APP下载

加气灌溉温室番茄地土壤N2O排放特征

2016-03-21侯会静蔡焕杰西北农林科技大学旱区农业水土工程教育部重点实验室杨凌712100西北农林科技大学水利与建筑工程学院杨凌712100

农业工程学报 2016年3期
关键词:温室气体番茄土壤

陈 慧,侯会静,蔡焕杰,朱 艳(1.西北农林科技大学旱区农业水土工程教育部重点实验室,杨凌 712100;2.西北农林科技大学水利与建筑工程学院,杨凌 712100)



加气灌溉温室番茄地土壤N2O排放特征

陈 慧,侯会静※,蔡焕杰,朱艳
(1.西北农林科技大学旱区农业水土工程教育部重点实验室,杨凌 712100;2.西北农林科技大学水利与建筑工程学院,杨凌 712100)

摘要:加气灌溉引起的土壤中氧气含量改变势必会影响N2O的产生和排放。为了揭示加气灌溉对秋冬茬温室番茄地土壤N2O排放的影响,2014年采用静态箱-气相色谱法对加气灌溉土壤N2O排放进行原位观测,研究秋冬茬温室番茄地土壤N2O排放对加气灌溉的动态响应。试验采用灌水量(充分灌溉、亏缺灌溉)和加气(加气、不加气)的双因素设计,设置4个处理,分别为加气亏缺灌溉(A1)、不加气亏缺灌溉(CK1)、加气充分灌溉(A2)和不加气充分灌溉(CK2)。结果表明:不同加气灌溉模式下土壤N2O排放均主要集中在番茄果实膨大期,其他时期排放水平较低。加气和充分供水处理均增加了番茄整个生育期的土壤N2O排放量,以A2处理最大(120.34 mg/m2),分别是A1和CK1处理的1.89和4.21倍(P<0.01),而与CK2处理差异性不显著(P=0.078)。此外,不同灌水水平不加气处理,除N2O 排放主峰值点外,N2O排放通量与土壤充水孔隙率(water-filled pore space,WFPS)存在指数正相关关系(P<0.05),WFPS在46.0%~52.1%时观测到N2O剧烈释放。可见,加气灌溉增加了温室番茄地土壤N2O排放,且在亏缺灌溉条件下,加气灌溉对温室番茄地土壤N2O排放的影响显著。研究结果为评估加气灌溉技术的农田生态效应及设施菜地温室气体减排提供参考。

关键词:土壤;温室气体;排放控制;N2O;加气灌溉;番茄

陈 慧,侯会静,蔡焕杰,朱艳. 加气灌溉温室番茄地土壤N2O排放特征[J]. 农业工程学报,2016,32(3):111-117.doi:10.11975/j.issn.1002-6819.2016.03.016http://www.tcsae.org

Chen Hui, Hou Huijing, Cai Huanjie, Zhu Yan. Soil N2O emission characteristics of greenhouse tomato fields under aerated irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 111-117. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.03.016http://www.tcsae.org

Email:chenhui2014@nwsuaf.edu.cn

0 引 言

温室气体引起的全球变暖和臭氧层破坏是当今两大备受关注的全球问题[1]。N2O是大气中重要的温室气体,对全球气候变化起到重要作用,也是导致臭氧层破坏的光化学反应的主要参与者[2]。2013年大气中N2O的浓度达到321 nL/L(标准状况下),比工业化前的浓度值增加了20%[3]。农田土壤被证实是大气中N2O的重要产生源,在大气N2O浓度增加中占有极其重要的地位[4]。由于设施园艺的先进性与高效性,中国设施园艺面积已位居世界首位,2011年栽培面积已超过400万hm2[5]。在中国农田系统中,设施菜地无疑是氮肥投入最多的系统,每年仅氮肥投入量已经超过1 200 kg/hm2[6],如此高的氮肥投入使N2O排放受到广泛关注。因此,研究设施菜地N2O排放量对估算中国农田温室气体排放,制定设施菜地温室气体减排措施具有重要意义[7]。

土壤中N2O的产生主要是在微生物的参与下,通过硝化和反硝化作用完成的[8]。土壤中氧气浓度是调节硝化反应、反硝化反应的主要因素之一,氧气压力主要通过控制反硝化酶的活性与合成来影响反硝化反应;而硝化反应是在需氧条件下发生。因此,土壤中氧气含量的改变势必会影响N2O的产生和排放。已有土壤中氧气含量的改变对N2O排放的影响研究多集中于微生物培养上[9],田间试验研究很少。加气灌溉通过向根区土壤通气改变根部微环境,已被大量研究证实能提高作物产量、改善作物品质与提高水分利用效率[10-13]。加气灌溉引起土壤中氧气含量的改变,势必会影响N2O的产生和排放。但是,加气灌溉对土壤温室气体排放影响的研究尚未见报道。因此,本文通过温室小区试验研究不同加气灌溉模式对温室番茄地土壤N2O排放的影响,旨在为评估加气灌溉技术的农田生态效应及设施菜地温室气体减排提供一定的理论基础与科学依据。

1 材料与方法

1.1试验区概况

2014年8-12月试验在西北农林科技大学旱区农业水土工程教育部重点实验室的日光温室内进行(34°20′N、108°04′E)。所处地理位置属半湿润易旱区,年均日照时数2 163.8 h,无霜期210 d。温室结构为房脊型,长×宽×高为36 m×10.3 m×4 m。土壤类型为塿土,1 m土层内平均土壤干容重为1.35 g/cm3,田间持水量为23.8%(质量含水率)。

1.2试验设计

试验设计充分灌溉和亏缺灌溉2种灌水量、加气与不加气共计4个处理(表1),各处理3次重复。充分供水时每次灌水量计算公式[14]为

式中W表示每次灌水的参考灌水量,mL;kcp为蒸发皿系数,取为1.0;Epan为蒸发皿测得的蒸发量,mm;A为单个灌水器控制的面积,cm2。

表1 试验设计Table 1 Experimental design

1.3试验过程

试验小区起垄种植,每垄面积为3.2 m2(4.0 m×0.8 m),1垄作为1个重复,共计12垄,采用完全随机设计布设。以温室番茄为供试作物(品种为“飞越”),采用营养钵育苗,定植时间为2014年8月13日,此时秧苗处于3叶1心至4叶1心,定植时浇透底水,定植后在垄上覆膜,土壤蒸发可忽略。每垄种9株番茄,株距35 cm。为防止水分侧渗,垄与垄之间用塑料膜隔开。灌水方式采用地下滴灌,滴灌带埋深15 cm,滴头间距35 cm。灌溉水量由安置在温室内的E601型蒸发皿的蒸发量值确定,按2次灌水间隔内蒸发量值进行灌水,每次灌水安排在当天早上08:00。利用文丘里计(Mazzei 287)作为加气设备进行加气。设备安装在灌水毛管的首端,在进水口和毛管末端都装有压力表,进口压力为0.1 MPa,出口压力为0.02 MPa。由排气法得到进气量约占灌溉水量的17%,灌溉毛管中多余的水可回流[15]。文丘里计加气法主要利用文丘里原理通过前后压力差产生射流,造成喉管负压,使强劲的水流与空气混合,产生的气泡多而细腻,溶气效率高。文丘里管注射器安装在支管首部,在灌水的同时加气,形成水气混合模式进行加气灌溉[16]。此外,施肥只施基肥,有机肥料(N、P2O5、K2O质量分数≥10%;有机质质量分数≥45%)与复混肥料(总养分质量分数≥45%,其中氮、磷、钾质量分数各为15%)。

番茄生育期具体划分为:苗期(定植至第1穗开花,8月13日-9月7日),开花坐果期(第1穗开花至第1穗果实开始膨大,9月8日-9月23日),果实膨大期(第1穗果实开始膨大至第1穗果实开始采摘,9月24日-11月9日),成熟期(第1穗果实开始采摘至全部收获,11月10日-12月28日),于12月28日结束,生育期138 d。

1.4田间采样与观测

采用静态箱原位采集气样,箱体用6 mm厚的聚氯乙烯材料制成,长×宽×高为25 cm×25 cm×25 cm。箱体外表面用海绵与锡箔纸包裹,防止取样期间因为阳光照射导致箱体内温度的剧烈变化。箱体顶部安装有搅拌空气的小风扇,保证箱体内气体均匀,使取样具有代表性。静态箱底座在番茄移植当天埋设于小区中央以便日后气体采集,直到番茄收获。底座上端由大约3 cm深的凹槽构成用以放置静态箱箱体,取样时注水密封,防止周围空气与箱内气体交换。气体采样从定植后30 d开始,番茄生育前期每隔1周左右采集1次,末期每隔2周左右采集1次;取样时间分别在10:00、10:10、10:20和10:30时刻利用带有三通阀的50 mL注射器进行4次气体采集,每次取气30 mL,并在当天进行室内浓度分析。去除奇异点,使样品浓度测量值随时间的线性回归系数R2≥0.85。

气体采样的同时用安插在箱体顶部的电子温度计(TA288)测量箱内温度;用中子水分仪(CS830)测量土壤20 cm深度处的土壤含水量,并在每个月始末用烘干法对中子仪测定值进行校正。每个处理分别在小区首、中、末端3个点进行测量,取其平均值作为每个处理的土壤含水量,并转换成土壤充水孔隙率(water-filled pore space,WFPS)[17]。

1.5气体分析及通量计算

N2O浓度采用安捷伦气象色谱仪分析仪测定(Agilent Technologies 7890A GC System),气体排放通量为

式中F为N2O气体排放通量,μg/(m2·h);ρ是标准状态下气体密度,g/cm3;h为箱体高度,m;为气体浓度变化率,μg/(m3·h);T为箱内温度,℃。

1.6数据分析

采用OriginPro8.5作图和利用积分功能求N2O累积排放量,用SPSS Statistics 22.0数据处理软件对试验数据进行统计分析。

2 结果与分析

2.1不同加气灌溉模式下温室番茄地土壤N2O排放通量

2.1.1土壤N2O排放通量季节变化规律

不同加气灌溉模式下温室番茄地土壤N2O排放通量的季节变化有明显的时间变异性,各处理总体呈现先增加后减小的趋势,在11月30日(移植后109 d)出现较小的排放峰,而其他时期的N2O排放均维持在较低水平(图1)。在番茄生育期绝大多数时间内,加气灌溉处理(A1、A2)的温室番茄地土壤N2O排放通量高于不加气灌溉处理(CK1、CK2);且充分灌溉条件下(A2、CK2)土壤N2O排放通量高于亏缺灌溉条件下(A1、CK1)土壤N2O排放通量(图1,表2)。N2O排放通量的主峰值出现在番茄果实膨大期55 d,以A2处理最大(337.27 μg/(m2·h)),分别是A1和CK1的2.10和10.83倍(P<0.05),而与CK2处理差异性不显著(P=0.641)。此外,成熟期109 d有1个较小的排放峰值,A1、CK1、A2和CK2处理土壤N2O排放通量分别为17.54、13.19、55.07和45.09 μg/(m2·h))。不同灌水水平,加气和不加气处理对土壤N2O排放次峰值影响不显著(P>0.05);而充分灌溉加气与不加气处理均较对应的亏缺灌溉加气与不加气处理显著增加了土壤N2O排放次峰值(P<0.05)。

图1 不同灌溉模式下温室番茄地土壤N2O排放Fig.1 Change of N2O flux from soils in tomato fields under different irrigation treatments

番茄整个生育期土壤N2O平均排放通量以A2处理最大(38.00 μg/(m2·h)),分别较A1和CK1处理增大85.9%和264.7% (P<0.05),而与CK2处理差异性不显著(P>0.05)(表2)。

表2 番茄不同生育阶段土壤N2O排放通量Table 2 N2O fluxes from soils in tomato fields at different growth stages

在番茄不同生育阶段,土壤N2O阶段排放通量的变化规律与整个生育期变化规律基本一致。番茄开花坐果期,土壤N2O的平均排放通量在A1与CK1处理间差异性不显著,但在A2与CK2间差异性显著(P<0.05);番茄果实膨大期,土壤N2O的平均排放通量在A2与CK2处理间差异性不显著,但在A1与CK1差异显著(P<0.05);番茄成熟期,土壤N2O的平均排放通量在A1与CK1、A2与CK2处理间差异性均不显著(P>0.05),说明番茄生育后期向土壤中加气对土壤N2O排放通量影响不显著。不同加气灌溉模式下,开花坐果期和成熟期的土壤N2O阶段平均排放通量值接近,但均小于番茄果实膨大期的土壤N2O阶段平均排放通量。

2.1.2土壤N2O排放通量与土壤水分的关系

由于温室番茄种植地膜覆盖作用及秋冬季棚内温度较低造成土壤蒸发量下降,番茄整个生育期内,土壤含水量维持在较高水平(图2)。土壤湿度会影响土壤N2O的产生和向大气中的扩散。不同加气灌溉模式下,除N2O排放主峰值点外,温室番茄地土壤N2O排放通量随土壤含水量增加而增加,不同灌水水平不加气处理土壤N2O排放通量与WFPS呈指数正相关关系(P<0.05),而加气处理两者关系不显著(P>0.05)(图3)。土壤N2O排放峰值与土壤含水量呈负相关关系,A1、CK1、A2和CK2处理峰值分别出现在WFPS为49.5%~51.9%、46.0%~50.9%、47.5%~52.1%和48.4%~50.6%条件下(图2)。

图2 不同加气灌溉模式下土壤N2O排放通量与土壤充水孔隙率变化Fig.2 N2O flux and soil water-filled pore space WFPS under different aerated irrigation treatments

图3 土壤N2O排放通量与土壤充水孔隙率的关系Fig.3 Relationship between N2O flux and soil WFPS

2.2加气灌溉番茄地土壤N2O排放量

表3所示,充分灌溉条件下,加气较不加气处理对番茄整个生育期土壤N2O排放量影响差异性不显著(P=0.078);而亏缺灌溉条件下,加气灌溉极显著增加了番茄整个生育期土壤N2O排放量(P<0.01);且充分灌溉较对应的亏缺灌溉也极显著增加了番茄整个生育期土壤N2O排放量(P<0.01)。以A2处理番茄整个生育期的土壤N2O排放量最大(120.34 mg/m2),分别是A1和CK1处理的1.89和4.21倍(P<0.01),而与CK2处理差异性不显著(P=0.078)。番茄不同生育阶段,土壤N2O排放量的变化规律一致均为:A2>CK2>A1>CK1。不同加气灌溉模式下,A1、CK1、A2和CK2处理土壤N2O阶段排放量均主要集中在番茄果实膨大期,分别为50.77、16.06、100.56和91.90 mg/m2。

表3 番茄不同生育阶段土壤N2O排放量Table 3 Cumulative emissions of N2O from soils in tomato fields at different growth stages

3 讨 论

3.1加气灌溉对温室番茄地土壤N2O排放的影响

不同加气灌溉模式下土壤N2O排放在番茄整个生育期内均大致呈现先增加后减小的趋势,且主峰值和次峰值分别出现在果实膨大期的55 d和成熟期的109 d,而其他时期排放水平较低(图1)。这种现象在前人研究中也有出现[18-20],比如Weslien等[18]指出设施胡萝卜菜地土壤N2O排放峰值发生在7月24日(39 d),此时土壤充水孔隙率相对较低。杨岩等[19]在研究设施有机大白菜地土壤N2O排放规律时发现,土壤N2O排放量均为施氮后最高,其后逐渐降低,但在8月31日、9月16日和10月9日均出现上升的趋势。出现这种现象的原因可能与当时土壤含水量和供产生N2O的基质含量多少有关。本文N2O排放主峰值点处的土壤含水量较前期土壤含水量低,增加了土壤孔隙度和气体扩散能力,更利于气体排放。且有研究表明滴灌会造成相对频繁的干湿交替现象[21],增加了死亡微生物的量以及打乱了土壤环境和有机物之间的相互作用,从而使得土壤有效碳和氮的矿化量增加[21],使土壤的硝化和反硝化量显著高于长期湿润的土壤,进而引发N2O的释放高峰[21-22]。此次试验由于只施基肥,番茄生育前期供产生N2O的基质较多,可能造成果实膨大期55 d处的N2O剧烈排放。

番茄整个生育期不同加气灌溉模式下土壤N2O平均排放通量为10.42~38.00 μg/(m2·h),这在前人研究的设施菜地土壤N2O排放通量变化范围之内[19,23]。比如,杨岩等[19]得出不同水肥处理下N2O平均排放通量变化范围为20.2~156.0 μg/(m2·h)。张婧等[23]在研究不同施肥处理设施蔬菜地典型种植模式(番茄-白菜-生菜)土壤N2O排放时得出,N2O平均排放通量变化范围为30~360 μg/(m2·h)。但这些结果远高于大田试验观测值[24-25],这可能是因为设施蔬菜地比露天栽培蔬菜和大田作物具备较好的水热条件;此外设施菜地较高的氮肥投入也导致N2O较高的排放[23]。

加气灌溉改变了土壤中氧气含量[15-16],改变了硝化、反硝化反应所需的条件[26-27],通过影响土壤中微生物量和各种酶活性[28],进而影响土壤N2O排放。仅有氧气含量的改变对N2O排放影响的研究主要集中在室内培养或湖泊中[9,26-27,29],但加气灌溉对设施菜地土壤N2O排放的研究尚未见报道。本文通过温室小区试验利用静态箱气相色谱法研究不同加气灌溉模式对温室番茄地土壤N2O排放的影响时得出,亏缺灌溉条件下加气较不加气处理显著增加了土壤N2O排放(P<0.01),而充分灌溉条件下加气与不加气处理对土壤N2O排放影响不显著(P=0.078),可能原因是亏缺灌溉较充分灌溉具有更好的土壤孔隙,加气对土壤微生物和酶活性影响显著,促进土壤N2O明显排放所致。此外,充分灌溉较对应的亏缺灌溉也显著增加了土壤N2O排放(P<0.01),主要由于充分灌溉较对应的亏缺灌溉造成土壤缺氧状态,促使反硝化反应发生,从而促进土壤N2O排放;且加气充分灌溉处理由于向土壤中增加了氧气含量,抑制N2O向N2转化,因此造成更多的N2O排放。不同加气灌溉模式下,番茄果实膨大期的土壤N2O排放大于番茄开花坐果期和成熟期,出现这种现象的可能原因是加气灌溉对设施蔬菜不同生育阶段土壤微生物和酶活性的影响不同[28]。

由于此次试验错过了番茄苗期与部分开花坐果期,可能导致某些N2O排放峰值没有被捕捉到,有待在将来的试验中完善与论证。

3.2加气灌溉对温室番茄地土壤N2O排放通量与土壤水分间关系的影响

土壤水分是影响土壤N2O排放的主要影响因子之一。本文研究中除主峰值点外,不同灌水水平不加气处理土壤N2O排放通量随土壤含水量增加而增加,两者呈指数正相关关系(P<0.05)(图3),且不同加气灌溉模式下温室番茄地土壤N2O排放峰值出现在土壤充水孔隙率为46.0%~52.1%范围内(图2)。大量研究表明,土壤N2O排放通量与土壤充水孔隙率呈指数相关关系。Liu等[30]在研究北方棉花地N2O日排放通量时得出,N2O日排放通量分别与土温和土壤充水孔隙率呈指数关系。Weslien等[18]和Kallenbach等[24]也得出N2O排放通量与土壤充水孔隙率和土壤温度呈正相关。但所给出的WFPS的范围不一,Smith等[31]指出当土壤硝态氮降低到5 kg/hm2以下及土壤充水孔隙率在50%~90%时,N2O排放与土壤充水孔隙率呈指数关系。张婧等[23]研究设施蔬菜地不同施肥处理对土壤N2O排放影响时发现,番茄地N2O排放通量与土壤充水孔隙率存在显著正相关关系(P<0.05),且WFPS在60%~75%条件下有利于N2O的产生和排放。但是,绝大部分研究表明设施菜地较高的N2O排放通量出现在40%~75%的土壤充水孔隙率[7,23,32],这与本文的研究结果一致。

4 结 论

温室番茄地加气灌溉试验表明,利用文丘里计作为加气设备,通过地下滴灌系统把空气加入根区,促进了土壤N2O排放。与不加气灌溉相比,充分灌溉条件下,加气未显著增加秋冬茬温室番茄地土壤N2O排放;而亏缺灌溉条件下,加气显著增加了土壤N2O排放;且充分灌溉较对应的亏缺灌溉也显著增加了土壤N2O排放。以加气充分灌溉番茄整个生育期的N2O排放量最大(120.34 mg/m2),分别是加气亏缺灌溉和不加气亏缺灌溉的1.89和4.21倍,而与不加气充分灌溉差异性不显著。此外,不同加气灌溉模式下土壤N2O排放主要集中在番茄果实膨大期。

温室番茄地土壤N2O排放通量与土壤20 cm深度处的含水量关系密切。除主峰值点外,土壤N2O排放通量随土壤含水量增加而增加,不同灌水水平不加气处理土壤N2O排放通量与土壤充水孔隙率呈指数正相关关系;峰值出现在土壤充水孔隙率为46.0%~52.1%条件下。

[参考文献]

[1] 彭世彰,侯会静,徐俊增,等. 稻田CH4和N2O综合排放对控制灌溉的响应[J]. 农业工程学报,2012,28(13):41-43. Peng Shizhang, Hou Huijing, Xu Junzeng, et al. CH4and N2O emissions response to controlled irrigation of paddy fields[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(13): 41-43. (in Chinese with English abstract)

[2] Ravishankara A R, Daniel J S, Portmann R W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21stcentury[J]. Science, 2009, 326(5949): 123-125.

[3] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge, United Kingdom and New York, USA: Cambridge University Press, 2013.

[4] Organization for Economic Cooperation and Development (OECD). Environmental Indicators for Agriculture: Methods and Results[M]. Vol 3. Paris: Publications Service, OECD, 2001: 281-283.

[5] 郭世荣,孙锦,束胜,等. 我国设施园艺概况及发展趋势[J].中国蔬菜,2012(18):1-14. Guo Shirong, Sun Jin, Shu Sheng, et al. Analysis of general situation, characteristics, existing problems and development trend of protected horticulture in China[J]. China Vegetables, 2012(18): 1-14. (in Chinese with English abstract)

[6] 王敬国. 设施菜田退化土壤修复与资源高效利用[M]. 北京:中国农业大学出版社,2011.

[7] 宋贺,潘广元,陈清,等. 中国北方设施菜田垄-畦土壤N2O和NO年排放特征比较[J]. 农业环境科学学报,2014,33(12):2472-2477. Song He, Pan Guangyuan, Chen Qing, et al. Comparison of N2O and NO emissions from ridged and furrowed soils in a greenhouse in Northern China[J]. Journal of Agro-Environment Science, 2014, 33(12): 2472-2477. (in Chinese with English abstract)

[8] Malla G, Bhatia A, Pathak H, et al. Mitigating nitrous oxide and methane emissions from soil in rice-wheat system of the Indo-Gangetic plain with nitrification and urease inhibitors[J]. Chemosphere, 2005, 58(2): 141-147.

[9] Khalil K, Mary B, Penault P. Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2concentration[J]. Soil Biology & Biochemistry, 2004(36): 687-699.

[10] Abuarab M, Mostafa E, Ibrahim M. Effect of air injection under subsurface drip irrigation on yield and water use efficiency of corn in a sandy clay loam soil[J]. Journal of Advanced Research, 2013, 4: 493-499.

[11] 陈新明,Dhungel J, Bhattarai S,等. 加氧灌溉对菠萝根区土壤呼吸和生理特性的影响[J]. 排灌工程机械学报,2010,28(16):543-547. Chen Xinming, Dhungel J, Bhattarai S, et al. Impact of oxygation on soil respiration and crop physiological characteristics in pineapple[J]. Journal of Drainage and Irrigation Machinery Engineering, 2010, 28(16): 543-547. (in Chinese with English abstract)

[12] Niu Wenquan, Fan Wentao, PERSAUD N, et al. Effect of post-irrigation aeration on growth and quality of greenhouse cucumber[J]. Pedosphere, 2013, 23(6): 790-798.

[13] 雷宏军,臧明,张振华,等. 循环曝气地下滴灌的温室番茄生长与品质[J]. 排灌工程机械学报,2015,33(3):253-259. Lei Hongjun, Zang Ming, Zhang Zhenhua, et al. Growth and quality of greenhouse tomato under cycle aerated subsurface drip irrigation[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(3): 253-259. (in Chinese with English abstract)

[14] 康跃虎. 实用型滴灌灌溉计划制定方法[J]. 节水灌溉,2004(3):11-15. Kang Yuehu. Applied method for drip irrigation scheduling[J]. Water Saving Irrigation, 2004(3): 11-15. (in Chinese with English abstract)

[15] 朱艳,蔡焕杰,侯会静. 不同生育期加气灌溉对番茄根区土壤环境和产量的影响[EB/OL]. [2015-01-20].北京:中国科技论文在线. http://www.paper.edu.cn/releasepaper/ content/201501-525.Zhu Yan, Cai Huanjie, Hou Huijing. Effects of aerated irrigation at different growth stages on root-zone environment and yield of tomato[EB/OL]. [2015-01-20]. Beijing: Sciencepaper Online. http://www.paper.edu.cn/releasepaper/ content/201501-525. (in Chinese with English abstract)

[16] 尹晓霞. 加气灌溉对温室番茄根区土壤环境及产量的影响研究[D]. 杨凌:西北农林科技大学,2014. Yin Xiaoxia. Research on the Effects of Aeration Irrigation on Soil Environment and Yield of Tomato Root-zone in Greenhouse[D]. Yangling: Northwest A&F University, 2014. (in Chinese with English abstract)

[17] Franzluebbers A J. Microbial activity in response to water-filled pore space of variably eroded southern Piedmont soils[J]. Applied Soil Ecology, 1999, 11(1): 91-101.

[18] Weslien P, Rütting T, Kasimir-Klemedtsson Å, et al. Carrot cropping on organic soil is a hotspot for nitrous oxide emissions[J]. Nutrient Cycling in Agroecosystems, 2012, 94(2/3): 249-253.

[19] 杨岩,孙钦平,李吉进,等. 不同水肥处理对设施菜地N2O排放的影响[J]. 植物营养与肥料学报,2013,19(2):430-436. Yang Yan, Sun Qinping, Li Jijin, et al. Effects of different fertilizer and irrigation levels on N2O emission from greenhouse vegetable lands[J]. Plant Nutrition and Fertilizer Science, 2013, 19(2): 430-436. (in Chinese with English abstract)

[20] 张仲新,李玉娥,华珞,等. 不同施肥量对设施菜地N2O排放通量的影响[J]. 农业工程学报,2010,26(5):269-275. Zhang Zhongxin, Li Yu’e, Hua Luo, et al. Effects of different fertilizer levels on N2O flux fromprotected vegetable land[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2010, 26(5): 269-275. (in Chinese with English abstract)

[21] 梁东丽,同延安,Ove Emteryd,等. 灌溉和降水对旱地土壤N2O气态损失的影响[J]. 植物营养与肥料学报,2002,8(3):298-302. Liang Dongli, Tong Yanan, Ove Emteryd, et al. Effect of irrigation and rainfall on the N2O losses in dryland[J]. Plant Nutrition and Fertilizer Science, 2002, 8(3): 298-302. (in Chinese with English abstract)

[22] 徐文彬,刘广深,刘维屏. 降雨和土壤湿度对贵州旱田土壤N2O释放的影响[J]. 应用生态学报,2002,13(1):67-70. Xu Wenbin, Liu Guangshen, Liu Weiping. Effects of precipitation and soil moisture on N2O emissions from upland soils in Guizhou[J]. Chinese Journal of Applied Ecology, 2002, 13(1): 67-70. (in Chinese with English abstract)

[23] 张婧,李虎,王立刚,等. 京郊典型设施蔬菜地土壤N2O排放特征[J]. 生态学报,2014,34(14):4090-4098. Zhang Jing, Li Hu, Wang Ligang, et al. Characteristics of nitrous oxide emissions from typical greenhouse vegetable fields in Beijing suburbs[J]. Acta Ecologica Sinica, 2014, 34(14): 4090-4098. (in Chinese with English abstract)

[24] Kallenbach C M, Rolston D E, Horwath W R. Cover cropping affects soil N2O and CO2emissions differently depending on type of irrigation[J]. Agriculture, Ecosystems and Environment, 2010, 137: 251-260.

[25] 梁东丽,同延安,Ove Emteryd,等. 干湿交替对旱地土壤N2O气态损失的影响[J]. 干旱地区农业研究,2002,20(2):28-31,48. Liang Dongli, Tong Yanan, Ove Emteryd, et al. The effects of wetting and drying cycles on N2O emission in dryland[J]. Agricultural Research in the Arid Areas, 2002, 20(2): 28-31, 48. (in Chinese with English abstract)

[26] Hwang S, Hanaki K. Effects of oxygen concentration and moisture content of refuse on nitrification, denitrification and nitrous oxide production[J]. Bioresource Technology, 2000, 71: 159-165.

[27] Liikanen A, Martikainen P J. Effect of ammonium and oxygen on methane and nitrous oxide fluxes across sediment–water interface in a eutrophic lake[J]. Chemosphere, 2003, 52: 1287-1293.

[28] 李元,牛文全,张明智,等. 加气灌溉对大棚甜瓜土壤酶活性与微生物数量的影响[J]. 农业机械学报,2015(8):1-11. Li Yuan, Niu Wenquan, Zhang Zhiming, et al. Effects of aeration on rhizosphere soil enzyme activities and soil microbes for muskmelon in plastic greenhouse[J]. Transactions of the Chinese Society of Agricultural Machinery, 2015(8): 1-11. (in Chinese with English abstract)

[29] Jiang Tao, Li Guoxue, Tang Qiong, et al. Effects of aeration method and aeration rate ongreenhouse gas emissions during composting of pig feces in pilot scale[J]. Journal of Environmental Science, 2015: 1-9.

[30] Liu Chunyuan, Zheng Xunhua, Zhou Zaixing, et al. Nitrous oxide and nitric oxide emissions from an irrigated cotton field in Northern China[J]. Plant and Soil, 2010, 332: 123-134.

[31] Smith K A, Thomson P E, Cloyton H, et al. Effect of temperature, water content and nitrogen fertilization on emissions of nitrous[J]. Atmospheric Environment, 1998, 19: 3301-3309.

[32] Hosono T, Hosoi N, Akiyama H, et al. Measurements of N2O and NO emissions during tomato cultivation using a flow-through chamber system in a glasshouse[J]. Nutrient Cycling in Agroecosystems, 2006, 75(1/2/3): 115-134.

Soil N2O emission characteristics of greenhouse tomato fields under aerated irrigation

Chen Hui, Hou Huijing※, Cai Huanjie, Zhu Yan
(1. Key Laboratory for Agriculture Soil and Water Engineering in Arid Area Ministry of Education, Northwest A&F University, Yangling 712100, China;2. College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China)

Abstract:Global warming and ozone depletion caused by greenhouse gas emissions are two major global environmental issues. The contribution of facility vegetable fields abundant with high N input to soil nitrous oxide emissions cannot be negligible. Crop growth, yield and water use efficiency under aerated irrigation have been done much work, while the effects of aerated irrigation on greenhouse gas emissions have never been reported. Changes of oxygen content in the soil caused by the aerated irrigation are bound to affect the production and emissions of nitrous oxide. Field experiments by using the method of static chamber/gas chromatography were conducted to determine the effects of aerated irrigation on seasonal N2O fluxes, and cumulative emissions of N2O from soils in greenhouse tomato fields in autumn-winter season and soil water-filled pore space (WFPS) at 20 cm depth in the solar greenhouse of the Key Laboratory of Agricultural Soil and Water Engineering in Arid Area sponsored by Ministry of Education (34°20′N, 108°04′E), at Northwest A&F University, in Yangling, Shaanxi Province of China, from August 13, 2014 to December 28, 2014. Two factors (irrigation and aeration) were designed in the experiment to reveal the effects of aerated irrigation on soil N2O emissions. Four treatments with three replications (each plot size 4.0 m × 0.8 m) were contained in the experiment: aerated deficit irrigation (A1), unaerated deficit irrigation (CK1), aerated full irrigation (A2) and unaerated full irrigation (CK2). The results showed that N2O fluxes under different irrigation methods roughly showed a trend of decrease after the first increase. The first and secondary peaks of N2O fluxes were observed at fruit expanding stage and maturing stage of tomato, respectively, while kept at a low level in other periods. Both seasonal N2O fluxes and cumulative emissions of N2O at different growth stage of tomato followed the same pattern: A2>CK2>A1>CK1. And both N2O fluxes and cumulative emissions of N2O from soils in tomato fields at different growth stages for each treatment mainly concentrated at fruit expanding stage. In addition, aeration and full water supply treatments increased the soil N2O emissions during the whole tomato growth period compared to unaeration and deficit water supply treatments. The average value of N2O fluxes (38.00 μg/(m2·h)) for A2 treatment increased by 85.9% and 264.7% compared with that for A1 and CK1 treatment (P<0.05), respectively, while the difference was not significant when compared to CK2 treatment (P>0.05). The maximum value about cumulative emission of N2O (120.34 mg/m2) for A2 treatment was 1.89 and 4.21 times as much as A1 and CK1 (P<0.01), respectively, while the difference was not significant when compared to CK2 treatment (P=0.078). Compared with unaerated irrigation, aerated irrigation did not increase N2O emissions from soils in greenhouse tomato fields significantly under full water supply condition (P=0.078), while increased N2O emissions significantly under deficit water supply condition (P<0.01). In addition, WFPS kept at a relatively high level for each treatment during the whole tomato growth stage. Except the main peaks, N2O fluxes increased with WFPS increasing. Exponential positive correlations between N2O fluxes and soil water-filled pore space (WFPS) were observed under unaerated irrigation methods of different irrigation level (P<0.05), while the relationships under aerated irrigation methods were not significant (P>0.05). Furthermore, peaks of N2O emissions were negative with WFPS, and N2O intense release was observed when WFPS was between 46.0%-52.1%. The results suggested that aerated irrigation increased soil N2O emissions in tomato fields, and the difference was significant under deficit water supply condition. This study provides valuble information for assessing farmland ecological effects of aerated irrigation and mitigating greenhouse gas emissions to greenhouse soils.

Keywords:soils; greenhouse gas; emission control; N2O; aerated irrigation; tomato

通信作者:※侯会静,女,山东泰安人,讲师,博士,主要从事节水灌溉理论与农田生态效应研究。杨凌西北农林科技大学水利与建筑工程学院,712100。Email:hjhou@nwsuaf.edu.cn

作者简介:陈慧,女,四川南充市,博士生,主要从事节水灌溉与灌溉排水新技术。杨凌西北农林科技大学水利与建筑工程学院,712100。

基金项目:国家自然科学基金项目(51309192);中央高校基本科研业务专项基金(Z109021510);西北农林科技大学博士点基金(2012BSJJ006)

收稿日期:2015-06-30

修订日期:2015-12-10

中图分类号:S275

文献标志码:A

文章编号:1002-6819(2016)-03-0111-07

doi:10.11975/j.issn.1002-6819.2016.03.016

猜你喜欢

温室气体番茄土壤
番茄炒蛋
秋茬番茄“疑难杂症”如何挽救
土壤
番茄果实“起棱”怎么办
灵感的土壤
识破那些优美“摆拍”——铲除“四风”的土壤
超临界锅炉高温管道氧化皮剥落失效原因分析及对策建议
不同施氮水平下乙草胺对土壤温室气体排放的影响
灵感的土壤
区域碳排放峰值测算若干问题思考:以北京市为例