APP下载

高黏度热聚合乳清分离蛋白-三聚磷酸钠的研制及其性质

2016-03-21解思雨侯俊财冯宪民肖洪亮王占东王青云程建军东北农业大学食品学院哈尔滨50030黑龙江省完达山乳业股份有限公司哈尔滨50060

农业工程学报 2016年2期
关键词:凝胶黏度优化

解思雨,侯俊财,冯宪民,肖洪亮,王 利,王占东,王青云,程建军※(. 东北农业大学食品学院,哈尔滨50030; . 黑龙江省完达山乳业股份有限公司,哈尔滨 50060)



高黏度热聚合乳清分离蛋白-三聚磷酸钠的研制及其性质

解思雨1,侯俊财1,冯宪民1,肖洪亮2,王利2,王占东2,王青云2,程建军1※
(1. 东北农业大学食品学院,哈尔滨150030;2. 黑龙江省完达山乳业股份有限公司,哈尔滨 150060)

摘要:为了探究三聚磷酸钠(sodium tripolyphosphate, STPP)及热改性条件对乳清分离蛋白(whey protein isolate, WPI)聚合物性质的影响,该研究通过单因素和Box-Behnken优化试验进行工艺优化;利用荧光分光光度计、旋转流变仪、激光粒度分析仪和电子扫描显微镜对乳清分离蛋白聚合物性质进行研究。结果表明:在质量分数为10% WPI、0.09% STPP、90℃和pH值8.40条件下,热聚合反应42 min,WPI-STPP热聚合物黏度高达5 083 mPa·s。对WPI-STPP热聚合物性质分析发现:与空白、WPI热聚合体相比,WPI-STPP热聚合物的持水性显著提高(P<0.05);表面疏水性有显著增加(P<0.05)。WPI-STPP热聚合物粒径((292.09±2.17) μm)显著增大(P<0.05),且表现出较高的弹性模量。WPI-STPP热聚合物具有较大片状微观结构且呈不规则性,这有利于黏度的增大。研究结果为改性乳清蛋白及其在酸奶方面的应用提供理论依据与技术参考。

关键词:黏度;凝胶;优化;乳清分离蛋白;三聚磷酸钠;热聚合

解思雨,侯俊财,冯宪民,肖洪亮,王利,王占东,王青云,程建军. 高黏度热聚合乳清分离蛋白-三聚磷酸钠的研制及其性质[J]. 农业工程学报,2016,32(2):287-293.doi:10.11975/j.issn.1002-6819.2016.02.041http://www.tcsae.org Xie Siyu, Hou Juncai, Feng Xianmin, Xiao Hongliang, Wang Li, Wang Zhangdong, Wang Qingyun, Cheng Jianjun. Preparation and characters of whey protein isolate-sodium tripolyphosphate aggregates by heating [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 287-293. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.02.041http://www.tcsae.org

0 引 言

乳清蛋白作为干酪生产的副产物,因其具有较高的营养价值和良好的功能特性,逐渐引起人们重视[1]。但由于其具有较小的、近乎球状的蛋白颗粒,不能以传统的增稠剂利用[2]。通过热聚合改性使乳清蛋白分子颗粒增大,可使其蛋白溶液的有效动力学体积分数增大,从而提高其黏度,以进一步应用于食品加工中来改善产品的黏稠程度[3]。

热聚合改性技术的改性效果主要受乳清蛋白浓度、pH值、离子强度以及热处理方式的影响[4-8]。李铁红等[9]对乳清蛋白热改性进行研究,提出了热聚合技术生产乳清蛋白胶黏性产品可理论上替代果胶。郭明若等发明了一种利用乳清分离蛋白(whey protein isolate, WPI)在碱性条件下热聚合制备酸奶结构改良剂及酸奶的制备方法[10]。Britten等[11]将乳清蛋白聚合物加入到中性的牛奶中,与脱脂乳粉样品相比,在发酵过程中聚合物交联使酸奶的黏度从393 mPa·s提高到了813 mPa·s,持水性也由7.2 mL/g增至19.8 mL/g,进而提高发酵酸奶的质地。

Enomoto等[12]对糖基化β-乳球蛋白进行磷酸化,结果表明,β-乳球蛋白的热稳定性和乳化性都有所改善。还有研究指出鸡蛋蛋白和大豆乳清蛋白干法磷酸化反应1~5 d,其功能特性得到提高[13-14];磷酸根离子会提高热凝胶的硬度,弹性等凝胶性质[15-16]。由于引进了磷酸根基团,磷酸化蛋白质体系的电负性增强,提高了蛋白质分子之间的静电斥力,使之在食品体系中更易分散,相互排斥,因而提高了溶解度和聚结稳定性[17]。但上述研究中,干法磷酸化后蛋白体现出热凝胶状态(heat-set gel),在酸奶生产中无法应用;且反应时间较长,与湿法磷酸化相比,生产效率较低。

本研究以乳清分离蛋白和三聚磷酸钠为原料,采用湿法制备WPI-STPP热聚合物,缩短反应时间,提高生产效率。并通过黏度、表面疏水性、流变特性和微观结构等指标分析湿法改性WPI-STPP热聚合物性质。探讨乳清蛋白可溶性聚合物(soluble aggregates)形成规律,揭示磷酸化与热改性对其结构与性质的影响,进而改善酸奶的质地结构,为磷酸化热改性乳清蛋白替代果胶在酸奶中的应用提供参考。

1 试验材料

1.1原料和主要试剂

乳清分离蛋白(蛋白质质量分数为82.03%±1.27%,水分6.88%±0.16%,脂肪6.00%±0.02%,灰分2.58%±0.01%)购于恒天然乳品集团;三聚磷酸钠(sodium tripolyphosphate, STPP)及其他试剂均为分析纯。

1.2主要仪器设备

S-3400N电子扫描显微镜(日本HITACHI公司),MASTERSIZER-2000型激光粒度分析仪(英国Malvern公司),F-4500荧光分光光度计(日本日立公司),旋转流变仪(英国Malvern公司),FD5-4型冷冻干燥机(美国SIM公司),NDJ-5S数字式黏度计(上海精密科学仪器有限公司)等。

2 试验方法

2.1热聚合物的制备

WPI-STPP热聚合物:把一定量的STPP加入到WPI溶液中,室温(25±1)℃下磁力搅拌3 h,调溶液pH值,一定温度下热聚合不同时间,取出于冰水浴中迅速冷却到室温(25±1)℃,制得的样品于室温下待测。部分样品-50℃冷冻干燥,过80目筛,待测。

WPI热聚合体:质量分数为10% WPI溶液,室温下磁力搅拌3 h,调溶液pH值为8.4,90℃热聚合42 min,迅速于冰水浴中冷却至室温(25±1)℃。部分样品冷冻干燥,过80目筛,待测。

空白:10%WPI溶液,室温下磁力搅拌3 h。部分样品冷冻干燥,过80目筛,待测。

2.2聚合条件对WPI-STPP热聚合物黏度的影响

WPI质量分数分别选择8.0%、8.5%、9.0%、9.5%、10.0%和10.5%,加热温度分别选择70、75、80、85、90 和95℃,pH值分别选择7.0、7.5、8.0、8.5和9.0,STPP质量分数分别选择0.03%、0.05%、0.07%、0.09%和0.11%,加热时间分别选择20、30、40、50和60 min。以黏度为指标优化出较佳聚合条件。黏度测定:参考Wang等[18]的方法,用NDJ-5S数字式旋转黏度计测量所得样品黏度值。

2.3WPI-STPP热聚合物工艺条件的Box-Behnken 优化

根据单因素试验结果,采用Box-Behnken模型设计试验,因素水平编码见表1。

表1 Box-Behnken模型设计因素水平编码Table 1 Factors and levels of Box-Behnken experiment design

2.4WPI-STPP热聚合物性质及结构组成分析

溶解度的测定:参照Lawal等[19]方法。称取0.50 g各干燥样品,用蒸馏水定容至50 mL,磁力搅拌2 h。然后25℃条件下离心12 000 g×30 min,采用凯氏定氮法测定上清液中的蛋白质量。

持水性的测定:参考美国谷物化学家协会方法(america association of cereal chemist, AACC 88-04)。称取2.00 g干燥粉样(W1,g),放入已知质量(W2,g)的50 mL离心管内,加入20 mL蒸馏水,振荡混合均匀,静置10 min,25℃条件下,4 000 g离心20 min,取出,移去上清液,称量(W3,g)。持水性(WHC)表示为每克蛋白的含水量

表面疏水性的测定:参照Wagner等[20]的方法。利用1-苯胺基-8-萘磺酸(1-anilino-8-naphthalene-sulfonate,ANS)作为荧光探针测定样品的表面疏水性。用蒸馏水稀释成不同浓度的样品溶液,使溶液中蛋白浓度控制在0.005~0.1 mg/mL。取20 μL ANS(8.0 mmol/L)溶液加到7.0 mL样品溶液中,混合均匀,并于室温下避光10 min。在激发波长390 nm、发射波长470 nm以及狭缝5 nm的条件下进行测定。以荧光强度值对蛋白溶液浓度作图,记斜率为蛋白质的表面疏水性指数,表示表面疏水性。

流变学性质的测定:参照Purwanti等[21]方法。剪切应力(τ)和表观黏度(η)测试:选用夹具为直径60 mm的平行板,平行板间距为500 μm,剪切速率(γ)为1~300 s-1,测试温度设为25℃。黏弹性测试:测试样经4℃冷置过夜(12 h),测试前置于室温(25℃)环境中平衡1 h。选用夹具为直径60 mm的平行板,平行板间距为500 μm。选择一定应力(预试验所得),在频率范围0.1~10 Hz下进行动态频率扫描测试,记录测试样的黏性模量(G″)和弹性模量(G′),以黏、弹性模量对频率作图。

粒度分析:参考Sağlam等[22]方法。冻干样品颗粒吸收率为0.1,同时用超纯水做分散剂,其折射率为1.33。

电镜扫描分析:参考Helen等[23]方法。将干燥样品进行粘台处理,放入离子溅射镀射仪中经15 min的减压处理后,对样品离子溅射镀膜约10 min,最后将样品移至扫描电镜中观察并取相。

2.5统计分析

试验数据分析采用Design expert 7.0、SPSS11.5、Microsoft Excel分析软件,Origin7.5绘图软件。试验重复3次,数据以平均值±标准差的形式表示。

3 结果与分析

3.1聚合条件对WPI-STPP热聚合物黏度影响分析

3.1.1WPI质量分数对WPI-STPP热聚合物黏度的影响

蛋白浓度越大,形成的热聚合体越大,从而黏度增大[24-25],而且较大的聚合蛋白颗粒则更有利于后续冷凝胶的形成。WPI质量分数在9.5%~10%时,黏度由71 mPa·s增加到1 643 mPa·s,提高了22倍。如图1a所示,当浓度继续增大时,WPI-STPP热聚合物呈凝胶态,10%为较佳浓度。高浓度蛋白溶液中蛋白分子的分布较密集,蛋白与蛋白之间的相互聚合占主导[3]。同时,加入的三聚磷酸钠可能与加热展开的蛋白分子间相互作用,使其更易聚合成较大颗粒,使黏度增加,表现出NaCl与WPI热处理时的作用一致[26-27]。

3.1.2加热温度对WPI-STPP热聚合物黏度的影响

温度对WPI-STPP热聚合物黏度的影响见图1b。90℃时,乳清蛋白聚合物黏度达到4 577 mPa·s(高黏度液体),当温度升高到95℃时,聚合物黏度达到6 030 mPa·s(凝胶状),表现出呈倍数增长的趋势,因此热聚合温度选择在90℃为宜。随着温度的增加,乳清蛋白分子间热聚合程度更为剧烈,蛋白分子展开加速,而展开的蛋白结构更有利于进一步聚合,从而黏度不断增大[28]。Kiokias 等[29]研究发现75~90℃是β-乳球蛋白和α-乳白蛋白变性的稳定平衡阶段,磷酸盐(STPP)使得WPI的变性温度提高,提高温度使蛋白间的聚合作用显著增加,这类似于WPI热处理时NaCl的加入[30]。

3.1.3pH值对WPI-STPP热聚合物黏度的影响

随着pH值的增加,WPI-STPP热聚合物的黏度增大(图1c),当pH值达到9.0时,乳清蛋白聚合物黏度达到8 530 mPa·s(凝胶状)。黏度在pH值7.5时降至最低,这可能是由于STPP在偏碱性环境中与乳清蛋白发生了化学磷酸化作用有关[17]。蛋白磷酸化是磷酸基团与蛋白质氨基间的化学反应,随着自由氨基的减少,引入的磷酸根会使乳清蛋白表面的阴离子增多,静电斥力增加有利于蛋白分子的分散和稳定[17]。在远离WPI等电点的环境中,聚合物黏度增加的更快,因为在高pH值环境的蛋白聚合中二硫键的作用变得更重要[31],当pH值进一步增大时易形成三维网状结构的凝胶[32]。

3.1.4STPP质量分数对WPI-STPP热聚合物黏度的影响

根据GB2760-2011《食品添加剂使用标准》中规定磷酸根在食品中的添加量最多为0.5%,本试验选取的STPP添加量符合国标的添加标准。随着STPP质量分数的增加,WPI-STPP热聚合物蛋白黏度呈现增加的趋势,较高的聚合能力有利于凝胶三维网络结构的形成。如图1d所示,当STPP质量分数达到0.09%时,聚合物黏度较大;当STPP质量分数达到0.11%时,流动性较差。作为一种金属离子螯合剂和pH值调节剂,STPP的添加促进了乳清蛋白分子间的聚合[33]。

3.1.5加热时间对WPI-STPP热聚合物黏度的影响

如图1e所示,随加热时间的延长,WPI-STPP热聚合物黏度不断增大,长时间的热处理会使聚合更加完全,聚合物颗粒增大,数量增多。20 min热处理和30 min的处理无显著差异(P<0.05),其后,随加热时间延长,黏度则显著增加,加热处理50 min,黏度值达4 930 m Pa·s;当加热60 min时,样品出现凝胶状态。预试验结果发现热处理时间较短,WPI不能完全变性展开以相互聚合,因此蛋白分子的变性和展开与加热时间有关,当时间达到临界值时,才会有较好的聚合而不形成凝胶的效果。随时间的增加,WPI-STPP热聚合物黏度增加,这与Kulmyrzaev等[34]研究结果一致。

图1 聚合条件对WPI-STPP热聚合物黏度的影响Fig.1 Effects of aggregation factors on viscosity of WPI-STPP thermal aggregates

3.2不同黏度WPI-STPP热聚合物的工艺条件优化

3.2.1模型建立与显著性检验

以温度、pH值、STPP质量分数和时间为因子,乳清蛋白质量分数为10%,以黏度为响应值,采用Box-Behnken模型设计试验方案(表2)。

Box-Behnken响应面优化设计的方差分析见表3。试验中所得模型的决定系数R2=0.9855。由表3分析可知,本研究所得回归模型极显著(P<0.0001),此模型可行。剔除差异不显著的因子后,得到的回归方程为:

失拟项P值=0.0909>0.05,差异不显著。模型R2为0.9855,拟合度>90%,说明模型能够反应响应值(黏度)的变化。回归方程的回归系数影响其黏度,其绝对值的大小直接体现黏度受各因素影响的大小。

3.2.2最适条件和回归模型的验证

由响应面和实际生产条件求得的高黏度最佳工艺参数是加热温度90℃,pH值为8.40,STPP质量分数为0.09%以及时间为42 min时,预测值为4 954 mPa·s,实测值为(5 083±190) mPa·s,相对误差为2.60%。说明本试验得到的回归模型能较好的应用于高黏度WPI-STPP热聚合物制备参数和黏度的预测。

表2 Box-Behnken设计和响应值Table 2 Experimental design and results of Box-Behnken

表3 Box-Behnken设计方差分析表Table 3 Analysis of variance of regression parameters for Box-Behnken design model

3.3WPI-STPP热聚合物性质测定及结构组成分析

3.3.1WPI-STPP热聚合物溶解度测定

由表4可知,与WPI原样相比,WPI-STPP热聚合物和WPI热聚合体的溶解度都有显著下降,溶解度由空白的88.50%分别降到了34.5%和23.0%。WPI-STPP热聚

合物溶解度比WPI热聚合体的高(P<0.05),说明三聚磷酸钠的添加有利于蛋白溶解度的增加。研究表明,离子环境可以影响蛋白聚合物之间的相互作用,添加STPP形成的高离子强度环境通过增加蛋白的水合作用从而增加WPI的溶解性[35],因此,WPI-STPP热聚合物的溶解度较纯热处理的蛋白样高。同时,一部分的磷酸化作用也会引入磷酸基团,增加乳清蛋白分子间的静电斥力,提高了蛋白的溶解性,但效果不明显。

3.3.2WPI-STPP热聚合物持水性测定

如表4所示,空白的持水性未测出,蛋白天然构象不会束缚大量的水。而WPI-STPP热聚合物的持水性显著高于WPI热聚合体(P<0.05)。热聚合引起持水性增加可能是蛋白多肽链展开的同时,活性氨基酸侧链基团暴露[36]。STPP的加入使持水性增加较多,一是蛋白聚合颗粒较大,呈不规则片状的蛋白结构吸水更多;二是引入的磷酸根会造成蛋白质分子的表面形状和表面电荷的变化,这些变化对蛋白质的水化层及蛋白分子间的作用力都将产生较大的影响[24]。

3.3.3WPI-STPP热聚合物表面疏水性测定

加热促进蛋白粒子展开,大量疏水基团暴露,如表4所示,WPI-STPP热聚合物的表面疏水性最大,说明三聚磷酸钠的加入可能使蛋白形态和疏水性氨基酸发生更大的变化,导致了乳清分离蛋白的组成也发生了变化。疏水性的增加能使蛋白绑定脂肪能力增加[37],这也验证了3.3.2节中的结果。

表4 不同处理样品的性质比较Table 4 Solubility, water holding capacity and surface hydrophobicity of different samples

3.4WPI-STPP热聚合物流变性质测定

3.4.1剪切应力与表观黏度

WPI-STPP热聚合物剪切应力变化如2a所示,根据幂律模型[38-39],空白组、WPI-STPP热聚合物和WPI热聚合体均表现出非牛顿流体的性质。

如图2b随着剪切速率的增加,3种样品的表观黏度都有下降的趋势。与空白相比,WPI-STPP热聚合物和WPI热聚合体剪切稀释作用明显。WPI-STPP热聚合物剪切应力以及表观黏度的增加与蛋白变性及聚合物的形成有关,流体半径增加,表观出较好的流变性。

3.4.2黏弹性

如图2c随着扫描频率的增加,样品的弹性模量(G′)和黏性模量(G″)都有增加的趋势。WPI-STPP热聚合物的弹性模量始终大于其黏性模量,表现出较好的微凝胶结构特性。而WPI热聚合体综合表现出流体的特性。在STPP存在时,展开的乳清分离蛋白间排斥力进一步减少,促进了蛋白间的更大的聚合反应,因此冷置时易形成微凝胶状态,G′大于G″,表现出似固体的弹性性质[40]。

图2 不同样品的剪切应力、表观黏度和黏弹性模量比较Fig.2 Shear stress, apparent viscosity and viscoelastic graph of different samples

3.5WPI-STPP热聚合物粒度分析

图3显示,WPI-STPP热聚合物的平均粒径为((292.09±2.17)μm),与WPI热聚合体((269.89±10.16)μm)和空白组((31.39±1.81 μm)相比,差异显著(P<0.05)。有研究表明,粒径大小与黏度呈正相关关系[41]。STPP的加入有效地屏蔽了电荷或降低了电荷密度,增大了WPI颗粒。

图3 不同样品的粒度分布比较Fig.3 Particle size distribution of different samples

3.6WPI-STPP热聚合物扫描电镜分析

从图4a中可以看出空白颗粒形状呈球形,是典型的的乳清蛋白;WPI经热改性4c后,颗粒形状由球形变成不规则的碎片状,颗粒大小不一,碎片松散;WPI-STPP热聚合4b后,片状颗粒直径大于图4c中WPI热聚合体的颗粒。长线型和不规则的碎片状聚合体有利于溶液黏度的增加以及制备冷凝胶[42],因此,在所测样品中,WPI-STPP热聚合物黏度最大。

图4 不同样品的扫描电镜图谱比较(×500)Fig.4 Scanning electron microscopic images of different samples

4 结 论

1)通过单因素试验确定了各因素对乳清蛋白-三聚磷酸钠(whey protein isolate-sodium tripolyphosphate,WPI-STPP)热聚合物黏度的影响规律,用Box-Behnken分析法对各因素的最佳水平范围及其交互作用进行研究和建立了预测WPI-STPP热聚合物黏度的二次多项式数学模型,并得到最佳制备工艺条件:WPI质量分数为10%,加热温度为90℃,pH值为8.40,STPP质量分数为0.09%以及加热时间为42 min,黏度值达5 083 mPa·s,回归模型拟合情况较好(R2=0.9855)。

2)通过流变仪、粒径分析仪以及扫描电镜对WPI-STPP热聚合物性质分析,WPI-STPP溶解度(34.5%)、持水性(5.20 g/g)、表面疏水性(3 928.19)、平均粒径(292.09±2.17)μm(P<0.05),流变学特性都较空白组和热聚合WPI有所改善。

[参考文献]

[1] Madureira A R, Tavares T, Gomes A M P, et al. Invited review: Physiological properties of bioactive peptides obtained from whey proteins[J]. J Dairy Sci, 2010, 93(2): 437-455.

[2] Vardhanabhuti B, Foegeding E A. Rheological properties and characterization of polymerized whey protein isolates[J]. J Agr Food Chem, 1999, 47(9): 3649-3655.

[3] Bryant C M, McClements D J. Optimizing preparation conditions for heat-denatured whey protein solutions to be used as cold-gelling ingredients[J]. J Food Sci, 2000, 65(2): 259-263.

[4] Nicolai T, Britten M, Schmitt C. β-Lactoglobulin and WPI aggregates: Formation, structure and applications[J]. Food Hydrocolloid, 2011, 25(8): 1945-1962.

[5] Jung J M, Savin G, Pouzot M, et al. Structure of heat-induced β-lactoglobulin aggregates and their complexes with sodium-dodecyl sulfate[J]. Biomacromolecules, 2008, 9(9): 2477-2486.

[6] Gulzar M, Bouhallab S, Jeantet R, et al. Influence of pH on the dry heat-induced denaturation/aggregation of whey proteins[J]. Food Chem, 2011, 129(1): 110-116.

[7] Ryan KN, Vardhanabhuti B, Jaramillo DP. Stability and mechanism of whey protein soluble aggregates thermally treated with salts[J]. Food Hydrocolloid, 2012, 2(27): 411-420.

[8] Vardhanabhuti B, Allen Foegeding E. Effects of dextran sulfate, NaCl, and initial protein concentration on thermal stability of β-lactoglobulin and α-lactalbumin at neutral pH[J]. Food Hydrocolloid, 2008, 22(5): 752-762.

[9] 李铁红,戴显祺,史亚丽. 功能型乳清蛋白热改性技术的研究与应用[J].中国乳业,2009(1):50-52. Li Tiehong, Dai Xianqi, Shi Yali. Research and application of thermal modification of whey protein[J]. China Dairy,2009(1): 50-52. (in Chinese with English abstract)

[10] 郭明若,张铁华,高峰,等. 一种酸奶结构改良剂及酸奶的制备方法:中国专利,102696758A. [P]. 2012-10-03.

[11] Britten M, Giroux H J. Acid-induced gelation of whey protein polymers: Effects of pH and calcium concentration during polymerization[J]. Food Hydrocolloid, 2001, 15(4): 609-617.

[12] Enomoto H, Li C P, Morizane K. Glycation and phosphorylation of β-lactoglobulin by dry-heating: Effect on protein structure and some properties[J]. J Agr Food Chem,2007, 55(6): 2392-2398.

[13] Li C P, Chen D, Peng J, et al. Improvement of functional properties of whey soy protein phosphorylated by dry-heating in the presence of pyrophosphate[J]. LWT-Food Sci Technol,2010, 43(6): 919-925.

[14] Hayashi Y, Nagano S, Enomoto H, et al.. Improvement of foaming property of egg white protein by phosphorylation through dry-heating in the presence of pyrophosphate[J]. J of Food Sci, 2009, 74(1): 68-72.

[15] Li C P, Enomoto H, Ohki S, et al. Improvement of functional properties of whey protein isolate through glycation and phosphorylation by dry-heating. J Dairy Sci, 2005, 88(12): 4137-4145.

[16] Li C P, Ibrahim H R, Sugimoto Y, et al. Improvement of functional properties of egg white protein through phosphorylation by dry heating in the presence of pyrophosphate. J Agr Food Chem, 2004, 52(18): 5752-5758.

[17] 李阳阳. 大豆分离蛋白磷酸化及功能性质研究[D]. 天津:天津商学院,2006. Li Yangyang. Phosphorlation of Soy Protein Isolate and Research on Functional Properties[D]. Tianjin: Tianjing university of commerce, 2006. (in Chinese with English abstract)

[18] Wang G, Zhang T, Ahmad S, et al. Physicochemical and adhesive properties, microstructure and storage stability of whey protein-based paper glue[J]. Int J Adhes Adhes, 2013,41(1): 198-205.

[19] Lawal O S, Adebowale K O, Adebowale Y A. Functional properties of native and chemically modified protein concentrates from bambarra groundnut[J]. Food Res Int, 2007,40(8): 1003-1011.

[20] Wagner J R, Sorgentini D A, Anon M C. Relation between solubility and surface hydroponicity as an indicator of modifications during preparation processes of commercial and laboratory-prepares soy protein isolates[J]. J Agr Food Chem, 2000, 48(8): 3159-3165.

[21] Purwanti N, Smiddy M, Jan van der Goot A, et al. Modulation of rheological properties by heat-induced aggregation of whey protein solution[J]. Food Hydrocolloid,2011, 25(6): 1482-1489.

[22] Sağlam D, Venema P, de Vries R, et al. Exceptional heat stability of high protein content dispersions containing whey protein particles[J]. Food Hydrocolloid, 2014, 34(1): 68-77.

[23] Helen W, Jane R, Gregory H, et al. Physico-chemical properties, probiotic survivability, microstructure, and acceptability of a yogurt-like symbiotic oats-based product using pre-polymerized whey protein as a gelation Agent[J]. J Food Sci, 2010, 75(5): 327-337.

[24] Mudgal P, Daubert C R, Foegeding E A. Cold-set thickening mechanism of β-lactoglobulin at low pH: concentration effects[J]. Food hydrocolloid, 2009, 23(7): 1762-1770.

[25] Purwanti N, Smiddy M, Jan van der Goot A, et al. Modulation of rheological properties by heat-induced aggregation of whey protein solution[J]. Food Hydrocolloid,2011, 25(6): 1482-1489.

[26] Hussain R, Gaiani C, Jeandel C, et al. Combined effect of heat treatment and ionic strength on the functionality of whey proteins[J]. J Dairy Sci, 2012, 95(11): 6260-6273.

[27] Ryan K N, Vardhanabhuti B, Jaramillo D P, et al. Stability and mechanism of whey protein soluble aggregates thermally treated with salts[J]. Food Hydrocolloid, 2012, 27(2): 411-420.

[28] Kazmierski M, Corredig M. Characterization of soluble aggregates from whey protein isolate[J]. Food Hydrocolloid,2003, 17(5): 685-692.

[29] Kiokias S, Dimakou C, Oreopoulou V. Effect of heat treatment and droplet size on the oxidative stability of whey protein emulsions[J]. Food Chem, 2007, 105(1): 94-100.

[30] Hussain R, Gaiani C, Jeandel C, et al. Combined effect of heat treatment and ionic strength on the functionality of whey proteins[J]. J Dairy Sci, 2012, 95(11): 6260-6273.

[31] Hoffmann M A M, van Mil P J J M. Heat-induced aggregation of β-lactoglobulin: role of the free thiol group and disulfide bonds[J]. J Agr Food Chem, 1997, 45(8): 2942-2948.

[32] Ramos Ó L, Pereira J O, Silva S I, et al. Effect of composition of commercial whey protein preparations upon gelation at various pH values[J]. Food Res Int, 2012, 48(2): 681-689.

[33] Unterhaslberger G, Schmitt C, Sanchez C, et al. Heat denaturation and aggregation of β-lactoglobulin enriched WPI in the presence of arginine HCl, NaCl and guanidinium HCl at pH 4.0 and 7.0[J]. Food Hydrocolloid, 2006, 20(7): 1006-1019.

[34] Kulmyrzaev A, Bryant C, McClements D J. Influence of sucrose on the thermal denaturation, gelation, and emulsion stabilization of whey proteins[J]. J Agr Food Chem, 2000,48(5): 1593-1597.

[35] Vardhanabhuti B, Foegeding E A, McGuffey M K, et al. Gelation properties of dispersions containing polymerized and native whey protein isolate[J]. Food Hydrocolloid, 2001,15(2): 165-175.

[36] Manoi K, Rizvi S S H. Rheological characterizations of texturized whey protein concentrate-based powders produced by reactive supercritical fluid extrusion[J]. Food Res Int, 2008,41(8): 786-796.

[37] Voutsinas L P, Nakai S. A simple turbidimetric method for determining the fat binding capacity of proteins[J]. J Agri Food Chem, 1983, 31(1): 58-63.

[38] Rioux L E, Turgeon S L. The Ratio of Casein to Whey protein impacts yogurt digestion in vitro[J]. Food Digestion,2012, 3(1/2/3): 25-35.

[39] 董贝森,朱海涛,于跃芹. 花生蛋白粉溶液流变学特性及功能性的研究[J]. 农业工程学报,1999(1):251-252. Dong beisen, Zhu haitao, Yu yueqin. The research of peanut powder solution rheology and characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering, 1999(1): 251-252. (in Chinese with English abstract)

[40] Lorenzen P C, Schrader K. A comparative study of the gelation properties of whey protein concentrate and whey protein isolate[J]. Dairy Sci Technol, 2006, 86(4): 259-271.

[41] Cheng Q, Mcclements D J. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size[J]. Food Hydrocolloid. Food Hydrocolloids, 2011, 25(5): 1000-1008.

[42] Nicolai T, Durand D. Led food protein aggregation for new functionality[J]. Curr Opin Colloid In, 2013, 18(4): 249-256.

Preparation and characters of whey protein isolate-sodium tripolyphosphate aggregates by heating

Xie Siyu1, Hou Juncai1, Feng Xianmin1, Xiao Hongliang2,
Wang Li2, Wang Zhangdong2, Wang Qingyun2, Cheng Jianjun1※
(1. College of Food Science, Northeɑst Agriculturɑl University, Hɑrbin 150030, Chinɑ; 2. Heilongjiɑng Wondersun Dɑiry Co.,Ltd, Hɑrbin 150060, Chinɑ)

Abstract:This study was aimed to prepare the whey protein isolate (WPI) - sodium tripolyphosphate (STPP) aggregates using heating at higher pH value and evaluate their characteristics. The results of single-factor experiment showed that the increase of viscosity of polymers was different from the increasing of WPI concentration, temperature, pH value, STPP content and aggregation time. The models were obtained by using a Box-Behnken optimization experiment design with the 4 factors (temperature, pH value, STPP content and aggregation time) based on the results of single-factor experiments. The results of Box-Behnken optimization experiment showed that the order of the effect of the 4 factors on viscosity was as follows: temperature > STPP content > pH value > aggregation time. The optimized condition determined was that 10% (w/w) WPI,0.09% (w/w) STPP at 90°C for 42 min with pH value of 8.40, and the actual viscosity was 5083 mPa·s. The prepared WPI-STPP thermal aggregates were the thick sample with a semi flow state, and the regression model was fitted well. Determination of properties and structural analysis of WPI, WPI-STPP thermal aggregates and WPI aggregates showed the water holding capacity, surface hydrophobicity and rheological characteristics of WPI-STPP thermal aggregates were improved compared with WPI and WPI aggregates. For WPI aggregates, water holding capacity increased from 4.83 to 5.20 g per gram protein (P<0.05). However, the solubility of WPI-STPP thermal aggregates decreased from 88.5% to 34.50%, which was lower than that of WPI. Heat treatment and STPP significantly affected the surface hydrophobicity of the soluble aggregates. WPI-STPP thermal aggregates could form good cold-induced gels, which could widen its application in foods of gel type. When STPP was added, the average particle size of whey protein thermally polymerized increased from 31.39±1.81 μm for WPI to 292.09±2.17 μm for WPI-STPP thermal aggregates. The difference between strong and weak soluble gels could be assessed by the oscillatory dynamic experiments using parallel-plate geometries. Rotational rheometer showed that the rheological characteristics of WPI-STPP thermal aggregates were improved. The rheological characteristics were determined from storage and loss moduli as the functions of time and frequency. WPI-STPP thermal aggregates had higher storage modulus values. The results showed that the increasing of particles played a significant role in the water holding capacity and rheological properties of these dispersions. The microscopic structure analysis of WPI-STPP thermal aggregates showed that they denatured fully, and the larger irregular fractal aggregates of WPI-STPP thermal aggregates could be most useful to increase the viscosity. Transmission electron microscopy showed that heat-induced WPI-NaCl soluble gels had a dense structure and a higher number of cross-links. The utilization of WPI-STPP thermal aggregates is very attractive due to the low-complexity processing conditions needed, lower production cost and higher nutritive value. The production cost of yogurt is less than yogurt with pectin according to the optimal technological condition of the experiment. The application of this technology proposed in this paper will bring great economic benefits for the yogurt processing industry.

Keywords:viscosity; gels; optimization; whey protein isolate; sodium tripolyphosphate; thermal aggregation

通信作者:※程建军,男,黑龙江人,教授,研究方向为农产品加工。哈尔滨东北农业大学食品学院。Email:cheng577@163.com

作者简介:解思雨,女,河北省献县人,研究方向为农产品加工。哈尔滨东北农业大学食品学院,150030。Email:xiesiyu2406@163.com

基金项目:“十二五”农村领域国家科技计划课题(2013BAD18B07)

收稿日期:2015-09-21

修订日期:2015-10-12

中图分类号:TS201

文献标志码:A

文章编号:1002-6819(2016)-02-0287-07

doi:10.11975/j.issn.1002-6819.2016.02.041

猜你喜欢

凝胶黏度优化
超限高层建筑结构设计与优化思考
民用建筑防烟排烟设计优化探讨
关于优化消防安全告知承诺的一些思考
一道优化题的几何解法
纤维素气凝胶的制备与应用研究进展
超轻航天材料——气凝胶
保暖神器——气凝胶外套
超高黏度改性沥青的研发与性能评价
“冻结的烟”——气凝胶
扩链增黏回收PET的特性黏度和结晶行为研究