofA.thaliana. The content of indole glucosinolate was not significant correlated with sulphur deficiency, while content of aliphatic glucosinolate was significantly correlated with sulphur deficiency. [Conclusion] This research provides theoretical foundation for the metabolic pathways of glucosinolates under sulphur deficiency.

Key wordsSulphur deficiency;Arabidopsisthaliana; Glucosinolate

硫元素是植物生长发育必需的营养元素之一,研究表明植物体内硫含量占干重的0.5%~1.5%[1-5]。硫元素在植物体内主要以有机硫酸盐的形式存在,并由植物直接从土壤中吸收运送到木质部中。芥子油苷是存在于十字花科植物中营养成分较高的含硫次生代谢产物[6],不仅使这些植物具有不同的风味,而且具有防御害虫和病原体的作用和抗癌活性[7-9]。芥子油苷的含量可达到植物器官有机硫含量的10%~30%[10-12],因此,硫的供应水平是影响芥子油苷积累的重要因素[13-14]。施硫对芥子油苷含量的影响受到供硫水平、植物种类、植物器官和培养方式的影响[10-11,15-16]。Falk等[11]通过田间和温室试验,采用土壤、水培和组织培养基等栽培方式培养幼苗,结果表明增加硫的供应水平使芥子油苷含量增加了25%甚至超过50倍。Aghajanzadeh等[17]研究表明缺硫胁迫处理7 d的芥菜型油菜(B.juncea)和白菜(B.rapa)幼苗和根中芥子油苷含量明显下降。硫是合成芥子油苷的重要元素之一。硫的供应必然影响拟南芥芥子油苷的含量,但迄今有关这方面的研究报道尚少[3,18]。为此,笔者通过溶液培养拟南芥试验研究了莲座叶芥子油苷组成和含量对缺硫胁迫的响应规律,以期为芥子油苷的代谢研究提供理论依据。

1材料与方法

1.1材料试验材料为哥伦比亚野生型拟南芥。

1.2方法

1.2.1植物材料处理。拟南芥种子使用70%乙醇消毒,低温处理2~3 d后播种于蛭石中,置于自动控制温室进行培养,培养条件:人工光暗时间为15∶9 h,光量子通量密度约为150 μmol/(cm2·s),温度为19~26 ℃,空气相对湿度为50%~70%。在培养过程中每7 d浇一次1/4×Hoagland(pH = 5.8)营养液。拟南芥生长到6片莲座叶时转移到1/4×Hoagland(pH = 5.8)营养液的水培系统中,通气并且每7 d更换一次培养液。

1.2.2缺硫胁迫处理。缺硫胁迫营养液的组成成分是在1/4×Hoagland营养液基础上用MgCl2·6H2O代替相同摩尔数的MgSO4·7H2O。以1/4×Hoagland营养液为对照。拟南芥生长到12片莲座叶时转移到缺硫胁迫营养液中,处理48 h后,取拟南芥的莲座叶样品,测定芥子油苷的组成和含量。

1.2.3芥子油苷的提取与测定。按Petersen等[19]的方法提取芥子油苷,采用HPLC-MS法测定芥子油苷的组成及含量。

2结果与分析

2.1拟南芥莲座叶芥子油苷的组成拟南芥营养生长到12片莲座叶时,缺硫胁迫处理48 h后,莲座叶中芥子油苷的组成有11种,其中7种脂肪族芥子油苷包括3-羟基丙基芥子油苷(3OHP)、3-甲基亚磺酰丙基芥子油苷(3MSOP)、4-甲基亚磺酰丁基芥子油苷(4MSOB)、5-甲基亚磺酰戊基芥子油苷(5MSOP)、6-甲基亚磺酰己基芥子油苷(6MSOH)、4-甲硫丁基芥子油苷(4MTB)和8-甲基亚磺酰辛基芥子油苷(8MSOO);4种吲哚族芥子油苷包括吲哚基-3-甲基芥子油苷(I3M)、1-甲氧吲哚基-3-甲基芥子油苷(1MTI3M)、4-甲氧吲哚基-3-甲基芥子油苷(4MTI3M)和4-羟基吲哚基-3-甲基芥子油苷(4OHI3M);未检测到芳香族芥子油苷。苯甲基芥子油苷(Benzyl)为内标(图1)。

注:3OHP.3-羟基丙基芥子油苷;3MSOP.3-甲基亚磺酰丙基芥子油苷;4MSOB.4-甲基亚磺酰丁基芥子油苷;4MTB.4-甲硫丁基芥子油苷;5MSOP.5-甲基亚磺酰戊基芥子油苷;6MSOH.6-甲基亚磺酰己基芥子油苷;4OHI3M.4-羟基吲哚基-3-甲基芥子油苷;Benzyl.苯甲基芥子油苷(内标);I3M.吲哚基-3-甲基芥子油苷;8MSOO.8-甲基亚磺酰辛基芥子油苷;4MTI3M.4-甲氧吲哚基-3-甲基芥子油苷;1MTI3M.1-甲氧吲哚基-3-甲基芥子油苷。Note: 3OHP. 3-hydroxylpropylglucosinolate; 3MSOP. 3-methylsulphinylpropylglucosinolate; 4MSOB. 4-methylsulphinyl-butylglucosinolate; 4MTB. 4-methylthiobutylglucosinolate; 5MSOP. 5-methylsulphinylpentylglucosinolate; 6MSOH. 6-methylsulphinylhexylglucosinolate; 4OHI3M. 4-hydroxyindol-3-ylmethylglucosinolate; Benzyl. Benzylglucosinolate; I3M. Indol-3-ylmethylglucosinolate; 8MSOO. 8-methyl-sulphinyloctylglucosinolate; 4MTI3M. 4-methoxyindol-3-ylmethylglucosinolate; 1MTI3M. 1-methoxyindol-3-ylmethylglucosinolate.图1 拟南芥莲座叶芥子油苷的组成Fig.1 Glucosinolate composition of rosette leaves of Arabidopsis thaliana

2.2拟南芥莲座叶芥子油苷含量对缺硫胁迫的响应拟南芥莲座叶中脂肪族芥子油苷占芥子油苷总量的75%以上,吲哚族芥子油苷所占比例较小。其中,4MSOB约占脂肪族芥子油苷总量的59%,在脂肪族芥子油苷中含量最高;吲哚族芥子油苷中含量最高的为I3M,占吲哚族芥子油苷总量的70%。含量相对较少的芥子油苷有3OHP、3MSOP、5MSOP、6MSOH、4OHI3M和8MSOO等(图2)。

缺硫胁迫对拟南芥莲座叶芥子油苷的组成无影响,检测出11种芥子油苷,其中各种芥子油苷含量所占比例的总体趋势也未改变。芥子油苷总量对缺硫胁迫的响应显著,其中脂肪族芥子油苷对缺硫胁迫的响应显著,而吲哚族芥子油苷总量对缺硫胁迫的响应不显著。脂肪族的3MSOP、4MSOB、5MSOP、6MSOH、8MSOO和吲哚族的1MTI3M芥子油苷含量变化较明显,处理与对照间差异显著,其中3MSOP、4MSOB、5MSOP、6MSOH、8MSOO等脂肪族芥子油苷在缺硫胁迫下含量降低,而吲哚族的1MTI3M在缺硫胁迫下含量增加。

3结论与讨论

该研究表明,缺硫胁迫总体上降低了脂肪族芥子油苷和吲哚族芥子油苷含量,其中对吲哚族芥子油苷含量影响不显著,而对脂肪族芥子油苷含量影响显著。

缺硫胁迫影响芥子油苷的种类组成和含量[12]。芥子油苷的产生受供硫水平影响,有研究表明在缺硫胁迫条件下,芥子油苷分解酶-黑芥子酶编码的基因表达上调,其中吲哚族芥子油苷分解成生长素,同时芥子油苷合成的相应基因受到抑制,芥子油苷含量下降[20-25],芥子油苷可以认为是低硫条件下其他代谢过程的一个潜在硫源[11]。该研究的总体趋势是缺硫胁迫降低了脂肪族芥子油苷和吲哚族芥子油苷含量,这与Hirai等[23]的研究结果一致。另有研究表明缺硫胁迫下油菜中芥子油苷含量也低于正常供硫水平[24,26]。

注:柱上不同字母表示不同处理间在0.05水平差异显著。Note:Different letters indicated significant differences at 0.05 level among treatments.图2 拟南芥莲座叶芥子油苷含量对缺硫胁迫的响应Fig.2 Response of glucosinolate content in Arabidopsis rosette leaves to sulphur deficiency

参考文献

[1] LAKKINENI K C,ABROL Y P.Effect of sulfur fertilization on rapeseed-mustard and groundnut[J].Phyton,1992,32:75-78.

[2] ZHAO F,BILSBORROW P E,EVANS E J,et al.Sulphur turnover in the developing pods of single and double low varieties of oilseed rape(BrassicanapusL.)[J].Journal of the science of food and agriculture,1993,62:111-119.

[3] BLAKE-KALFF M M A,HARRISON K R,HAWKESFORD M J,et al.Distribution of sulfur within oilseed rape leaves in response to sulfur deficiency during vegetative growth[J].Plant physiology,1998,118:1337-1344.

[4] BLAKE-KALFF M M A,HAWKESFORD M J,ZHAO F J,et al.Diagnosing sulfur deficiency in field-grown oilseed rape(BrassicanapusL.)and wheat(TriticumaestivumL.)[J].Plant and soil,2000,225:95-107.

[5] BURANDT P,PAPENBROCK J,SCHMIDT A,et al.Genotypical differences in total sulfur contents and cysteine desulfhydrase activities inBrassicanapusL.[J].Phyton,2001,41:758-786.

[6] HALKIER B A,GERSHENZON J.Biology and biochemistry of glucosinolates[J].Plant biology,2006,57:303-333.

[7] FAHEY J W,ZALCMANN A T,TALALAY P.The chemical diversity and distribution of glucosinolates and isothiocyanates among plants[J].Phytochemistry,2001,56:5-51.

[8] WITTSTOCK U,HALKIE B A.Glucosinolate research in theArabidopsisera[J].Trends in plant science,2002,7:236-270.

[9] JAHANGIR M,BDEL-FARID I B,KIM H K,et al.Healthy and unhealthy plants:The effect of stress on the metabolism of Brassicaceae[J].Environmental and experimental botany,2009,67:23-33.

[10] CASTRO A,AIRES A,ROSA E,et al.Distribution of glucosinolates inBrassicaoleraceacultivars[J].Phyton,2004,44:133-143.

[11] FALK K L,TOKUHISA J G,GERSHENZON J.The effect of sulfur nutritionon plant glucosinolate content:Physiology and molecular mechanisms[J].Plant biology,2007,9:573-581.

[12] AGNETA R,LELARIO F,MARIA S D,et al.Glucosinolate profile and distribution among plant tissues and phenological stages of field-grown horseradish[J].Phytochemistry,2014,106:178-187.

[14] RANGKADILOK N,NICOLAS M E,BENNETT R N,et al.The effect of sulfur fertilizer on glucoraphanin levels in broccoli(B.oleraceaL.var italica)at different growth stages[J].Journal of agricultural and food chemistry,2004,52:2632-2639.

[15] SCHUSTER A,FRIEDT W.Glucosinolate content and composition as parameters of quality of camelina seed[J].Industrial crops and products,1998,7:297-302.

[16] ANTONIOUS G,BOMFORD M,VINCELLI P.ScreeningBrassicaspecies for glucosinolate content[J].Journal of environmental science and health,Part B,2009,44:311-316.

[17] AGHAJANZADEH T,HAWKESFORD M J,DEKOK L J.The significance of glucosinolates for sulfur storage in Brassicaceae seedlings[J].Front plant science,2014,5:704.

[18] 朱凤羽,陈亚州,阎秀峰.植物芥子油苷代谢与硫营养[J].植物生理学通讯,2007,43(6):1189-1194.

[19] PETERSEN B L,ANDRÉASSON E,BAK S,et al.Characterization of transgenicArabidopsisthalianawith metabolically engineered high levels ofp-hydroxybenzyl glucosinolate[J].Planta,2001,212:612-618.

[20] NIKIFOROVA V,FREITAG J,KEMPA S,et al.Transcriptome analysis of sulfur depletion inArabidopsisthaliana:Interlacing of biosynthetic pathways provides response specificity[J].Plant journal,2003,33:633-650.

[21] HIRAI M Y,YANO M,GOODENOWE D B,et al.Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses inArabidopsisthaliana[J].Proceedings of the national academy of sciences,2004,101:10205-10210.

[22] HIRAI M Y,FUJIWARA T,AWAZUHARA M,et al.Global expression profiling of sulfur-starvedArabidopsisby DNA macroarray reveals the role ofO-acetyl-L-serine as a general regulator of gene expression in response to sulfur nutrition[J].Plant journal,2003,33:651-665.

[23] HIRAI M Y,KLEIN M,FUJIKAWA Y,et al.Elucidation of gene-to-gene and metabolite-to-gene networks inArabidopsisby integration of metabolomics and transcriptomics[J].Journal of biological chemistry,2005,280:25590-25595.

[25] MARUYAMA-NAKASHITA A,NAKAMURA Y,WATANABE-TAKAHASHI A,et al.Identification of a novel cis-actiong element conferring sulfur deficiency response inArabiodopsisroots[J].Plant journal,2005,42:305-314.

[26] DUBUIS P H,MARAZZI C,ETDLER S,et al.Sulphur deficiency causes a reduction in antimicrobial potential and leads to increased disease susceptibility of oilseed rape[J].Journal of phytopathology,2005,153:27-36.

中图分类号Q 945.79

文献标识码A

文章编号0517-6611(2016)06-001-03

收稿日期2016-02-16

作者简介钟海秀(1979- ),女,黑龙江同江人,副研究员,博士,从事植物生理生态学研究。

基金项目黑龙江省应用技术研究与开发计划项目(PS13H04)。

猜你喜欢

拟南芥
空间站返回的拟南芥种子发芽了!实验成果首次对公众展出
miR398和miR408 对UV-B胁迫下拟南芥幼苗的影响
富天冬酰胺蛋白增强拟南芥辐射抗性的研究
尿黑酸对拟南芥酪氨酸降解缺陷突变体sscd1的影响
两种LED光源作为拟南芥生长光源的应用探究
拟南芥干旱敏感突变体筛选及其干旱胁迫响应机制探究
木醋液与6-苄基腺嘌呤对拟南芥生长的影响研究
番茄SlMIP基因参与转基因拟南芥的渗透调节
过量表达URO基因抑制拟南芥次生细胞壁开关基因表达