APP下载

槲皮素脂质体对糖尿病大鼠肾脏糖基化终产物及其受体表达的影响

2016-03-15唐丽霞朱开梅李典鹏顾生玖

天津医药 2016年1期
关键词:糖基化槲皮素脂质体

唐丽霞,朱开梅△,李典鹏,顾生玖



槲皮素脂质体对糖尿病大鼠肾脏糖基化终产物及其受体表达的影响

唐丽霞1,朱开梅1△,李典鹏2,顾生玖1

摘要:目的观察槲皮素脂质体(LQ)对糖尿病大鼠肾脏糖基化终产物(AGEs)及其受体(RAGE)表达的影响。方法采用旋转蒸发法制备槲皮素脂质体,高糖高脂饲料联合腹腔注射链脲佐菌素(STZ)建立2型糖尿病大鼠模型,并随机分为糖尿病模型组(DM组),槲皮素脂质体低(LQ-L)、中(LQ-M)、高(LQ-H)剂量组,氨基胍(AG)对照组(AG组),另设正常组(N组)。灌胃治疗8周后测定各组大鼠血糖、体质量、肾脏肥大指数(KI)、血尿素氮(BUN)、血肌酐(Scr),ELISA法测血清AGEs表达和24h尿微量白蛋白,PAS染色观察肾脏病理改变,免疫组化测肾组织AGEs表达,RT-PCR检测肾皮质RAGEmRNA表达水平。结果与N组比较,DM组大鼠血糖、KI、BUN、Scr、血清AGEs 和24h尿微量白蛋白显著升高,体质量明显降低;肾小球体积萎缩,基底膜增厚;肾组织AGEs和RAGEmRNA表达增高(均P < 0.05)。与DM组比较,LQ各剂量组大鼠血糖、KI、BUN、Scr、血清AGEs和24h尿微量白蛋白均降低,体质量增加;病理改变明显减轻;肾组织AGEs和RAGEmRNA表达降低,以中剂量组作用更明显(均P < 0.05)。结论LQ可抑制蛋白质非酶糖基化反应,从而减少肾组织AGEs生成及RAGEmRNA表达水平,对糖尿病大鼠肾脏具有保护作用。

关键词:糖尿病肾病;槲皮素;脂质体;糖基化终产物,高级;大鼠, Sprague-Dawley;糖基化终末产物受体;氨基胍

的影响研究尚少见。本研究通过制备LQ,观察其对

DM大鼠肾脏的影响,并与氨基胍(Aminoguanidine,

AG)对比,探讨LQ对DM肾脏的干预作用,为临床治疗DN提供新的思路和方法。

1 材料与方法

1.1材料(1)动物。SPF级65只雄性SD健康大鼠,体质量190~220 g,由桂林医学院动物实验室提供。(2)药物。槲皮素、氨基胍(Sigma公司),LQ复合物的制备使用旋转蒸发法,按槲皮素∶卵磷脂∶胆固醇∶聚乙二醇4000(6∶13∶4∶1)比例(质量比)制备,包封率为(87.1±2.7)%,粒径分布(128.8± 18.05)nm,载药量约为(58±7)%。(3)试剂。链脲佐菌素(Sig⁃ma公司),ELISA试剂盒(Elabacience公司),AGEs一抗、二抗、三抗、DAB显色剂(北京博奥森生物技术有限公司),RNA提取试剂盒(天根生物技术公司),逆转录和扩增试剂盒(Ta⁃KaRa公司),β-actin、RAGE引物由上海生工生物工程有限公司设计合成。引物序列:β-actin上游5′-CCATGGATGAC⁃GATATCGCT-3′,下游5′-GCCGTGTTCAATGGGGTACT-3′,扩增长度225 bp;RAGE上游5′- ACCCTGACCTGTGC⁃CATCT-3′,下游5′-TCCGCTTCCTCTGACTGATT-3′,扩增长度419 bp。

1.2方法

1.2.1模型制备及分组65只SD大鼠饲养1周,记录每只大鼠24h尿量。采用随机数字表法选取8只作为正常组,普通饲料喂养,剩余全部食用高糖高脂饲料,饲料配方参照文献[6]。4周后禁食12h,腹腔注射STZ 40mg/kg(临用前溶于0.1mmol/L、pH4.2~4.5柠檬酸-柠檬酸钠缓冲液中)诱导2型糖尿病模型。N组注射同剂量的柠檬酸-柠檬酸钠缓冲液。饲养3 d后,每日清晨7:00采尾静脉血检测血糖,连续测3次血糖均≥16.7mmol/L认为模型成功建立。将成功建立2型糖尿病模型的大鼠继续饲养2周后留取24h尿液,达到如下条件则定为糖尿病肾病模型建立成功[7]:(1)空腹血糖持续≥16.7mmol/L。(2)尿白蛋白排泄率>20 μg/min。(3)尿量是健康状态时的1.5倍。最终52只成模,采用随机数字表法选取50只成模大鼠分为以下5组:DM组,LQ-低(LQ-L)组、中(LQ-M)组、高(LQ-H)组,AG组,各组均为10只。按以下剂量给予相应的药物:LQ-L组50mg/(kg·d),LQ-M组150mg/(kg·d),LQ-H组250mg/(kg·d),AG组用氨基胍100mg/(kg·d),DM组和N组用蒸馏水100mg/(kg·d)。定于每日约10:00灌胃。每3 d监测血糖和称体质量1次。实验期间DM组和LQ-L组大鼠各死亡2只,LQ-H组和AG组各死亡1只,统计数据时将死亡大鼠数据剔除。

1.2.2标本收集及检测方法灌胃处理8周后,将大鼠单独置于代谢笼中,采集每只大鼠24h尿液,并以3 000 r/min离心5min,取上清液6mL用于测定24h尿微量白蛋白。禁食12h后,分别测定空腹血糖和称体质量。用10%水合氯醛腹腔注射麻醉,快速腹主动脉取血4~5mL,取2mL测血尿素氮(BUN)、血肌酐(Scr),剩余以12 000 r/min 4℃离心10min,取上清备待测AGEs。剖腹取双侧肾脏标本,剔除肾周包膜,并用0.9% NaCl溶液洗净,干净滤纸吸收水份,称肾质量,计算肾脏肥大指数(KI)=双侧肾质量/体质量×100%。快速液氮保存左肾,-80℃冰箱保存;右肾从纵轴面对半切开,4%多聚甲醛液固定,石蜡包埋备用,制备成3 μm厚切片,用于PAS染色,光镜下观察肾小球、肾小管结构、基质增生、基膜厚度等情况。罗氏血糖仪及配套试纸检测血糖,全自动生化分析仪检测BUN、Scr;用ELISA法检测血清AGEs表达水平和24h尿微量白蛋白。

1.2.3免疫组化法检测AGEs的表达肾脏组织经石蜡包埋切片后,在60℃烤箱中烤片2h,以0.4%胃酶修复、山羊血清封闭、PBS冲洗,一抗按1∶100的浓度稀释,二抗(生物素标记的羊抗兔IgG)及三抗先后在37℃下孵育20min,DAB显色,适时终止;复染、分化、脱水、风干、封片。阳性标本(抗体公司提供的大鼠动脉粥样硬化斑块玻片)作为阳性对照,PBS作为阴性对照,光镜下阳性反应部位为棕黄色,细胞核呈淡蓝色。观察低倍视野(×100)下反应情况,各例随机读取5个高倍视野(×400),通过Image-Pro Plus6.0获得阳性表达的平均光密度(MOD)。

1.2.4RT-PCR检测肾皮质RAGEmRNA表达柱式法提取肾组织总RNA,根据TaKaRa逆转录说明书,合成相应的cDNA并进行扩增,β-actin为内参。PCR扩增反应系统包括25 μL Premix Taq,cDNA 2 μL,上、下游引物(10 μmol/L)各2 μL,RNase-Free Water 19 μL,共50 μL。β-actin内参扩增条件:94℃1min,94℃30 s,58.6℃30 s,72℃30 s,共30个循环,72℃延伸1min。RAGE退火温度为59.6℃,33个循环,余PCR反应步骤同β-actin。扩增产物行琼脂糖凝胶电泳,SensiAnsys凝胶图像分析软件对条带进行光密度定量,分别计算RAGE/内参光密度值,代表目的基因mRNA的相对表达水平,每个样品重复3次,取其平均值。

1.3统计学方法采用SPSS 18.0进行分析,计量资料以均数±标准差(±s)表示,多个样本均数的比较采用单因素方差分析,多重比较采用LSD-t检验,P < 0.05为差异有统计学意义。

2 结果

2.1各组大鼠血糖、体质量、KI的比较与N组比较,DM、LQ-L、LQ-M、LQ-H和AG组的血糖显著升高,体质量明显降低,KI增大(均P < 0.05)。与DM组对比,LQ-L组血糖差异无统计学意义,LQ-M、LQ-H和AG组血糖降低(均P < 0.05);与DM组比较,LQ各剂量组体质量增加,KI降低(均P< 0.05),见表1。

Tab.1 Comparison of fasting glucose, body weight and KI between different groups表1 各组大鼠空腹血糖、体质量及KI的比较 (±s)

Tab.1 Comparison of fasting glucose, body weight and KI between different groups表1 各组大鼠空腹血糖、体质量及KI的比较 (±s)

**P < 0.01;a与N组比较,b与DM组比较,P < 0.05;表2、3同

组别N组DM组LQ-L组LQ-M组LQ-H组AG组F n8 8 8 1 0 9 9空腹血糖(mmol/L)5.54±0.43 25.68±1.86a24.00±1.96a23.25±1.39ab23.22±1.01ab23.21±1.31ab229.607**体质量(g)451.00±12.96 267.25±11.26a292.50±10.05ab338.90±11.02ab306.56±13.01ab321.44±8.25ab263.132**KI(g/kg)3.33±0.14 7.25±0.38a6.34±0.13ab4.48±0.22ab5.50±0.37ab4.91±0.23ab225.271**

2.2各组大鼠生化指标的比较与N组比较,DM、LQ-L、LQ-M、LQ-H、AG组BUN、Scr、血清AGEs、24h尿微量白蛋白水平均增高(均P < 0.05);与DM组比较,LQ-L、LQ-M、LQ-H、AG组上述指标均降低(均P < 0.05),见表2。

Tab.2 Comparison of urea nitrogen, serum creatinine, serum AGEs and 24h urine protein in different groups表2 各组大鼠BUN、Scr、血清AGEs、24h尿微量白蛋白水平的比较 (±s)

Tab.2 Comparison of urea nitrogen, serum creatinine, serum AGEs and 24h urine protein in different groups表2 各组大鼠BUN、Scr、血清AGEs、24h尿微量白蛋白水平的比较 (±s)

组别N组DM组LQ-L组LQ-M组LQ-H组AG组F n 8 8 8 1 0 9 9 BUN (mmol/L)5.32±0.26 18.82±1.73a16.46±1.25ab11.30±1.30ab13.95±1.50ab12.11±1.32ab102.393**Scr (μmol/L)31.95±1.19 61.53±1.99a52.75±1.09ab42.96±1.49ab45.12±1.46ab43.96±1.03ab405.291**AGEs (mg/L)37.63±2.97 121.52±5.30a95.79±6.01ab61.96±6.32ab71.76±7.01ab57.53±6.00ab215.756**24h尿微量白蛋白(mg)14.94±1.42 69.28±2.39a55.20±2.16ab32.11±1.50ab43.39±1.98ab33.51±2.57ab710.999**

2.3各组大鼠肾脏的病理改变PAS染色显示N组肾小管结构、肾小球基底膜正常,系膜基质均匀;DM组见肾小球结构紊乱,肾小球体积明显萎缩,肾小球系膜区基质增多,基底膜增厚;LQ各剂量组肾脏的上述病理改变较DM组有所改善,以中剂量组改善最明显,见图1。

2.4各组大鼠肾脏AGEs及RAGEmRNA表达的变化免疫组化结果显示,AGEs在N组大鼠肾小管有一定程度的表达;与N组比较,DM组表达增多,肾小管上皮细胞包膜和(或)胞浆呈棕黄色强阳性;与DM组比较,LQ各剂量组表达减少,以中剂量组减少最明显,且中剂量组与AG组效果类似。RT-PCR结果显示,与N组比较,DM组RAGEmRNA表达量增加明显;与DM组比较,LQ各剂量组表达减少,以中剂量组减少最明显,且中剂量组与AG组效果类似,见图2、3,表3。

Fig.3 Transcription of RAGEmRNA in the kidney tissues in each group图3 各组大鼠肾组织RAGEmRNA表达情况

Tab.3 Transcriptions of AGEs and RAGEmRNA表3 各组大鼠免疫组化AGEs蛋白和RAGEmRNA表达的情况 (±s)

Tab.3 Transcriptions of AGEs and RAGEmRNA表3 各组大鼠免疫组化AGEs蛋白和RAGEmRNA表达的情况 (±s)

组别N组DM组LQ-L组LQ-M组LQ-H组AG组F n8 8 8 1 0 9 9 AGEs蛋白0.07±0.02 0.46±0.09a0.34±0.05ab0.22±0.07ab0.31±0.03ab0.19±0.05b29.201**RAGEmRNA 0.04±0.04 0.93±0.07a0.55±0.02ab0.25±0.01ab0.37±0.02ab0.24±0.04ab255.162**

3 讨论

DN的发病与高血糖、高血脂等能量代谢紊乱及内环境紊乱有关[8-9],病理改变主要包括肾小球萎缩、系膜基质增生、基底膜增厚,最后导致肾小球硬化。已有研究证明,槲皮素能有效控制糖尿病大鼠的血糖水平,具备降糖效应,其作用机制与抗氧化作用、清除自由基、抗纤维化等有关[10]。DN诊断的金标准之一是24h尿微量白蛋白,减少尿微量白蛋白能够延缓DN的发生发展。文献报道2型糖尿病大鼠肾功能的主要常用检测指标均显著高于正常对照组,而槲皮素治疗组明显低于2型糖尿病组[11-12]。本研究发现LQ治疗后BUN、Scr、24h尿微量白蛋白、KI等观察指标均得到改善,说明LQ复合体也能有效改善DM肾功能,达到减轻肾脏损害的作用,其作用机制可能与抑制蛋白激酶C(PKC)活性、醛糖还原酶活性、活性氧簇(ROS)等有关。

AGEs是体内慢性高血糖状态下蛋白质非酶糖基化反应的产物,可通过修饰蛋白分子、影响电子传导通路等对肾脏造成毒性损害,如肾小管中胶原蛋白的非酶糖基化反应可减弱AGEs与糖蛋白的亲和能力,影响这些蛋白的生理结构及性质,且AGEs还能通过上调Ⅳ型胶原蛋白表达进一步导致DN的发生[13-14]。RAGE广泛表达于内皮细胞、肾小球系膜细胞等,是目前较为公认的AGEs受体。AGEs可与相关细胞表面受体RAGE结合,激活RAGE信号通路,进一步激活细胞内各种信号转导通路(如肾素-血管紧张素、丝裂原活化蛋白激酶)和诱导氧化应激反应,引起细胞生物学效应改变及功能代谢紊乱,导致DN的发生发展[15-16]。本研究中发现LQ各剂量组对AGEs的生成有明显抑制作用,表明LQ可能对早期非酶糖基化反应有抑制作用,抑制蛋白质的非酶糖基化反应有助于改善肾功能和延缓DN的进展。此外,DM大鼠肾组织AGEs、RAGEmRNA表达水平均有明显增高,与孙凤娟等[17]研究结果相似;而LQ各剂量组中表达显著下降,其中又以中剂量组下降最为明显,表明槲皮素脂质体也有可能通过抑制AGEs下调RAGE及其蛋白的表达以延缓DN的发生发展,但具体机制尚需进一步研究。

(图1、2见插页)

参考文献

[1] ShaohL,Song CQ,Xu DH,et al.Analyses on relative factors regard⁃ing diabetic nephropathy[J].Chinese Journal of Epidemiology,2013, 34(4):393-395.[邵海琳,宋春青,徐东红,等.糖尿病肾病发病的相关因素分析[J].中华流行病学杂志,2013,34(4):393-395].doi: 10.3760/cma.j.issn.0254-6450.2013.04.019.

[2]macisaac RJ,Ekinci EI,Jerums G.Markers of and risk factors for the development and progression of diabetic kidney disease[J].Am J Kidney Dis,2014,63(2 Suppl 2):S39-62.doi: 10.1053/j.ajkd.2013.10.048.

[3] Singh VP,Bali A,Singh N,et al.Advanced glycation end products and diabetic complications[J].Korean J Physiol Pharmacol,2014,18 (1):1-14.doi: 10.4196/kjpp.2014.18.1.1.

[4] Liu CM,Sun YZ,Sun JM,et al.Protective role of quercetin against leadinduced inflammatory response in rat kidney through the ROS-me⁃diatedmAPKs and NF-kappaB pathway[J].Biochim Biophys Acta,2012, 1820(10):1693-1703.doi: 10.1016/j.bbagen.2012.06.011.

[5] Lium,Lim,Wang G,et al.Heart-targeted nanoscale drug delivery systems[J].J Biomed Nanotechnol,2014,10(9):2038-2062.

[6] Nieh,Su K,Long Y,et al.Effect of artesunate on expressions of Tolllike receptor4 and Interleukin- 8 in renal tissues of diabetic ne⁃phropathy rats[J].Tianjinmed J, 2015,43(4):356-359.[聂寒,苏珂,龙艳,等.青蒿琥酯对糖尿病肾病大鼠肾组织Toll样受体4及白细胞介素-8表达的影响[J].天津医药, 2015, 43(4):356-359].

[7] Shen L,Yu LQ,Xiong PH.Protective effect andmechanism of liuwei dihuang combined withhuanglian jiedu decoction on diabetic ne⁃phropathy rats[J].Journal of Nanjing University of Tcm, 2013,29(6):553-556.[沈岚,俞立强,熊佩华.六味地黄汤合黄连解毒汤对糖尿病肾病大鼠的肾脏保护作用及相关机制[J].南京中医药大学学报,2013,29 (6):553-556].doi: 10.14148/j.issn.1672-0482.2013.06.022.

[8]ma J,Wuh,Zhao CY,et al.Requirement for TLR2 in the develop⁃ment of albuminuria, inflammation and fibrosis in experimental dia⁃betic nephropathy[J].Int J Clin Exp Pathol, 2014,7(2):481-495.

[9] LihX,Cao WF.The pathogenesis and treatment of diabetic nephropathy [J].Chongqingmedicine,2013,42(21):2545-2547, 2568.[李惠秀,曹文富.糖尿病肾病发病机制及治疗进展[J].重庆医学,2013,42(21):2545-2547, 2568].doi: 10.3969/j.issn.1671-8348.2013.21.042.

[10] Sun X,Yamasakim,Katsube T,et al Effects of quercetin derivatives frommulberry leaves: Improved gene expression relatedhepatic lip⁃id and glucosemetabolism in short-termhigh-fat fedmice[J].Nutr Res Pract,2015,9(2):137-143.doi: 10.4162/nrp.2015.9.2.137.

[11] Chen P,Chen JB,Chen WY,et al.Effects of quercetin on nuclear fac⁃tor-kappaB p65 expression in renal ubiquitin-proteasome system of diabetic rats[J].Chinese Journal of Internalmedicine, 2012, 51 (6): 460-465.

[12] Lai PB,Zhang L,Yang LY.Quercetin ameliorates diabetic nephropathy by reducing the expressions of transforming growth factor-beta1 and connective tissue growth factor in streptozotocin-induced diabetic rats [J].Ren Fail,2012,34(1): 83-87.doi: 10.3109/0886022X.2011.623564.

[13] Forbes JM,CoughlanmT,CoopermE.Oxidative stress as amajor cul⁃prit in kidney disease in diabetes[J].Diabetes,2008,57(6):1446-1454.doi: 10.2337/db08-0057.

[14] Yang L,Guo NJ,Cai DH,et al.Effect of liraglutide on serum AGEs and inflammatory factors in IGT-OLETF rats[J].Med J Chin PLA, 2013,38(2):116-119.[杨力,郭南京,蔡德鸿,等.利拉鲁肽对IGTOLETF大鼠血清糖基化终末产物及炎症指标的影响[J].解放军医学杂志,2013,38(2):116-119].

[15]matsui T,Nakashima S,Nishino Y,et al.Dipeptidyl peptidase-4 defi⁃ciency protects against experimental diabetic nephropathy partly by blocking the advanced glycation end products-receptor axis[J].Lab Invest, 2015, 95(5):525-533.doi: 10.1038/labinvest.2015.35.

[16] Liu Y,Zhou D,Xiao X,et al.Losartan preserves glomerular basementmembrane anionic charge sites in a ratmodel of nephropathy[J].J Nephrol, 2013, 26(4):660-666.doi: 10.5301/jn.5000228.

[17] Sun FJ, Liu YP.Effect of lipoic acid capsules on AGEs and oxida⁃tive stress injury of diabetic nephropathy rats [J].Chinese Journal of Gerontology,2014,34(5):1307-1310.[孙凤娟,刘亚平.硫辛酸对糖尿病肾病大鼠的血清晚期糖基化终末产物及氧化应激的影响[J].中国老年学杂志,2014,34(5):1307- 1310].doi: 10.3969/j.issn.1005-9202.2014.05.068.

(2015-06-01收稿2015-6-30修回)

(本文编辑李国琪)

临床研究

Effects of quercetin linosomes on the formation of advanced glycation end products(AGEs)and receptor for advanced glycation end products ( RAGE ) in kidney of diabetic rats

TANG Lixia1, ZHU Kaimei1△, LI Dianpeng2, GU Shengjiu1
1 College of Pharmacy, Guilinmedical University, Guilin 541004, China;
2 Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization
△Corresponding Author E-mail:glzkm@163.com

Abstract:Objective To observe the effects of quercetin liposome (LQ) on formation of advanced glycation end prod⁃ucts(AGEs)and receptor for advanced glycation end products (RAGE) in kidney of diabetic rats.Methods LQ wasmade by rotary evaporation, and themodel of type 2 diabetic rats were established by being fed onhigh-sugar andhigh-fat diet combined with intraperitoneally injection of streptozotocin (STZ).Then type 2 diabetic rats were randomly divided into six groups: diabeticmodel group (group DM), low level of LQ group (group LQ-L ),medium level of LQ group (group LQ-M),high level of LQ group (group LQ-H), positive control group (group aminoguanidine, AG) and control group (group N).After 8 weeks of interventions, blood glucose, body weight, kidneyhypertrophy index (KI), blood urea nitrogen (BUN) and serum creatinine (Scr) weremeasured in each group.ELISA was used to detect serum AGEs, and 24h urine albumin.The pathologi⁃cal change of glomerular basementmembranes was observed by PAS staining and the expressions of AGEs in kidney was as⁃sessed by immunohistochemicalmethod.The transcription level of RAGEmRNA in kidney was determined by RT-PCR.Re⁃sults Compared with the group N, the level of blood glucose, KI, BUN, Scr, serum AGEs and 24h urine albumin were in⁃creased significantly in group DM, while the level of body weight decreased.Also the volume of kidney glomerulus increased and glomerular basementmembranes thickened, the transcription levels of AGEs and RAGEmRNA in kidney tissue in⁃creased in DM group (P < 0.05).Compared with group DM, the level of blood glucose, KI, BUN, Scr, serum AGEs and 24h urinary albumin decreased, while the level of body weight increased in all three LQ groups.Meantime, the change of patho⁃logicalmorphology of glomerular basementmembranes reduced and the expressions of AGEs and RAGEmRNA in kidney tissue decreased in all three LQ groups.All changes in themedium LQ dose group weremore obvious than those of other twobook=72,ebook=77LQ groups (P < 0.05).ConclusionSimilar to AG, LQhas effect on inhibiting the action of proteinum unenzymatic glycosyl⁃ation and on decreasing the production of AGEs in serum as well as the expression of RAGEmRNA in kidney.Therefore, LQ play important protective role in kidneys of diabetic rats.

Key words:diabetic nephropathies; quercetin; liposomes; glycosylation end products, advanced; rats,Sprague-Dawley; RAGE;aminoguanidine糖尿病肾病(diabetic nephropathy,DN)是糖尿病(DM)常见的死亡原因之一,其发生率与DM的病程长短、长期高血糖、大量蛋白尿导致肾功能损害密切相关[1]。DN的发病机制目前尚不完全清楚[2]。相关研究证实,慢性高血糖引发的蛋白质非酶糖基化反应所形成的糖基化终产物(advanced glycation end products,AGEs)及其受体(RAGE)与DN的发病有着不可分割的联系[3]。槲皮素是一种天然黄酮类化合物,可以抑制醛糖还原酶的活性,减少AGEs的生成[4]。脂质体属于药物载体,具有很好的缓释性,可增强药物的生物利用率及提升药物的稳定性[5]。但有关槲皮素脂质体(Quercertin Liposomes, LQ)对DN

通讯作者△E-mail:glzkm@163.com

作者简介:唐丽霞(1986),女,硕士在读,主要从事糖尿病并发症及药物治疗研究

基金项目:广西植物功能物质研究与利用重点实验室开放基金课题(FPRU2015-5);广西科学研究与技术开发计划项目(桂科合14123001-22);桂林市科学研究与技术开发计划项目(20130103-8,201501102-8,20150102-7,20130103-8,20140105-6,20140105-11, 20140122-5,20140105-5)

中图分类号:R587.24

文献标志码:A

DOI:10.11958/59020

作者单位:1桂林医学院药学院(邮编541004);2广西植物功能物质研究与利用重点实验室

猜你喜欢

糖基化槲皮素脂质体
PEG6000修饰的流感疫苗脂质体的制备和稳定性
蛋白质O-GlcNAc糖基化修饰在妇科肿瘤中的研究进展
超滤法测定甘草次酸脂质体包封率
黄芩总黄酮脂质体的制备及其体外抗肿瘤活性
槲皮素改善大鼠铜绿假单胞菌肺感染
TPGS修饰青蒿琥酯脂质体的制备及其体外抗肿瘤活性
槲皮素诱导MCF-7细胞凋亡及其与Fas/FasL通路的相关性研究
槲皮素通过抑制蛋白酶体活性减轻心肌细胞肥大
糖基化终末产物对胰岛β细胞的损伤及作用机制研究进展
糖基化终末产物与冠脉舒张功能受损