耕层构造的土壤结构质量-径级数字图像分析
2016-03-21丁启朔董盛盛李毅念薛金林何瑞银南京农业大学工学院南京210031
丁启朔,董盛盛,李毅念,邱 威,薛金林,何瑞银(南京农业大学工学院, 南京210031)
耕层构造的土壤结构质量-径级数字图像分析
丁启朔,董盛盛,李毅念,邱威,薛金林,何瑞银
(南京农业大学工学院, 南京210031)
摘要:为了探讨以土壤结构体为单元的耕层构造定量方法,该文利用犁耕生成的土壤结构体2D图像计算其质量-径级分布。分别以30°、45°、60°及90°拍摄获取土壤结构体的数字图像,计算土壤结构体各径级区间的几何指标,拟合质量-径级分布模型。结果表明土壤结构体的棱角性和形状指数随径级增大而增加,但矩形度随之减小;以60°拍摄所得的土壤结构体质量-投影面积关系的拟合精度最高,各粒径区间R2均不低于0.89;数字图像筛分与手工测量所得的土壤结构体质量-径级分布无显著差异(P>0.05),表明数字图像筛分是从2D投影面信息获取土壤结构体质量-径级分布的准确方法;相对于Weibull和Rosin-Rammler模型,用Gaudin-Schuhmann模型拟合获得的土壤结构体质量-径级分布效果较优,用该模型拟合数字图像筛分所得的土壤结构体质量-径级分布,R2为0.98;相对于干筛法,数字图像筛分方法的划分的径级区间更精细,所得的模型拟合精度更高。
关键词:土壤;模型;图像处理;耕层构造;土壤结构体;数字图像;质量-径级分布
丁启朔,董盛盛,李毅念,邱威,薛金林,何瑞银. 耕层构造的土壤结构质量-径级数字图像分析[J]. 农业工程学报,2016,32(2):134-140.doi:10.11975/j.issn.1002-6819.2016.02.020http://www.tcsae.org
Ding Qishuo, Dong Chengsheng, Li Yinian, Qiu Wei, Xue Jinlin, He Ruiyin. Digital image processing of mass-size distribution of soil structures in plough layer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016,32(2): 134-140. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.02.020http://www.tcsae.org
0 引 言
合理的耕层构造是土地高产出的重要保障,能够通过调控土壤的水、肥、气、热等环境要素促进农作物生长发育[1-6]。已有针对耕层构造的研究多集中在其肥效、土壤水以及耕层构造模式对作物产量的影响等方面[6-13]。耕层构造的“虚、实”等状态多进行定性的描述,如全实耕层、虚实并存等[1,5-6],耕层构造的定量方法多用土壤的硬度、容重、导水率、持水率等指标[7,13-18]。然而对于多数黏性土壤的耕作而言,耕层构造多以土壤结构体的形式存在。以土壤结构体为基本结构单元的耕层构造属性未能得到准确的界定和定量的描述,耕层的土壤结构体单元及由结构单元磊结的耕层构造定量方法缺乏。
土壤结构体的感官评价是土壤物理学的常规分析方法[19]。相关学者提供了土壤结构体的外观评价指标与方法[20-22],但是目前感官评价法仍存在主观性大、统一性差等状况。相对于土壤结构体的感官评价存在的主观因素而言,用于土壤团聚体及土壤孔隙的定量方法较多,包括土壤切片、计算机断层扫描(computer tomography,CT)和核磁共振波谱法(nuclear magnetic resonance spectroscopy, NMR)[23-25]。然而这些用于土壤结构分析的定量方法主要涉及土壤的微形态特征分析[26],并不适用于耕层构造的土壤结构体定量分析。
现有的耕层构造土壤结构体定量方法及相关国家标准使用筛分操作[27-28],所得到的数据是土壤结构体的径级-质量分布信息。然而用于原位快速测试的数字图像分析方法通常提供土壤结构体的2D平面信息[29],因此需要探讨使用2D信息获取土壤结构体质量信息的方法。本文在高雅等[29]工作的基础上,研究从土壤结构体2D数字图像转换为土壤结构体质量信息方法,与此同时,推断耕后土壤结构体的径级分布,并结合土壤结构体的外观几何指标描述水稻土犁耕处理后耕层构造及土壤结构体的状态信息。
1 材料与方法
1.1土壤样本的获取方法
田间试验于2014年11月19日水稻收获后进行,试验地点位于南京市浦口区江浦农场(118°59′E,31°98′N),土壤类型是黏性水稻土,该区常年稻麦轮作。土壤pH值7.6,土壤砂粒、壤粒、黏粒、有机物质量分数分别为21.3%、39.84%、38.85%和3.18%,液限47.33%,塑限26.67%。
使用田间原位综合耕作试验台[30]挂接铧式犁进行测试,单铧犁工作幅宽21 cm,控制耕深为15 cm,牵引速度为0.2 m/s,耕作测试的有效行程3 m,试验过程中测取0~15 cm土层的含水率、容重分别为30.79%、1.61 mg/m3,试验随机重复3次。原位自然风干2天后缓慢地取出耕作范围内大径级土垡并放置在海绵垫上,同时集取耕作范围内的较小的土壤结构体。所得土壤结构体粒径分主要布于4~180 mm范围内,其中小于4 mm粒径的土壤结构体质量占总质量6.6%,3次试验土壤结构体粒径在128~180 mm数量较少,分别为6个、7个、7个。
1.2 土壤结构体的图像采集与筛分
土壤结构体的数字图像采集、标定及预处理参照高雅等[29]的方法,图像采集设备如图1所示。将土壤结构体随机平铺于尺度为80 cm×80 cm的浅色背景板上,三脚支架上安装的数码相机型号为Cannon A 3300,拍摄时光圈焦距调至F3.2。俯视角拍摄时,相机与土壤结构体垂直距离为1 m,与背景板中心水平距离为80 cm(图1);90°拍摄时,相机位于背景板中点正上方,与土壤结构体垂直距离为1 m。所有拍摄的图片以JPEG格式保存。
数字图像采集完成后,对3次试验样本分别进行手工测量,采用2倍频径级划分区间,为了较少地破坏土壤结构体,手工测量使用不同径级机加工的圆环逐个测量土壤结构体,记录其质量与相应径级。手工测量与干筛法采用2倍频径级划分区间,径级区间为>4~16 mm、>16~32 mm、>32~64 mm、>64~128mm、>128 mm,在试验取样中发现>128 mm土壤结构体数量占样本总量的6‰,将>64~128mm、>128 mm土壤结构体划分至>64 mm径级区间。
图1 图像采集装置Fig.1 Image acquisition device
1.3土壤结构体的数字图像筛分及径级分布
数字图像分析方法已应用于土壤结构数量-径级分布[29],但从2D图像计算土壤结构体的质量信息尚没有系统研究,而且拍摄2D图像的角度不同转换得到的质量信息也不相同,因此在预备试验中分别按照俯视角0°、15°、30°、45°、60°、75°及90°对土壤结构体进行拍摄,计算单个土壤结构体质量与该土壤结构体图像面积的对应关系。考虑到田间耕作的在线检测过程较难使用小角度拍摄(0°及15°),而且预备试验也发现75°拍摄得到的结果与90°拍摄非常相近,因此,本文研究时仅使用30°、45°、60°及90°的拍摄结果进行对比。
本文使用MATLAB中NLIN(非线性)程序拟合得到土壤结构体质量-径级分布统计模型[31-32],并将干筛法得到的土壤结构体质量-径级及数量-径级分布信息与数字图像分析的结果进行统计学分析。鉴于土壤结构体质量-径级分布状态的描述多用模型表达,因此本文选择3种模型(Weibull模型[33]、Rosin-Rammler模型[34]、Gaudin-Schuhmann模型[34])描述犁耕后水稻土耕层构造的土壤结构体质量—径级分布,3种模型的方程列于表1。
表1 土壤结构体质量—径级分布模型及参数Table 1 Soil structure mass-size distribution models with parameters
2 结果与分析
2.1土壤结构体外观几何指标
数字图像分析能够按照任意的径级区间对土壤结构体进行图像筛分[29],按8 mm等间距径级划分得到土壤结构体的棱角性、矩形度、形状指数随径级变化规律如图2所示,随径级的增大,棱角性呈线性递增趋势,矩形度随径级增加有下降的趋势。犁耕处理的耕层构造土壤结构体在不同的径级范围具有不同的外观几何特性,在一定程度上,数字图像分析作为一个精细的定量方法能够为耕层构造的土壤结构体单元提供几何外观的模型信息。
图2 土壤结构体几何指标Fig.2 Box plots of soil structure geometry indicator
2.2土壤结构体2D投影面积与质量的对应关系
将俯视角30°、45°、60°以及90°的拍摄结果进行处理,所得土壤结构体的2D投影面积与对应的土壤结构体质量进行拟合,发现在不同径级区间以及用不同拍摄角所得的土壤结构体投影面积与质量的相关性各不相同。在>4~16 mm径级区间径级区间R2表现为,R2(30°)<R2(90°)<R2(45°)<R2(60°),60°拟合效果最好,其R2为0.89。R2在>16~32 mm以及>32~64 mm表现一致,为R2(90°)<R2(30°)<R2(45°)<R2(60°),60°拟合效果较好,R2分别为0.91 与0.94,在90°拍摄拟合效果很差,可能是由于在该区间的土壤结构体形状极其不规则导致的,需要在今后的研究中进一步试验探讨;在>64 mm径级区间R2表现为,R2(90°)<R2(60°)<R2(45°)<R2(60°),60°拟合效果较好, R2为0.95。相对于试验其余拍摄角度,60°拍摄时,土壤结构体质量与投影面积拟合精度最优。与此同时,随着土壤结构体径级增大,R2逐渐增大。因此为了较为准确描述土壤结构体质量-径级分布,本文选择在俯视角为60°拍摄时的土壤结构体投影面积与质量的函数关系。
不同径级区间土壤结构体投影面积(s)与质量(m)对应的关系如图3所示,>4~16 mm径级区间:m=0.8562s−0.199;>16~32 mm径级区间:m=1.7446s−3.4554;>32~64 mm径级区间:m=3.5626s−20.425;>64 mm径级区间:m=7.5087s− 279.12。然而结果也进一步表明构成犁耕耕层构造的土壤结构体在不同径级范围的质量分布特征并不完全相同。
图3 60°拍摄各径级区间的土壤结构体质量-投影面关系Fig.3 Mass-projection area relation of soil structures in each size range for 60° projection
2.3土壤结构体径级分布
2.3.1土壤结构体质量-径级分布模型
构成犁耕耕层构造的土壤结构体径级分布模型分别使用Weibull模型、Rosin-Rammler模型和Gaudin-Schuhmann模型进行拟合。为了确定土壤结构体质量-径级分布模型的适用性,分别使用3种评价指标:相关系数(correlation coefficient, R2)、均方根误差(root-meansquare error, RMSE)以及Akaike信息准则(akaike information criterion, AIC)评价模型的拟合精度[35]。其中R2值越大表示拟合效果越好,RMSE和AIC越小拟合效果越好。通过对3种模型拟合精度分析表明(表2),对于R2,Gaudin-Schuhmann模型>Weibull模型> Rosin-Rammler模型,Gaudin-Schuhmann模型与Rosin-Rammler模型差异显著(P<0.05),与Weibull模型差异不显著(P>0.05),Gaudin-Schuhmann模型R2为0.93;RMSE和AIC表现一致,均为Gaudin-Schuhmann模型<Weibull模型<Rosin-Rammler模型,Gaudin-Schuhmann模型与Weibull模型、Rosin-Rammler模型差异显著(P<0.05)。综合比较得出Gaudin-Schuhmann模型的拟合效果最好,Weibull模型次之,Rosin-Rammler 模型拟合效果最差。因此用Gaudin-Schuhmann模型表达水稻土耕层构造的土壤结构体质量-径级分布效果最优。
表2 不同模型的相关系数、均方根误差和信息准则Table 2 Correlation coefficient, Root-mean-square error and Akaike information criterion of different models
2.3.2土壤结构体的数字图像筛分
将手工测量所得土壤结构体的质量-径级及数量径级分布信息与数字图像筛分的结果进行统计分析(表3)。在<8 mm径级区间内2种方法所得的土壤结构体质量-径级分布(累积质量分数)差异显著(P<0.05),而在<16 mm、<32 mm、<64 mm、<128 mm 以及<256 mm径级区间,手工测量与数字图像筛分的结果差异不显著(P>0.05)。表明8 mm以下的土壤结构体粒径较小,图像分析的误差相对较大,而8 mm以上土壤结构体的图像分析结果较为准确。土壤结构体的质量-径级分布的手工测量与数字图像结果差异不显著(P>0.05),说明用数字图像分析方法得到土壤结构体的2D平面信息能够准确描述土壤结构体3D(质量)信息。
表3 2种方法的土壤结构体—径级分布Table 3 Cumulative percentage soil structure distribution of two methods
使用3种土壤结构体质量-径级分布模型中最优的Gaudin-Schuhmann模型拟合(表2),干筛法以2倍频获得的土壤结构体质量-径级分布模型为F( d< D)=( d/252.102)0.77,R2为0.93(图4a);数字图像筛分以4 mm等间距径级分布获得的土壤结构体的质量-径级分布模型为F( d< D)=( d /171)1.096,R2为0.98(图4b)。对于土壤结构体的数量径级分布而言,干筛法所得模型为w1=116.95ln(d)+653.87,R2为0.74(图4c);数字图像筛分得到的模型为w2=136.93ln(d)+582.8,R2为0.83(图4d)。相对于干筛法,数字图像筛分能够便捷、精细的划分区间,所得质量-径级分布模型与数量径级分布模型精度更高。
使用模型描述土壤结构体的质量-径级分布的优点是土壤结构体的形状参数能够量化。干筛法和数字图像筛分所得的模型的形状参数λ分别为252.102和171,造成这一差异的原因是手工筛分所用的筛孔径级为2倍频径级,间距较大,径级的上限为256 mm。与此不同,数字图像筛分按照取样所得的实际土壤结构体粒径最大值确定(最大粒径值为180 mm),因此可见模型的参数λ与土壤结构体的径级上限相关,Diaz-Zorita[34]等的研究中也得到同样的结论。土壤结构的质量-径级分布模型将耕后土壤结构参量化,从而有助于建立更高阶的土壤耕作力学模型[28]。试验发现>32 mm土壤结构体的质量份额超过样本总质量的60%(图4c,d),表明水稻土条件下犁耕的耕层构造质量较差,碎土效果不良。Arvidsson[36]研究发现,在黏性土壤条件下犁耕的耕层构造质量较差,土壤结构体(>32 mm)质量分数为47%。
图4 土壤结构体径级分布Fig.4 Soil structure size distribution
3 讨 论
耕层构造是耕层土壤的三相搭配及垒结[37],土壤结构体(土垡、土块)由机械耕作生成,是构成耕层构造的基本结构单元。对耕层构造的土壤结构的研究主要采用土壤团聚体的组成以及稳定性等指标[38]。多数研究认为土壤结构的基本单元是土壤团聚体[26,39-40],因此土壤团聚体的形成和变化过程、团聚体稳定性以及影响因素等是土壤结构研究的主要内容,其中干筛法、湿筛法是土壤学中定量描述土壤团聚体的常用方法[26,41-42]。在试验预处理中,人们通常将大土块按自然裂痕手工剥离为1 cm3左右的土壤结构体并进一步筛分[11,41,43],但是这样获得的团聚体显然不是机械耕作创建的(块状)土壤结构体。丁启朔[37]对机械耕作生成的土壤结构体径级进行了界定,耕层构造的径级范畴在cm-dm水平[37,44],高出土壤结构一个径级量级以上,可见现有的针对耕层构造的土壤结构体定量方法存在欠缺,限制了人们对耕层构造的定量描述。
机械耕作的耕层构造多为土壤结构体的磊结体,高雅[29]等的研究中,提出了棱角性、矩形度、形状指数3个几何指标,但是没有在特定的土壤耕作条件下推广应用,本文将3个指标应用于水稻土犁耕的土壤结构体,反映了田间水稻土的真实的几何特征。周虎[24]认为:土壤结构的定量研究一直受到方法和理论的困扰,常规的描述土壤结构体的指标是筛分指标,体现的是‘质量-径级’信息。孔令德[45]研究表明旋耕后的块状土壤结构体径级分布符合分形特征。Fernlund[46]提出3D图像分析方法的必要性,通过获取两个互相垂直投影面的图像分析土壤结构体径级径级分布,但该方法繁琐且难于消除水平拍摄的误差。高雅等[29]的研究中,体现了“数量-径级”信息,没有对“质量-径级”信息深入研究。本文使用数字图像分析技术,通过不同角度拍摄的土壤结构体的2D图像信息获取土壤结构体质量-径级分布,对比手工测量与数字图像筛分所得土壤结构体质量-径级分布,表明数字图像分析方法能够较为准确得描述土壤结构体质量-径级分布。
耕作机械的国家和行业标准[27-28]以及人们在研发新型耕作机械过程中对碎土质量的测定和评价都使用碎土率[47-48]指标,然而碎土率指标既不能反映土块的径级分布也无法定量土块的几何外观特征,从而导致人们在描述耕层构造时缺少相应的定量手段。土壤结构数字图像分析是准确评价耕作机具的作业性能的保障,进一步的系统开发可以实现田间无损在线检测,如耕层构造的实时原位在线检测[49],不过该技术的系统集成尚需进一步完善。
4 结 论
1)犁耕处理的耕层构造土壤结构体在不同的径级范围具有不同的外观几何特性,土壤结构体的棱角性和形状指数随径级增大有增大的趋势,而矩形度随径级有减小的趋势。
2)犁耕耕层构造的土壤结构体在不同径级范围的质量分布特征并不完全相同。60°拍摄获得的土壤结构体质量-投影面积的拟合精度较之其他拍摄角度更高;通过比较数字图像筛分与手工测量得到的土壤结构体的质量-径级分布,在<8 mm径级区间内2种方法所得的土壤结构体质量-径级分布差异显著(P<0.05),而在<16 mm、<32 mm、<64 mm、<128 mm以及<256 mm径级区间,手工测量与数字图像筛分的结果差异不显著(P>0.05)。
3)相对于Weibull和Rosin-Rammler模型,用Gaudin-Schuhmann模型拟合获得水稻土条件下犁耕的土壤结构体质量-径级分布精度更高,用该模型拟合数字图像筛分所得的土壤结构体质量-径级分布,R2为0.98。
[参考文献]
[1] 白伟,孙占祥,郑家明,等. 虚实并存耕层提高春玉米产量和水分利用效率[J]. 农业工程学报,2014,30(21):81-90. Bai Wei, Sun Zhanxiang, Zheng Jiaming, et al. Furrow loose and ridge compaction plough layer improves spring maize yield and water use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(21): 81-90. (in Chinese with English abstract)
[2] 王玉玲,李军,柏炜霞. 轮耕体系对黄土台塬麦玉轮作土壤生产性能的影响[J]. 农业工程学报,2015,31(1):107-116. Wang Yuling, Li Jun, Bai Weixia. Effects of rotational tillage systems on soil production performance in wheat-maize rotation field in Loess Platform region of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(1): 107-116. (in Chinese with English abstract)
[3] 丁昆仑,Hann M J. 耕作措施对土壤特性及作物产量的影响[J]. 农业工程学报,2000,16(3):28-31. Ding Kunlun, Hann M J. Effects of soil management on soil properties and crop yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(3): 28-31. (in Chinese with English abstract)
[4] 罗洋,郑金玉,郑洪兵,等. 不同耕层结构对玉米生长发育的影响[J]. 玉米科学,2014,22(2):113-116. Luo Yang, Zheng Jinyu, Zheng Hongbing. et al. Effect on growth of maize in different soil plough layer by tillage[J]. Journal of Maize Sciences, 2014, 22(2): 113-116. (in Chinese with English abstract)
[5] 王立春,马虹,郑金玉. 东北春玉米耕地合理耕层构造研究[J]. 玉米科学,2008,16(4):13-17. Wang Lichun, Ma Hong, Zheng Jinyu. Research on rational plough layer con struction of spring maize soil in Northeast China[J]. Journal of Maize Sciences, 2008, 16(4): 13-17. (in Chinese with English abstract)
[6] 刘武仁,郑金玉,罗洋,等. 不同耕层构造对土壤硬度和含水量的影响[J]. 玉米科学,2013,21(6):76-80. Liu Wuren, Zheng Jinyu, Luo Yang, et al. Effects of different tillage layer structures on soil compaction and soil water content[J]. Journal of Maize Sciences, 2013, 21(6): 76-80. (in Chinese with English abstract)
[7] 孔晓民,韩成卫,曾苏明,等. 不同耕作方式对土壤物理性状及玉米产量的影响[J]. 玉米科学,2014,22(1):38-43. Kong Xiaomin, Han Chengwei, Zeng Suming, et al. Effects of different tillage managements on soil physical properties and maize yield[J]. Journal of Maize Sciences, 2014, 22(1): 38-43. (in Chinese with English abstract)
[8] 秦红灵,高旺盛,马月存,等. 两年免耕后深松对土壤水分的影响[J]. 中国农业科学,2008,41(1):78-85. Qin Honglin, Gao Wangsheng, Ma Yuecun, et al. Effects of subsoiling on soil moisture under no-tillage 2 years later[J]. Scientia Agricultura Sinica, 2008, 41(1): 78-85. (in Chinese with English abstract)
[9] 黄健,张惠琳,傅文玉,等. 东北黑土区土壤肥力变化特征的分析[J]. 土壤通报,2005,36(5):659-663. Huang Jian, Zhang Huilin, Fu WenYu, et al. Analysis of the changing characteristics of the soil fertilities in the black soil area of northeast China[J]. Chinese Journal of Soil Science,2005, 36(5): 659-663. (in Chinese with English abstract)
[10] 聂良鹏,郭利伟,牛海燕,等. 轮耕对小麦-玉米两熟农田耕层构造及作物产量与品质的影响[J]. 作物学报,2015,41(3):468-478. Nie Liangpeng, Guo Liwei, Niu Haiyan, et al. Effects of rotational tillage on tilth soil structure and crop yield and quality in maize-wheat cropping system[J]. Acta agronomica sinica 2015, 41(3): 468-478. (in Chinese with English abstract)
[11] 侯贤清,贾志宽,韩清芳,等. 不同轮耕模式对旱地土壤结构及入渗蓄水特性的影响[J]. 农业工程学报,2012,28(5):85-94. Hou Xianqing, Jia Zhikuan, Han Qingfang, et al. Effects of different rotational tillage patterns on soil structure,infiltration and water storage characteristics in dryland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(5): 85-94. (in Chinese with English abstract)
[12] 张银平,杜瑞成,刁培松,等. 机械化生态沃土耕作模式提高土壤质量及作物产量[J]. 农业工程学报,2015,31(7):33-38. Zhang Yinping, Du Ruicheng, Diao Peisong, et al. Mechanical and ecological tillage pattern improving soil quality and crop yields[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(7): 33-38. (in Chinese with English abstract)
[13] 何进,李洪文,高焕文. 中国北方保护性耕作条件下深松效应与经济效益研究[J]. 农业工程学报,2006,22(10):62-67. He Jin, Li Hongwen, Gao Huanwen. Subsoiling effect and economic benefit under conservation tillage mode in Northern China[J]. Transactions of the CSAE, 2006, 22(10): 62-67. (in Chinese with English abstract)
[14] 张祥彩,李洪文,何进,等. 耕作方式对华北一年两熟区土壤及作物特性的影响[J]. 农业机械学报,2013,44(z1). Zhang Xiangcai, Li Hongwen, He Jin, et al. Effects of different tillage managements on characteristics of soil and crop in annual double cropping areas in northern China[J]. Transactions of the CSAE, 2013, 44(z1). (in Chinese with English abstract)
[15] 郑洪兵,郑金玉,罗洋,等. 长期不同耕作方式下的土壤硬度变化特征[J]. 农业工程学报,2015,31(9):63-70. Zheng Hongbing, Zheng Jinyu, Luo Yang, et al. Change characteristic of soil compaction of long-term different tillage methods in cropland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2015, 31(9): 63-70. (in Chinese with English abstract)
[16] 王岩,刘玉华,张立峰,等. 耕作方式对冀西北栗钙土土壤物理性状及莜麦生长的影响[J]. 农业工程学报,2014,30(4):109-117. Wang Yan, Liu Yuhua, Zhang Lifeng, et al. Effects of tillage mode on chestnut soil’s physical characters and naked oats growth in Northwest Hebei province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(4): 109-117. (in Chinese with English abstract)
[17] 张玉娇,李军,郭正,等. 渭北旱塬麦田保护性轮耕方式的产量和土壤水分效应长周期模拟研究[J]. 中国农业科学,2015,48(14):2730-2746. Zhang Yujiao, Li Jun, Guo Zheng, et al. Long-term simulation of winter wheat yield and soil water response to conservation tillage rotation in Weibei Highland[J]. Scientia Agricultura Sinica, 2015, 48(14): 2730-2746. (in Chinese with English abstract)
[18] 武均,蔡立群,罗珠珠,等. 保护性耕作对陇中黄土高原雨养农田土壤物理性状的影响[J]. 水土保持学报,2014,28(2):112-117. Wu Jun, Cai Liqun, Luo Zhuzhu, et al. Effects of conservation tillage on soil physical properties of rainfed field of the loess plateau in central of gansu[J]. Journal of Soil & Water Conservation, 2014, 28(2): 112-117. (in Chinese with English abstract)
[19] Askari M S, Cui J, Holden N M. The visual evaluation of soil structure under arable management[J]. Soil & Tillage Research, 2013, 134(8): 1-10.
[20] Mueller L, Shepherd G, Schindler U, et al. Evaluation of soil structure in the framework of an overall soil quality rating[J]. Soil & Tillage Research, 2013, 127(1): 74-84.
[21] Ball B C, Batey T, Munkholm L J. Field assessment of soil structural quality-a development of the Peerlkamp test[J]. Soil Use & Management, 2007, 23(4): 329-337.
[22] Müller L. Soil Structure, Visual Assessment[M]. Springer Netherlands, Encyclopedia of Agrophysics, 2011: 783-786.
[23] 程亚南,刘建立,吕菲,等. 基于CT图像的土壤孔隙结构三维重建及水力学性质预测[J]. 农业工程学报,2012,28(22):115-122. Cheng Yanan, Liu Jianli, Lü Fei, et al. Three-dimensional reconstruction of soil pore structure and prediction of soil hydraulic properties based on CT images[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(22): 115-122. (in Chinese with English abstract)
[24] 周虎,彭新华,张中彬,等. 基于同步辐射微CT研究不同利用年限水稻土团聚体微结构特征[J]. 农业工程学报,2011,27(12):343-347. Zhou Hu, Peng Xinhua, Zhang Zhongbin, et al. Characterization of aggregate microstructure of paddy soils cultivated for different years with synchrotron based micro-CT[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 27(12): 343-347. (in Chinese with English abstract)
[25] 杨永辉,武继承,毛永萍,等. 利用计算机断层扫描技术研究土壤改良措施下土壤孔隙[J]. 农业工程学报,2013,29(23):99-108. Yang Yonghui, Wu Jicheng, Mao Yongping, et al. Using computed tomography scanning to study soil pores under different soil structure improvement measures[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(23): 99-108. (in Chinese with English abstract)
[26] 毕利东,张斌,潘继花. 运用Image J软件分析土壤结构特征[J]. 土壤,2009,41(4):654-658. Bi Lidong, Zhang Bin, Pan Jihua. Analysis of Soil Structural Properties by Using Image-J Software[J]. Soils, 2009, 41(4): 654-658. (in Chinese with English abstract)
[27] 中华人民共和国农业部. 深松、耙茬机械作业质量标准:NY-T 741-2003 [B]. 农业部农业机械化管理司,2003:6 -9.
[28] 中国机械工业部.旋耕机械试验方法:GB/T5668.3-1995 [S].北京:中国标准出版社,1995.
[29] 高雅,丁启朔,李毅念,等. 土壤结构的数字图像分析方法与指标[J]. 土壤通报,2015,46(3):513-518. Gao Ya, Ding Qishuo, Li Yinian, et al. A digital image processing tool and indices for soil structure[J]. Chinese Journal of Soil Science, 2015, 46(3): 513-518. (in Chinese with English abstract)
[30] 杨艳山,丁启朔,丁为民,等. 田间原位综合耕作试验台设计与应用[J]. 农业机械学报,2015. Yang Yanshan, Ding Qishuo, Ding Weimin, et al. Development of a multi-purpose in-situ experimental platform for tillage tool test[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015. (in Chinese with English abstract)
[31] 孟凤英,丁启朔,鹿飞,等. 冲击作用下粘性土壤破碎体的分形维数与影响因素[J]. 农业机械学报,2009,40(3):108-111. Meng Fengying, Ding Qishuo, Lu Fei, et al. Fragmentation fractal dimensions of cohesive soil under impact and its influencing factors[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(3): 108-111. (in Chinese with English abstract)
[32] Ding Qishuo, Ding Weimin. Stress wavelets:multi-scale and multi-resolution assessment of soil structure by the drop shatter method[J]. Soil Tillage Research, 2006, 88(1/2): 168-179.
[33] Pei Zhao, Ming-an Shao, Wail Omran,et al. A modified model for estimating the full description of soil particle size distribution[J]. Can. J. Soil Sci., 2013, 93: 65-72.
[34] Diaz-Zorita M, Perfect E, Grove J H. Disruptive methods for assessing soil structure[J]. Soil & Tillage research, 2002,64(s1/2): 3-22.
[35] 赵爱辉,黄明斌,史竹叶. 土壤颗粒分布参数模型对黄土性土壤的适应性研究[J]. 农业工程学报,2008,24(1):1-6. Zhao Aihui, Huang Mingbin, Shi Zhuye. Evaluation of parameter models for estimating loess soil particle size distribution[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008,24(1): 1-6. (in Chinese with English abstract)
[36] Arvidsson J, Hillerstrom O. Specific draught, soil fragmentation and straw incorporation for different tine and share types[J]. Soil & Tillage research, 2010, 110(1): 154-160.
[37] 丁启朔,丁为民,潘根兴,等. 土壤宏观力学结构与精准耕作[J]. 中国农业科学,2012,45(1):26-33. Ding Qishuo, Ding Weimin, Pan Genxing, et al. Nanjing Agricultural University. Soil macro-structure and precision tillage[J]. China Agriculture Science, 2012, 45(1): 26-33. (in Chinese with English abstract)
[38] 周虎,吕贻忠,李保国. 土壤结构定量化研究进展[J]. 土壤学报,2009,46(3):501-506. Zhou Hu, Lü Yizhong, Li Baoguo. Advancement in the study on quantification of soil structure[J]. Acta Pedologica Sinica,2009, 46(3): 501-506. (in Chinese with English abstract)
[39] 田慎重,王瑜,李娜,等. 耕作方式和秸秆还田对华北地区农田土壤水稳性团聚体分布及稳定性的影响[J]. 生态学报,2013,33(22):7116-7124. Tian Shenzhong, Wang Yu, Li Na, et al. Effects of different tillage and straw systems on soil water-stable aggregate distribution and stability in the North China Plain[J]. Acta Ecologica Sinica, 2013, 33(22): 7116-7124. (in Chinese with English abstract)
[40] 李文昭,周虎,陈效民,等. 基于同步辐射显微CT研究不同施肥措施下水稻土团聚体微结构特征[J]. 土壤学报,2014,51(1):67-74. Li Wenzhao, Zhou Hu, Chen Xiaomin, et al. Characterization of aggregate microstructures of paddy soil under different patterns of fertilization with synchrotron radiation micro-CT[J]. Acta Pedologica Sinica, 2014, 51(1): 67-74. (in Chinese with English abstract)
[41] 程科,李军,毛红玲. 不同轮耕模式对黄土高原旱作麦田土壤物理性状的影响[J]. 中国农业科学,2013,46(18):3800-3808. Cheng Ke, Li Jun, Mao Honglin. Effects of different rotational tillage patterns on soil physical properties in rainfed wheat fields of the loess plateau[J]. Scientia Agricultura Sinica, 2013, 46(18): 3800-3808. (in Chinese with English abstract)
[42] 蒲玉琳,林超文,谢德体,等. 植物篱-农作坡地土壤团聚体组成和稳定性特征[J]. 应用生态学报,2013,24(1):122-128. Pu Yulin, Lin Chaowen, Xie Deti, et al. Composition and stability of soil aggregates in hedgerow-crop slope land[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 122-128. (in Chinese with English abstract)
[43] 祁迎春,王益权,刘军,等. 不同土地利用方式土壤团聚体组成及几种团聚体稳定性指标的比较[J]. 农业工程学报,22011,27(1):340-347.Qi Yingchun, Wang Yiquan, Liu Jun, et al. Comparative study on composition of soil aggregates with different land use patterns and several kinds of soil aggregate stability index[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(1): 340-347. (in Chinese with English abstract)
[44] 张斌,许玉芝,李娜,等. 土壤团聚结构变化的关键控制过程研究进展[J]. 土壤与作物,2014,3(2):41-49. Zhang Bin, Xu Yuzhi, Li Na, et al. Recent development in controlling factors for aggregated soil structure[J]. Soil and Crop, 2014, 3(2): 41-49. (in Chinese with English abstract)
[45] 孔令德,桑正中. 正转旋耕土壤破碎情况的研究[J]. 农业机械学报,2001,32(3):31-32. Kong Linde, Sang Zhengzhong. Evaluation of crushing soil from rotary tillage[J]. Transactions of the Chinese Society of Agricultural Machinery, 2001, 32(3): 31-32. (in Chinese with English abstract)
[46] Fernlund J M R. Image analysis method for determining 3-D shape of coarse aggregate[J]. Cement & Concrete Research, 2005, 35(8): 1629-1637.
[47] 车刚,张伟,万霖,等. 基于灭茬圆盘驱动旋耕刀多功能耕整机设计与试验[J]. 农业工程学报,2012,28(20):34-40. Che Gang, Zhang Wei, Wan Lin, et al. Design and experiment of multifunctional tillage machine with driven bent blade by stubble ploughing disk[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(20): 34-40. (in Chinese with English abstract)
[48] 李永磊,宋建农,康小军,等. 双辊秸秆还田旋耕机试验[J].农业机械学报,2013,44(6):45-49. Li Yonglei, Song Jiannong, Kang Xiaojun, et al. Experiment on twin-roller cultivator for straw returning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013,44(6): 45-49. (in Chinese with English abstract)
[49] Bogrekci I, Godwin R J. Development of an image-processing technique for soil tilth sensing[J]. Biosystems Engineering,2007, 97: 323-331.
Digital image processing of mass-size distribution of soil structures in plough layer
Ding Qishuo, Dong Chengsheng, Li Yinian, Qiu Wei, Xue Jinlin, He Ruiyin
(College of Engineering, Nɑnjing Agriculturɑl University, Nɑnjing 210031, Chinɑ)
Abstract:In many instances the basic structural units of plough layer are soil aggregates which are resulted from tillage operation and packed into layers to form the seedbed. Quantification of plough layer is limited to a few basic soil parameters,including cone index, bulk density and porosity. Soil aggregates are assessed with dry sieving. These parameters do not provide the detailed structural information of plough layer. Precision management of plough layer requires that soil structures be quantified with more parameters that are geometrically quantifiable. Quantitative method for tilled-layer soil structures was adopted; the digital images of soil structures were taken, the aggregate mass was calculated and the mass-size distributions of soil structures sampled from a plowed paddy field were studied. The tilt angle of camera was set to 30°, 45°, 60° and 90°,respectively, when taking the photos of soil structures. Soil structures were also measured manually with dry-sieving method for comparison. During the manual measurement of soil aggregates, a caliper was used and both the long and the short axes of the aggregates were measured. The dry-sieving used the nested sieves with the openings of 4, 8, 16, 32, 64 and 128 mm,respectively. Geometrical parameters of soil structures in each size range were calculated with an image-processing program developed in MatLab, including angularity, shape index and rectangle degree. Collected data for the mass-size distribution of the soil aggregates after plowing were also fitted respectively with 3 models, i.e. Weibull model, Rosin-Rammler model and Gaudin-Schuhmann model. It showed that, along with the increase of size range, both angularity and shape index increased,but rectangle degree decreased, meaning that different effects of mechanical operation were induced by different size ranges of soil structures, even though under the same plowing treatment. Detailed analysis on each size range and each tilting angle showed that photos taken with 60otilting angle yielded the best fitting results compared with other tilting angles. The 60otilting angle was the most suitable for camera when used for on-line soil structure monitoring. No significant difference (P>0.05) was observed between digital image processing and manual measurement, proving that the digital image processing was an accurate method to acquire mass-size distributions of soil structure. Compared with Weibull and Rosin-Bammler distribution, Gaudin-Schumann model provided the best fitting between aggregate mass and size, with the R2of 0.98. Digital image processing discriminated soil structures in finer scales and provided a higher precision curve fitting for soil structures compared with dry-sieving method. The variation of the acquired results from dry-sieving was significant due to the large size ranges between adjacent sieve sizes. Unlike the limited methods for tilled-layer soil structure quantification, such as dry sieving, image-processing was capable of not only quantifying the geometrical parameters of soil structures, but also distinguishing and separating soil structures in finer scales, such as 5 mm size range or any other arbitrary scales. This fine scale distinction was helpful in providing more precise modeling on soil structures. The results prove that the image-processing is a powerful tool to calculate geometric parameters of soil structures and discriminate soil structural features in detail.
Keywords:soils; models; image processing; soil tilth; soil structure; digital image processing; mass-size distribution
作者简介:丁启朔,男,汉族,江苏邳州人,教授,博导。南京南京农业大学工学院,210031。Email:qsding@njau.edu.cn
基金项目:国家自然科学基金资助项目(41371238);江苏优势学科建设资助项目(PAPD)
收稿日期:2015-09-30
修订日期:2015-12-10
中图分类号:S152.4
文献标志码:A
文章编号:1002-6819(2016)-02-0134-07
doi:10.11975/j.issn.1002-6819.2016.02.020